Chapter 2:

Inverse of a Matrix

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be found such that $A B=B A=I$, then A is said to be invertible (or nonsingular) and B is called an inverse of A. If no such matrix B can be found, then A is said to be singular.

Remark The relationship $A B=B A=I$ is not changed by interchanging A and B, so if A is invertible and B is an inverse of A, then it is also true that B is invertible, and A is an inverse of B. Thus, when

$$
A B=B A=I
$$

we say that A and B are inverses of one another.

EXAMPLE 5 An Invertible Matrix

Let

$$
A=\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A B=\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \\
& B A=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

Thus, A and B are invertible and each is an inverse of the other.

EXAMPLE 6 A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this is so, consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 4 & 0 \\
2 & 5 & 0 \\
3 & 6 & 0
\end{array}\right]
$$

To prove that A is singular we must show that there is no 3×3 matrix B such that $A B=B A=I$. For this purpose let $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{0}$ be the column vectors of A. Thus, for any 3×3 matrix B we can express the product $B A$ as

$$
B A=B\left[\begin{array}{lll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{lll}
B \mathbf{c}_{1} & B \mathbf{c}_{2} & \mathbf{0}
\end{array}\right] \text { [Formula (6) of Section 1.3] }
$$

The column of zeros shows that $B A \neq I$ and hence that A is singular.

THEOREM 1.4.4 If B and C are both inverses of the matrix A, then $B=C$.

Proof Since B is an inverse of A, we have $B A=I$. Multiplying both sides on the right by C gives $(B A) C=I C=C$. But it is also true that $(B A) C=B(A C)=B I=B$, so $C=B$.

THEOREM 1.4.5 The matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d-b c \neq 0$, in which case the inverse is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \tag{2}\\
-c & a
\end{array}\right]
$$

We will omit the proof, because we will study a more general version of this theorem later. For now, you should at least confirm the validity of Formula (2) by showing that $A A^{-1}=A^{-1} A=I$.

Remark Figure 1.4.1 illustrates that the determinant of a 2×2 matrix A is the product of the entries on its main diagonal minus the product of the entries off its main diagonal.

EXAMPLE 7 Calculating the Inverse of a 2×2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

$$
\text { (a) } A=\left[\begin{array}{ll}
6 & 1 \\
5 & 2
\end{array}\right] \quad \text { (b) } A=\left[\begin{array}{rr}
-1 & 2 \\
3 & -6
\end{array}\right]
$$

Solution (a) The determinant of A is $\operatorname{det}(A)=(6)(2)-(1)(5)=7$, which is nonzero. Thus, A is invertible, and its inverse is

$$
A^{-1}=\frac{1}{7}\left[\begin{array}{rr}
2 & -1 \\
-5 & 6
\end{array}\right]=\left[\begin{array}{rr}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{5}{7} & \frac{6}{7}
\end{array}\right]
$$

We leave it for you to confirm that $A A^{-1}=A^{-1} A=I$.

Solution (b) The matrix is not invertible since $\operatorname{det}(A)=(-1)(-6)-(2)(3)=0$.

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then $A B$ is invertible and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Proof We can establish the invertibility and obtain the stated formula at the same time by showing that

$$
(A B)\left(B^{-1} A^{-1}\right)=\left(B^{-1} A^{-1}\right)(A B)=I
$$

But

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I
$$

and similarly, $\left(B^{-1} A^{-1}\right)(A B)=I$.
Although we will not prove it, this result can be extended to three or more factors:

A product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverses in the reverse order.

EXAMPLE 9 The Inverse of a Product

Consider the matrices

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

We leave it for you to show that

$$
A B=\left[\begin{array}{ll}
7 & 6 \\
9 & 8
\end{array}\right], \quad(A B)^{-1}=\left[\begin{array}{rr}
4 & -3 \\
-\frac{9}{2} & \frac{7}{2}
\end{array}\right]
$$

and also that

$$
A^{-1}=\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right], \quad B^{-1}=\left[\begin{array}{rr}
1 & -1 \\
-1 & \frac{3}{2}
\end{array}\right], \quad B^{-1} A^{-1}=\left[\begin{array}{rr}
1 & -1 \\
-1 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
4 & -3 \\
-\frac{9}{2} & \frac{7}{2}
\end{array}\right]
$$

Thus, $(A B)^{-1}=B^{-1} A^{-1}$ as guaranteed by Theorem 1.4.6.

