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1) Probability density function

Definition

The function f (x) is a probability density function (pdf) for the
continuous random variable X , defined over the set of real
numbers, if

1 f (x) ≥ 0, for all x ∈ R.

2
∫∞
−∞ f (x)dx = 1.

3 P(a ≤ X ≤ b) =
∫ b
a f (x)dx .

Example 1 Suppose that the error in the reaction temperature, in
C ◦, for a controlled laboratory experiment is a continuous random
variable X having the probability density function

f (x) =

{
x2

3 , − 1 < x < 2
0, elsewhere

(a) Verify that f (x) is a density function.
(b) Find Pr(0 ≤ X ≤ 1).
(c) Find Pr(0 < X < 1).



Solution

Let X = the error in the reaction temperature, in C ◦.

f (x) =

{
x2

3 , −1 < x < 2
0, elsewhere.

(a) f (x) > 0 because f (x) is quadratic function.∫ +∞

−∞
f (x)dx =

∫ 2

−1
f (x)dx

=

∫ 2

−1

x2

3
dx

=
1

3
× 1

3

[
x3
]2
−1 = 1



(b)

Pr(0 ≤ X ≤ 1) =

∫ 1

0
f (x)dx

=

∫ 1

0

x2

3
dx

=
1

3
× 1

3

[
x3
]1
0

=
1

9

(c) By the same way, we have

Pr(0 < X < 1) =
1

9



1.1) Cumulative distribution function

Definition

The cumulative distribution function F (x) of a continuous random
variable X with density function f (x) is

F (x) = Pr(X ≤ x) =

∫ x

−∞
f (t)dt, for −∞ < x <∞.

Example

For the density function of Example 1, find F (x), and use it to
evaluate P(0 < X ≤ 1).



Solution

By definition, we have

F (x) = Pr(X ≤ x) =

∫ x

−∞
f (t)dt

=

∫ x

−1

t2

3
dt =

1

3

∫ x

−1
t3dt

=
1

3

∫ x

−1
t3dt =

1

9
x3 +

1

9

Therefore,

Pr(0 < X ≤ 1) = Pr(X ≤ 1)− Pr(X < 1)

= F (1)− F (0)

=
1

9



1.2) Mean of a Random Variable

Definition

Let X be a random variable with probability distribution f (x). The
mean, or expected value, of X is

µ = E (X ) =

∫ +∞

−∞
xf (x)dx

Example

For the density function of Example 1, find E (X ).

Solution

E (X ) =

∫ +∞

−∞
xf (x)dx =

∫ 2

−1
xf (x)dx =

∫ 2

−1
x
x2

3
dx

=
1

3

∫ 2

−1
x3dx =

1

12
(16− 1) =

15

12



Theorem

Let X be a random variable with probability distribution f (x).
The expected value of the random variable g(X ) is

µg(X ) = E [g(X )] =

∫ +∞

−∞
g(x)f (x)dx

Example

For the density function of Example 1, Find the expected value of
the random variable g(X ) where g(X ) = 2X + 1.

Solution

E [g(X )] =

∫ +∞

−∞
g(x)f (x)dx = E [g(X )] =

∫ 2

−1
(2x + 1)

x2

3
dx

=
47

12



1.3) Variance of Random Variable

Theorem

Let X be a random variable with probability distribution f (x) and
mean µ. The variance of X is

σ2 = E [(X − µ)2] =

∫ ∞
−∞

(x − µ)2f (x)

Theorem

Let X a random variable. The variance of a random variable X is

σ2 = E (X 2)− E (X )2.



Theorem

Let X a random variable. If a and b are constants, then

E (aX + b) = aE (X ) + b.

Theorem

The expected value of the sum or difference of two or more
functions of a random variable X is the sum or difference of the
expected values of the functions. That is,

E [g(X )± h(X )] = E [g(X )]± E [h(X )].
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Continuous Uniform Distribution

Definition

The density function of the continuous uniform random variable X
on the interval [a, b] is

f (x) =

{
1

b−a , a ≤ x ≤ b

0, elsewhere.

