Theory of statistics 2

Department of Statistics and Operations Research

September 25, 2019

Pivotal Quantity PQ- Confidence Interval (C.I) by PQ

Let X be a random variable and $f(x ; \theta)$ its pdf. Our interest is to find the $100(1-\alpha) \%$ C.I. of a function $\tau(\theta)$. In other word, our aim is to get from the basis $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ the interval ($T_{1}(\underline{X}), T_{2}(\underline{X})$) which satisfies:

$$
\mathbb{P}\left(T_{1}(\underline{X})<\tau(\theta)<T_{2}(\underline{X})\right)=1-\alpha .
$$

Indeed, there are so many solutions of $\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)$ depending on the length $L=T_{2}(\underline{X})-T_{1}(\underline{X})$, but L is minimized by the way of Pivotal Quantity (PQ).

Definition

A random variable $Q(\underline{X} ; \theta)$ with distribution $g(q)$ is said PQ , if $g(q)$ is free of the parameter θ.

Lemma

Let X_{1}, \ldots, X_{n} be n random variables iid with distribution $f(x ; \theta)$. The statistic $Q(\underline{X} ; \theta) \sim-2 \sum \log \left(F_{x_{i}, \theta}\right) \sim \mathcal{X}_{2 n}^{2}$ is a PQ.

The purpose of the $P Q$ method is to get the two values q_{1} and q_{2} using the two following steps:

1. $\mathbb{P}\left(q_{1}<Q(\underline{X} ; \theta)<q_{2}\right)=\mathbb{P}\left(T_{1}(\underline{X})<\tau(\theta)<T_{2}(\underline{X})\right)=1-\alpha$.

2- The length $L=T_{2}(\underline{X})-T_{1}(\underline{X})$ is minimum.

Example 1: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ known

Let X be a random variable with normal distribution $N\left(\mu, \sigma^{2}\right)$. Let X_{1}, \ldots, X_{n} be n copies of X. Our aim is to find $100(1-\alpha) \%$ of μ. $Q(\underline{X} ; \mu)=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim g(q)=N(0,1)$ represents the PQ of μ.
Then, we look for getting q_{1} and q_{2}. Step 1:

$$
\begin{aligned}
\mathbb{P}\left(q_{1}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<q_{2}\right) & =\mathbb{P}\left(\bar{X}-q_{1} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}-q_{2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha .
\end{aligned}
$$

Example 1: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ known

Step 2:
$L=\bar{X}-q_{1} \frac{\sigma}{\sqrt{n}}-\left(\bar{X}-q_{2} \frac{\sigma}{\sqrt{n}}\right)=\frac{\sigma}{\sqrt{n}}\left(q_{2}-q_{1}\right)$ must be minimum.
The last equality of step 1 indicate that q_{2} is a function of q_{1}. Differentiate this equality with respect q_{1}, we get

$$
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \Rightarrow \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} .
$$

Now, let us differentiate L with respect to q_{1}, we get

$$
\frac{d L}{d q_{1}}=\frac{\sigma}{\sqrt{n}}\left(\frac{d q_{2}}{d q_{1}}-1\right)=\frac{\sigma}{\sqrt{n}}\left(\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-1\right) .
$$

It follows that

$$
\frac{d L}{d q_{1}}=\frac{\sigma}{\sqrt{n}}\left(e^{-\left(q_{1}^{2}-q_{2}^{2}\right)}-1\right)
$$

Example 1: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ known

Thus $\frac{d L}{d q_{1}}=0$ if, and only if $q_{1}=q_{2}$ or $q_{1}=-q_{2}$. This implies that

$$
\begin{cases}L \searrow, & \text { if } q_{1}<-q_{2} ; \\ L \nearrow, & \text { if }-q_{2}<q_{1}<q_{2} ; \\ L \searrow, & \text { if } q_{1}>q_{2} .\end{cases}
$$

Since $q_{1}<q_{2}$ (from the first step), then the minimum of the function L is obtained on $q_{1}=-q_{2}$. It follows that $q_{2}=z_{1-\frac{\alpha}{2}}$.