Powers of a Matrix If A is a square matrix, then we define the nonnegative integer powers of A to be

$$
A^{0}=I \quad \text { and } \quad A^{n}=A A \cdots A \quad \mid n \text { factors } \mid
$$

and if A is invertible, then we define the negative integer powers of A to be

$$
A^{-n}=\left(A^{-1}\right)^{n}=A^{-1} A^{-1} \cdots A^{-1} \quad[n \text { factors }]
$$

THEOREM 1.4.7 If A is invertible and n is a nonnegative integer, then:
(a) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
(b) A^{n} is invertible and $\left(A^{n}\right)^{-1}=A^{-n}=\left(A^{-1}\right)^{n}$.
(c) $k A$ is invertible for any nonzero scalar k, and $(k A)^{-1}=k^{-1} A^{-1}$.

EXAMPLE 10 Properties of Exponents

Let A and A^{-1} be the matrices in Example 9; that is,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]
$$

EXAMPLE 10 Properties of Exponents

Let A and A^{-1} be the matrices in Example 9; that is,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]
$$

Then

$$
A^{-3}=\left(A^{-1}\right)^{3}=\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
41 & -30 \\
-15 & 11
\end{array}\right]
$$

Also,

$$
A^{3}=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
11 & 30 \\
15 & 41
\end{array}\right]
$$

so, as expected from Theorem 1.4.7(b),

$$
\left(A^{3}\right)^{-1}=\frac{1}{(11)(41)-(30)(15)}\left[\begin{array}{rr}
41 & -30 \\
-15 & 11
\end{array}\right]=\left[\begin{array}{rr}
41 & -30 \\
-15 & 11
\end{array}\right]=\left(A^{-1}\right)^{3}
$$

REMARK:

$$
(A+B)^{2}=A^{2}+A B+B A+B^{2}
$$

It is only in the special case where A and B commute (i.e., $A B=B A$) that we can go a step further and write

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Challenge: Can you give a subclass of matrices where the product is commutative?

- EXAMPLE 12 A Matrix Polynomial

Find $p(A)$ for

$$
p(x)=x^{2}-2 x-3 \quad \text { and } \quad A=\left[\begin{array}{rr}
-1 & 2 \\
0 & 3
\end{array}\right]
$$

Solution

$$
\begin{aligned}
p(A) & =A^{2}-2 A-3 I \\
& =\left[\begin{array}{rr}
-1 & 2 \\
0 & 3
\end{array}\right]^{2}-2\left[\begin{array}{rr}
-1 & 2 \\
0 & 3
\end{array}\right]-3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lr}
1 & 4 \\
0 & 9
\end{array}\right]-\left[\begin{array}{rr}
-2 & 4 \\
0 & 6
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

or more briefly, $p(A)=0$.

THEOREM 1.4.9 If A is an invertible matrix, then A^{T} is also invertible and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Proof We can establish the invertibility and obtain the formula at the same time by showing that

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}=I
$$

But from part (e) of Theorem 1.4.8 and the fact that $I^{T}=I$, we have

$$
\begin{aligned}
& A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I \\
& \left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I
\end{aligned}
$$

which completes the proof.

EXCERSICES:

(a) Give an example of two 2×2 matrices such that

$$
(A+B)(A-B) \neq A^{2}-B^{2}
$$

(b) State a valid formula for multiplying out

$$
(A+B)(A-B)
$$

(c) What condition can you impose on A and B that will allor you to write $(A+B)(A-B)=A^{2}-B^{2}$?
45. (a) Show that if A, B, and $A+B$ are invertible matrices with the same size, then

$$
A\left(A^{-1}+B^{-1}\right) B(A+B)^{-1}=I
$$

(b) What does the result in part (a) tell you about the matrix $A^{-1}+B^{-1}$?
46. A square matrix A is said to be idempotent if $A^{2}=A$.
(a) Show that if A is idempotent, then so is $I-A$.
(b) Show that if A is idempotent, then $2 A-I$ is invertible and is its own inverse.

3.3.2 Method for finding Inverse of a matrix

To find the inverse of an invertible matrix, we must find a sequence of elementary row operations that reduces A to the identity and then perform this same sequence of operations on I_{n} to obtain A^{-1}.

$$
\left[\begin{array}{l|l}
\mathrm{A} & \mathrm{I}
\end{array}\right] \text { to }\left\lfloor\mathrm{I} \mid \mathrm{A}^{-1}\right]
$$

Example:2. Find inverse of a matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method.