Theorem

The mean and variance of the uniform distribution are

µ = E (X ) =
a + b

2
and σ2 =

(b − a)2

12



Example

Suppose that a large conference room at a certain company can be
reserved for no more than 4 hours. Both long and short conferences
occur quite often. In fact, it can be assumed that the length X of
a conference has a uniform distribution on the interval [0, 4].

1 What is the probability density function?

2 What is the probability that any given conference lasts at least 3
hours?

3 Find the expected value and the variance.



Solution

1

f (x) =

{
1
4 , 0 ≤ x ≤ 4
0, elsewhere.

2

Pr(X ≥ 3) =

∫ 4

3
f (t)dt =

∫ 4

3

1

4
dt =

1

4
.

3

E (X ) =
0 + 4

2
= 2 and σ2 =

(4− 0)2

12
=

16

12
=

4

3



2.1) Normal Distribution

Definition

The density of the normal random variable X , with mean µ and
variance σ2, and denoted by N(µ, σ), is

f (x) =
1√
2πσ

e
−1
2σ2

(x−µ)2 , −∞ < x <∞,

where π = 3.14159 . . . and e = 2.71828 . . . .

Note:The graph of the
probability density function
(pdf) of a normal distribution,
called the normal curve, is a
bell-shaped curve.



Standard Normal Distribution

Definition

The density of the standard normal distribution Z is

f (x) =
1√
2π

e−
1
2
x2 , −∞ < x <∞,

we write
Z ∼ Normal(0, 1) or Z ∼ N(0, 1)

Note:The graph of the
probability density function
(pdf) of a standard normal
distribution.



Theorem

The mean and variance of standard normal distribution are 0 and
1, respectively. We denote the standard normal distribution by
N(0, 1).

Theorem

1 If X is normal random variable N(µ, σ), then the random

variable
X − µ
σ

is a standard normal distribution Z with mean

0 and variance 1.

2 If X and Y are independent, X ∼ N(µ1, σ1) and
Y ∼ N(µ2, σ2) then

X + Y ∼ N(µ1 + µ2,
√
σ21 + σ22)



Table: Probabilities of the standard normal distribution
Z ∼ N(0, 1) of the form Pr(Z ≤ a) are tabulated.
Note: Pr(Z = a) = 0 for every a.

Figure: Areas under the Normal Curve





Figure: Areas under the Normal Curve Z ∼ Normal(0, 1)





Example

Given a standard normal distribution N(0, 1), find the area under
the curve that lies

1 to the right of z = 1.84

2 between z = −1.97 and z = 0.86.

Solution

1 The area under the curve that lies to the right of z = 1.84 is
0.0329.

2 The area under the curve that lies between z = −1.97 and
z = 0.86 is 0.7807.



Example

Given a standard normal distribution N(0, 1), find the value of k
such that

1 Pr(Z > k) = 0.3015

2 P(k < Z < −0.18) = 0.4197.

Solution

1 k = 0.52.

2 k = −2.37.



Example

Given a random variable X having a normal distribution with
µ = 50 and σ = 10, find the probability that X assumes a value
between 45 and 62.

Solution

Using Table A.3, we have

Pr(45 < X < 62) = Pr(−0.5 < Z < 1.2)

= Pr(Z < 1.2)− Pr(Z < −0.5)

= 0.8849− 0.3085 = 0.5764



Example

Given a normal distribution with µ = 40 and σ = 6, find the value
of x that has

(a) 45% of the area to the left

(b) 14% of the area to the right.

Solution

(a) We need to find a z value that leaves an area of 0.45 to the
left. From Table A.3 we find Pr(Z < −0.13) = 0.45, so the
desired z value is −0.13. Hence, x = (6)(−0.13) + 40 = 39.22.

(b) This time we require a z value that leaves 0.14 of the area
to the right and hence an area of 0.86 to the left. Again, from
Table A.3, we find P(Z < 1.08) = 0.86, so the desired z value is
1.08 and

x = (6)(1.08) + 40 = 46.48.



Example

A certain machine makes electrical resistors having a mean
resistance of 40 ohms and a standard deviation of 2 ohms.
Assuming that the resistance follows a normal distribution and can
be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?



Solution

A percentage is found by multiplying the relative frequency by
100%. Since the relative frequency for an interval is equal to the
probability of a value falling in the interval, we must find the area
to the right of x = 43. This can be done by transforming x = 43
to the corresponding z value, obtaining the area to the left of z
from Table A.3, and then subtracting this area from 1. We find

z =
43− 40

2
= 1.5.