Example 1: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ known
The confidence interval is equal to

$$
\begin{aligned}
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right) & =\left(\bar{X}-q_{1} \frac{\sigma}{\sqrt{n}}, \bar{X}-q_{2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\left(\bar{X} \pm z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)
\end{aligned}
$$

Example 2: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ unknown

Let X be a random variable with normal distribution $N\left(\mu, \sigma^{2}\right)$. Let X_{1}, \ldots, X_{n} be n copies of X with $n \leq 30$. Our aim is to find $100(1-\alpha) \%$ of $\mu . Q(\underline{X} ; \mu)=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim g(q)=t_{n-1}$ represents the PQ of μ. Then, we look for getting q_{1} and q_{2}. Step 1:

$$
\begin{aligned}
\mathbb{P}\left(q_{1}<\frac{\bar{X}-\mu}{S / \sqrt{n}}<q_{2}\right) & =\mathbb{P}\left(\bar{X}-q_{1} \frac{S}{\sqrt{n}}<\mu<\bar{X}-q_{2} \frac{S}{\sqrt{n}}\right) \\
& =\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha .
\end{aligned}
$$

Example 2: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ unknown

Step 2:

$L=\bar{X}-q_{1} \frac{S}{\sqrt{n}}-\left(\bar{X}-q_{2} \frac{S}{\sqrt{n}}\right)=\frac{S}{\sqrt{n}}\left(q_{2}-q_{1}\right)$ must be minimum.
The last equality of step 1 indicate that q_{2} is a function of q_{1}.
Differentiate this equality with respect q_{1}, we get

$$
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \Rightarrow \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} .
$$

Now, let us differentiate L with respect to q_{1}, we get

$$
\frac{d L}{d q_{1}}=\frac{S}{\sqrt{n}}\left(\frac{d q_{2}}{d q_{1}}-1\right)=\frac{S}{\sqrt{n}}\left(\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-1\right) .
$$

Recall that the t-distribution with degree of freedom ν is given by

$$
g(q)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{q^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

Example 2: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ unknown

It follows that

$$
\frac{d L}{d q_{1}}=\frac{S}{\sqrt{n}}\left(\left(\frac{\nu+q_{1}^{2}}{\nu+q_{2}^{2}}\right)^{-\frac{\nu+1}{2}}-1\right)
$$

Thus $\frac{d L}{d q_{1}}=0$ if, and only if $q_{1}=q_{2}$ or $q_{1}=-q_{2}$. This implies that

$$
\begin{cases}L \searrow, & \text { if } q_{1}<-q_{2} \\ L \nearrow, & \text { if }-q_{2}<q_{1}<q_{2} \\ L \searrow, & \text { if } q_{1}>q_{2}\end{cases}
$$

Since $q_{1}<q_{2}$ (from the first step), then the minimum of the function L is obtained on $q_{1}=-q_{2}$. It follows that $q_{2}=t_{1-\frac{\alpha}{2}}$.

Example 2: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with σ unknown

The confidence interval is equal to

$$
\begin{aligned}
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right) & =\left(\bar{X}-q_{1} \frac{S}{\sqrt{n}}, \bar{X}-q_{2} \frac{S}{\sqrt{n}}\right) \\
& =\left(\bar{X} \pm t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)
\end{aligned}
$$

If $n>30$, The confidence interval is equal to

$$
\begin{aligned}
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right) & =\left(\bar{X}-q_{1} \frac{S}{\sqrt{n}}, \bar{X}-q_{2} \frac{S}{\sqrt{n}}\right) \\
& =\left(\bar{X} \pm z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)
\end{aligned}
$$

Example 3: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with μ known

Let X be a random variable with normal distribution $N\left(\mu, \sigma^{2}\right)$. Let X_{1}, \ldots, X_{n} be n copies of X. Our aim is to find $100(1-\alpha) \%$ of $\sigma^{2} . Q\left(\underline{X} ; \sigma^{2}\right)=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim g(q)=\mathcal{X}_{n}^{2}$ represents the PQ of σ^{2}. Then, we look for getting q_{1} and q_{2}. Step 1:

$$
\begin{aligned}
& \mathbb{P}\left(q_{1}<\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}<q_{2}\right) \\
& =\mathbb{P}\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{q_{2}}<\sigma^{2}<\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{q_{1}}\right) \\
& =\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha .
\end{aligned}
$$