Solution:

$$
\begin{aligned}
{[A \mid I] } & =\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \\
& \approx\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right]-2 R_{1}+R_{2} \\
& \approx\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right]-\mathrm{R}_{2} \\
& \approx\left[\begin{array}{cc|c}
1 & 0 & -7 \\
0 & 1 & 4 \\
0 & -1
\end{array}\right]-4 \mathrm{R}_{2}+\mathrm{R}_{1} \\
& =\left[\begin{array}{c}
\mid
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{A}^{-1}=\left[\begin{array}{cc}
-7 & 4 \\
2 & -1
\end{array}\right]
$$

Example:3. Use Elementary matrix method to find inverses of

$$
A=\left[\begin{array}{ccc}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{array}\right] \quad \text { if } \mathrm{A} \text { is invertible. }
$$

Solution:

$$
[A \mid I]=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 5 & -10 & 0 & -2 & 1
\end{array}\right]-3 R_{1}+R_{2},-2 R_{1}+R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 1 & 0 & -1 & -2 & 1
\end{array}\right]-R_{2}+R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & -1 & \frac{1}{2} & \frac{-7}{10} & \frac{-2}{5}
\end{array}\right] \quad R_{2} \leftrightarrow R_{3}, \frac{\left(-4 R_{3}+R_{2}\right)}{10} \\
& \approx\left[\begin{array}{ccc|c|c}
1 & 0 & 0 & \frac{3}{2} & \frac{-11}{10} \\
\frac{-6}{5} \\
0 & 1 & 0 & -1 & 1 \\
0 \\
0 & 0 & 1 & \frac{-1}{2} & \frac{7}{10} \\
\frac{2}{5}
\end{array}\right] \quad-3 R_{3}+R_{1},-R_{3} \\
& \approx\left[I \mid A^{-1}\right] \\
& A^{-1}=\left[\begin{array}{ccc}
\frac{3}{2} & \frac{-11}{10} & \frac{-6}{5} \\
-1 & 1 & 1 \\
\frac{-1}{2} & \frac{7}{10} & \frac{2}{5}
\end{array}\right] .
\end{aligned}
$$

4.1 Determinant of a matrix

The determinant is a useful value that can be computed from the elements of a square matrix. The determinant of a matrix A is $\operatorname{denoted} \operatorname{det}(A), \operatorname{det} A$, or $|A|$.

4.2 Evaluation of determinant of Matrix

1.The determinant of $a(1 \times 1)$ matrix $A=[a]$ is just $\operatorname{det} A=a$.
2. The determinant of 2×2 matrix is defined as

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& |A|=\operatorname{det} A=\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-c b
\end{aligned}
$$

Example:1. Find determinant of matrix

$$
A=\left[\begin{array}{ll}
4 & 5 \\
3 & 6
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
4 & 5 \\
3 & 6
\end{array}\right] \\
& \operatorname{det} A=4 \times 6-3 \times 5 \\
&=24-15 \\
&=9
\end{aligned}
$$

4.3 The determinant of 3×3 matrix is defined as

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& \operatorname{det} A=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

DEFINITION 1 If A is a square matrix, then the minor of entry $\boldsymbol{a}_{i j}$ is denoted by $M_{i j}$ and is defined to be the determinant of the submatrix that remains after the i th row and j th column are deleted from A. The number $(-1)^{i+j} M_{i j}$ is denoted by $C_{i j}$ and is called the cofactor of entry $a_{i j}$.

EXAMPLE 1 Finding Minors and Cofactors

Let

$$
A=\left[\begin{array}{rrr}
3 & 1 & -4 \\
2 & 5 & 6 \\
1 & 4 & 8
\end{array}\right]
$$

The minor of entry a_{11} is

$$
M_{11}=\left|\begin{array}{llr}
3 & 1 & -4 \\
2 & 5 & 6 \\
1 & 4 & 8
\end{array}\right|=\left|\begin{array}{ll}
5 & 6 \\
4 & 8
\end{array}\right|=16
$$