Therefore,Pr(X > 43) = Pr(Z > 1.5) = 1− Pr(Z < 1.5) =
1− 0.9332 = 0.0668. Hence, 6.68% of the resistors will have a
resistance exceeding 43 ohms.



The Chi square Distribution

Definition

If S2 is the variance of a random sample of size n taken from a
normal population having the variance σ2, then the statistic

χ2 =
(n − 1)S2

σ2

has a chi-squared distribution with ν = n − 1 degrees of freedom.



Theorem

1 If X1,X2, ...,Xn an independent random sample that have the

same standard normal distribution then X =
n∑

i=1
X 2
i is

chi-squared distribution, with degrees of freedom ν = n.

2 The mean and variance of the chi-squared distribution χ2 with
ν degrees of freedom are µ = ν and σ2 = 2ν.



Figure: Table A.5 Critical Values of the Chi-Squared Distribution





Example

For a chi-squared distribution, find

(a) χ2
0.025 when ν = 15;

(b) χ2
0.01when ν = 7;

(c) χ2
0.05 when ν = 24.

Solution

(a) 27.488.

(b) 18.475.

(c) 36.415.



Example

For a chi-squared distribution X , find χ2
α such that

(a) P(X > χ2
α) = 0.99 when ν = 4;

(b) P(X > χ2
α) = 0.025 when ν = 19;

(c) P(37.652 < X < χ2
α) = 0.045 when ν = 25.

Solution

(a) χ2
α = χ2

0.99 = 0.297.

(b) χ2
α = χ2

0.025 = 32.852.

(c) χ2
0.05 = 37.652. Therefore, α = 0.05− 0.045 = 0.005.

Hence, χ2
α = χ2

0.005 = 46.928.



The Student’s Distribution

Theorem

Let Z be a standard normal random variable and V a chi-squared
random variable with ν degrees of freedom. If Z and ν are
independent, then the distribution of the random variable T ,
where

T =
Z√
V /ν

This is known as the t-distribution with ν degrees of freedom.



Figure: Table A.4 Critical Values of the t-Distribution





The t-value with ν = 14 degrees of freedom that leaves an area of
0.025 to the left, and therefore an area of 0.975 to the right, is

t0.975 = −t0.025 = −2.145



Example

Find Pr(−t0.025 < T < t0.05).

Solution

Since t0.05 leaves an area of 0.05 to the right, and −t0.025 leaves
an area of 0.025 to the left, we find a total area of
1− 0.05− 0.025 = 0.925 between −t0.025 and t0.05.
Hence

Pr(−t0.025 < T < t0.05) = 0.925.



Example

Find k such that Pr(k < T < −1.761) = 0.045 for a random
sample of size 15 selected from a normal distribution with

T = X−µ
S/
√
n

.

Solution

From Table A.4 we note that 1.761 corresponds to t0.05 when
ν = 14. Therefore,−t0.05 = −1.761. Since k in the original
probability statement is to the left of −t0.05 = −1.761, let
k = −tα. Then, by using figure, we have

0.045 = 0.05− α, or α = 0.005.

Hence, from Table A.4 with ν = 14,
k = −t0.005 = −2.977 and Pr(−2.977 < T < −1.761) = 0.045.



The Fisher Distribution

The statistic F is defined to be the ratio of two independent
chi-squared random variables, each divided by its number of

degrees of freedom.

Theorem 31

The random variable

F =
U/ν1
V /ν2

where U and V are independent random variables having
chi-squared distributions with ν1 and ν2 degrees of freedom,
respectively, is the F -distribution with ν1 and ν2 degrees of
freedom (d.f.).



Figure: Table A.6 Critical Values of the F-Distribution









Theorem

Writing fα(ν1, ν2) for fα with ν1 and ν2 degrees of freedom, we
have

f1−α(ν1, ν2) =
1

fα(ν2, ν1)

Thus, the f -value with 6 and 10 degrees of freedom, leaving an
area of 0.95 to the right, is f0.95(6, 10) = 1

f0.05(10,6)
= 1

4.06 = 0.246.
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