Example 3: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with μ known

Step 2:
$L=\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right) \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ must be minimum.
The last equality of step 1 indicate that q_{2} is a function of q_{1}. Differentiate this equality with respect q_{1}, we get

$$
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \Rightarrow \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} .
$$

Now, let us differentiate L with respect to q_{1}, we get

$$
\frac{d L}{d q_{1}}=\left(\frac{d q_{2}}{d q_{1}} \frac{1}{q_{2}^{2}}-\frac{1}{q_{1}^{2}}\right) \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=0 \Rightarrow \frac{1}{q_{2}^{2}} \frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-\frac{1}{q_{1}^{2}}=0
$$

Example 3: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with μ known
Since $\frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}=\frac{q_{1}^{\frac{n}{2}-1} e^{-\frac{q_{1}}{2}}}{q_{2}^{\frac{n}{2}-1} e^{-\frac{q_{2}}{2}}}$, then q_{1} and q_{2} must satisfy

$$
\begin{equation*}
q_{1}^{\frac{n}{2}+1} e^{-\frac{q_{1}}{2}}=q_{2}^{\frac{n}{2}+1} e^{-\frac{q_{2}}{2}} \tag{1}
\end{equation*}
$$

Remark

The minimum of the function L is given on the point that satisfies the equation (1) and it is obtained by a numerical way.

Example 3: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with μ known

Indeed, this is an implicit equation which is solved by the true and false in the following steps:
Step 1: Start by a possible value for q_{1}.
Step 2: Find q_{2} from the integration $\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha$.
Step 3: Check if q_{1} and q_{2} satisfy $q_{1}^{\frac{n}{2}+1} e^{-\frac{q_{1}}{2}}=q_{2}^{\frac{n}{2}+1} e^{-\frac{q_{2}}{2}}$.
Step 4: Stop if Step 3 is true, and if not go to Step 1.

Example 3: The normal distribution $N\left(\mu, \sigma^{2}\right)$ with μ known

In this case $q_{1}=\mathcal{X}_{n, 1-\frac{\alpha}{2}}^{2}$ and $q_{2}=\mathcal{X}_{n, \frac{\alpha}{2}}^{2}$. The confidence interval of σ^{2} is equal to:

$$
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)=\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\mathcal{X}_{n, \frac{\alpha}{2}}^{2}}, \frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\mathcal{X}_{n, 1-\frac{\alpha}{2}}^{2}}\right) .
$$

In the case where μ is unknown

$$
\begin{aligned}
& Q\left(\underline{X} ; \sigma^{2}\right)=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}=\frac{(n-1) S^{2}}{\sigma^{2}} \sim g(q)=\mathcal{X}_{n-1}^{2} . \\
& \left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)=\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\mathcal{X}_{n-1, \frac{\alpha}{2}}^{2}}, \frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\mathcal{X}_{n-1,1-\frac{\alpha}{2}}^{2}}\right) .
\end{aligned}
$$

Example 4: The exponential distribution $\exp (\theta)$

Let X be a random variable with exponential distribution $\exp (\theta)$. Let X_{1}, \ldots, X_{n} be n copies of X. Our aim is to find $100(1-\alpha) \%$ of $\theta . Q(\underline{X} ; \theta)=2 \theta \sum_{i=1}^{n} X_{i}=2 \theta S \sim g(q)=\mathcal{X}_{2 n}^{2}$ represents the PQ of θ. Then, we look for getting q_{1} and q_{2}. Step 1:

$$
\mathbb{P}\left(q_{1}<2 \theta S<q_{2}\right)=\mathbb{P}\left(\frac{q_{1}}{2 S}<\theta<\frac{q_{2}}{2 S}\right)=\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha .
$$

Example 4: The exponential distribution $\exp (\theta)$

Step 2:
$L=\frac{1}{2 S}\left(q_{2}-q_{1}\right)$ must be minimum.
The last equality of step 1 indicate that q_{2} is a function of q_{1}. Differentiate this equality with respect q_{1}, we get

$$
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \Rightarrow \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} .
$$

Now, let us differentiate L with respect to q_{1}, we get

$$
\frac{d L}{d q_{1}}=\frac{1}{2 S}\left(\frac{d q_{2}}{d q_{1}}-1\right)=0 \Rightarrow \frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-1=0
$$

Example 4: The exponential distribution $\exp (\theta)$

Then $g\left(q_{1}\right)=g\left(q_{2}\right)$ and consequently q_{1} and q_{2} must satisfy

$$
q_{1}^{n-1} e^{-\frac{q_{1}}{2}}=q_{2}^{n-1} e^{-\frac{q_{2}}{2}} .
$$

This is an implicit equation which is solved by the true and false way.