The cofactor of a_{11} is

$$
C_{11}=(-1)^{1+1} M_{11}=M_{11}=16
$$

Similarly, the minor of entry a_{32} is

$$
M_{32}=\left|\begin{array}{rrr}
3 & 1 & -4 \\
2 & 5 & 6 \\
1 & 4 & 8
\end{array}\right|=\left|\begin{array}{rr}
3 & -4 \\
2 & 6
\end{array}\right|=26
$$

The cofactor of a_{32} is

$$
C_{32}=(-1)^{3+2} M_{32}=-M_{32}=-26
$$

Remark Note that a minor $M_{i j}$ and its corresponding cofactor $C_{i j}$ are either the same or negatives of each other and that the relating sign $(-1)^{i+j}$ is either +1 or -1 in accordance with the pattern in the "checkerboard" array

$$
\left[\begin{array}{cccccc}
+ & - & + & - & + & \cdots \\
- & + & - & + & - & \cdots \\
+ & - & + & - & + & \cdots \\
- & + & - & + & - & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

For example,

$$
C_{11}=M_{11}, \quad C_{21}=-M_{21}, \quad C_{22}=M_{22}
$$

DEFINITION 2 If A is an $n \times n$ matrix, then the number obtained by multiplying the entries in any row or column of A by the corresponding cofactors and adding the resulting products is called the determinant of \boldsymbol{A}, and the sums themselves are called cofactor expansions of \boldsymbol{A}. That is,

$$
\begin{equation*}
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \tag{7}
\end{equation*}
$$

[cofactor expansion along the j th column]
and

$$
\begin{equation*}
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \tag{8}
\end{equation*}
$$

[cofactor expansion along the i th row]

Example:2. Find determinant of matrix

$$
A=\left[\begin{array}{lll}
2 & 4 & 5 \\
3 & 6 & 8 \\
4 & 5 & 9
\end{array}\right]
$$

Solution:

Expanding along the top row and noting alternating signs $\left|\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right|$

$$
\begin{aligned}
\operatorname{det} A & =+2 x\left|\begin{array}{ll}
6 & 8 \\
5 & 9
\end{array}\right|-4 x\left|\begin{array}{ll}
3 & 8 \\
4 & 9
\end{array}\right|+5 x\left|\begin{array}{ll}
3 & 6 \\
4 & 5
\end{array}\right| \\
& =2 x(54-40)-4 \times(27-32)+5 \times(15-24) \\
& =2 x(14)-4 x(-5)+5 \times(-9) \\
& =28+20-45=48-45=3
\end{aligned}
$$

Note: we can write determinant of a matrix as

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { or }\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \text { or } \quad \operatorname{det} A \text { or }|A|
$$

Example:3.

Find the determinant of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.

Solution:

$$
\begin{aligned}
\operatorname{det} A & =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
\operatorname{det} A & =\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=+1 \times\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-2 \times\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+3 \times\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right| \\
& =1(45-48)-2(36-42)+3(32-35)=-3+12-9=0
\end{aligned}
$$

Example4. Find determinant of matrix of order 4×4

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & 5 \\
2 & -1 & 2 & 3 \\
3 & 2 & 1 & 5 \\
1 & 0 & 4 & 0
\end{array}\right]
$$

Solution:

Two entries in 4th row are zero, so determinant is calculated by opening from $4^{\text {th }}$ row.

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =\mathrm{a}_{41} \mathrm{c}_{41}+\mathrm{a}_{42} \mathrm{c}_{42}+\mathrm{a}_{43} \mathrm{c}_{43}+\mathrm{a}_{44} \mathrm{c}_{44} \\
& =(1) \mathrm{c}_{41}+(0) \mathrm{c}_{42}+(4) \mathrm{c}_{43}+(0) \mathrm{c}_{44} \\
& =\mathrm{c}_{41}+(4) \mathrm{c}_{43} \\
\operatorname{det} \mathrm{~A} & =\mathrm{c}_{41}+(4) \mathrm{c}_{43}=-\left|\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 2 & 3 \\
2 & 1 & 5
\end{array}\right|-4\left|\begin{array}{ccc}
0 & 1 & 5 \\
2 & -1 & 2 \\
3 & 2 & 1
\end{array}\right|
\end{aligned}
$$

Finding values of cofactors c_{41} and c_{43}

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =-(4)-4(34) \\
& =-4-136 \\
& =-140
\end{aligned}
$$

Example:5.