Example 4: The exponential distribution $\exp (\theta)$

In this case $q_{1}=\mathcal{X}_{2 n, 1-\frac{\alpha}{2}}^{2}$ and $q_{2}=\mathcal{X}_{2 n, \frac{\alpha}{2}}^{2}$. The confidence interval of θ is equal to:

$$
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)=\left(\frac{\mathcal{X}_{2 n, 1-\frac{\alpha}{2}}^{2}}{2 S}, \frac{\mathcal{X}_{2 n, \frac{\alpha}{2}}^{2}}{2 S}\right) .
$$

Example 5

Let X be a random variable with distribution $f(x ; \theta)=\theta x^{\theta-1}, \quad 0<x<1$. Let X_{1}, \ldots, X_{n} be n copies of X.
Our aim is to find $100(1-\alpha) \%$ of θ.
$Q(\underline{X} ; \theta)=-2 \sum_{i=1}^{n} \log \left(F_{x_{i}, \theta}\right) \sim g(q)=\mathcal{X}_{2 n}^{2}$ represents the PQ of θ.
Since $F_{x_{i}, \theta}=X_{i}^{\theta}$, then

$$
Q(\underline{X} ; \theta)=-2 \theta \sum_{i=1}^{n} \log \left(x_{i}\right)=2 \theta K \sim g(q)=\mathcal{X}_{2 n}^{2}
$$

with $K=-\sum_{i=1}^{n} \log \left(x_{i}\right)>0$. Then, we look for getting q_{1} and q_{2}.
Step 1:

$$
\mathbb{P}\left(q_{1}<2 \theta K<q_{2}\right)=\mathbb{P}\left(\frac{q_{1}}{2 K}<\theta<\frac{q_{2}}{2 K}\right)=\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha
$$

Example 5

Step 2:
$L=\frac{1}{2 K}\left(q_{2}-q_{1}\right)$ must be minimum.
The last equality of step 1 indicate that q_{2} is a function of q_{1}. Differentiate this equality with respect q_{1}, we get

$$
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \Rightarrow \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} .
$$

Now, let us differentiate L with respect to q_{1}, we get

$$
\frac{d L}{d q_{1}}=\frac{1}{2 K}\left(\frac{d q_{2}}{d q_{1}}-1\right)=0 \Rightarrow \frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-1=0
$$

Example 5

Then $g\left(q_{1}\right)=g\left(q_{2}\right)$ and consequently q_{1} and q_{2} must satisfy

$$
q_{1}^{n-1} e^{-\frac{q_{1}}{2}}=q_{2}^{n-1} e^{-\frac{q_{2}}{2}} .
$$

This is an implicit equation which is solved by the true and false way.

Example 5

In this case $q_{1}=\mathcal{X}_{2 n, 1-\frac{\alpha}{2}}^{2}$ and $q_{2}=\mathcal{X}_{2 n, \frac{\alpha}{2}}^{2}$. The confidence interval of θ is equal to:

$$
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)=\left(\frac{\mathcal{X}_{2 n, 1-\frac{\alpha}{2}}^{2}}{2 K}, \frac{\mathcal{X}_{2 n, \frac{\alpha}{2}}^{2}}{2 K}\right) .
$$

Remark

not any PQ is useful, for instance

$$
Q(\underline{X} ; \theta)=-2 \sum_{i=1}^{n} \log \left(F_{x_{i}, \theta}\right)=-2 \sum_{i=1}^{n} \log \left(1-e^{-\theta X_{i}}\right)
$$

is a $P Q$ but it cannot reach to

$$
\mathbb{P}\left(T_{1}(\underline{X})<\theta<T_{2}(\underline{X})\right)=1-\alpha .
$$

Thank you

$$
4 \square>4 \text { 岛 } \downarrow 4 \equiv \stackrel{\equiv}{ }
$$