Solving matrix equation
Find all values of λ for which $\operatorname{det}(A)=0$ for matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
\lambda-4 & 0 & 0 \\
0 & \lambda & 2 \\
0 & 3 & \lambda-1
\end{array}\right]
$$

Solution: Two entries of $1^{\text {st }}$ row are zero, we open it from first row

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =(\lambda-4)\left|\begin{array}{cc}
\lambda & 2 \\
3 & \lambda-1
\end{array}\right| \\
& =(\lambda-4)[\lambda(\lambda-1)-6] \\
& =(\lambda-4)\left[\lambda^{2}-\lambda-6\right] \\
& =(\lambda-4)(\lambda-3)(\lambda+2)
\end{aligned}
$$

We need to find the value of λ, when $\operatorname{det} A=0$

$$
\begin{aligned}
& \Rightarrow(\lambda-4)(\lambda-3)(\lambda+2)=0 \\
& \Rightarrow \lambda=4, \lambda=3 \text { and } \lambda=-2 .
\end{aligned}
$$

EXAMPLE 5 Smart Choice of Row or Column

If A is the 4×4 matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
3 & 1 & 2 & 2 \\
1 & 0 & -2 & 1 \\
2 & 0 & 0 & 1
\end{array}\right]
$$

then to find $\operatorname{det}(A)$ it will be easiest to use cofactor expansion along the second column, since it has the most zeros:

$$
\operatorname{det}(A)=1 \cdot\left|\begin{array}{rrr}
1 & 0 & -1 \\
1 & -2 & 1 \\
2 & 0 & 1
\end{array}\right|
$$

For the 3×3 determinant, it will be easiest to use cofactor expansion along its second column, since it has the most zeros:

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot-2 \cdot\left|\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right| \\
& =-2(1+2) \\
& =-6
\end{aligned}
$$

EXAMPLE 7 ATechnique for Evaluating 2×2 and 3×3 Determinants

$$
\left.\begin{array}{rl}
\left|\begin{array}{rr}
3 & 1 \\
4 & -2
\end{array}\right| & =\left\lvert\, \begin{array}{rr}
1 \\
1 & 2
\end{array} 3\right. \\
-4 & 5
\end{array} \right\rvert\,
$$

Upper triangular matrix

In upper triangular matrix all the entries below the diagonal are zero.

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right]
$$

Lower triangular matrix

In lower triangular matrix all the entries above the diagonal are zero.

$$
\mathrm{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
8 & 4 & 0 \\
4 & 7 & 3
\end{array}\right]
$$

Note: Determinant of triangular matrix is product of diagonal elements.

$$
\begin{aligned}
& \text { Det } \mathrm{A}=(1)(4)(5)=20 \\
& \text { Det } \mathrm{B}=(1)(4)(3)=12
\end{aligned}
$$

EXAMPLE:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
2 & 4 & 5 & 3 \\
0 & 5 & 3 & -1 \\
0 & 0 & 3 & 9 \\
0 & 0 & 0 & 4
\end{array}\right] \\
& \operatorname{det} A=(2)(4)(5)(3)=120
\end{aligned}
$$

Example:7. Determinant of Diagonal matrix

$$
\text { Find determinant of matrix } B=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Solution:

$$
\operatorname{det} B=(5)(4)(3)=60
$$

Example:8.

$$
\text { Evaluate } \operatorname{det} C=\left|\begin{array}{rrrrr}
3 & 0 & 0 & 0 & 0 \\
-4 & 2 & 0 & 0 & 0 \\
67 & e & 4 & 0 & 0 \\
0 & 1 & -47 & 2 & 0 \\
\pi & -3 & 6 & -\sqrt{2} & -1
\end{array}\right|
$$

Matrix C is lower triangular $\Rightarrow \operatorname{det} C=3 \times 2 \times 4 \times 2 \times(-1)=-48$

Example:9.

$$
\text { Evaluate } \operatorname{det} D=\left|\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
-3 & 2 & -4 & -3 \\
4 & 2 & 7 & 4 \\
2 & 3 & 11 & 2
\end{array}\right|
$$

Columns 1 and 4 of matrix D are identical $\Rightarrow \operatorname{det} D=0$.

2.2 Evaluating Determinants by Row Reduction

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of zeros, then $\operatorname{det}(A)=0$.

Relationship	Operation
$\begin{gathered} \left\|\begin{array}{rrr} k a_{11} & k a_{12} & k a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\|=k\left\|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ \operatorname{det}(B)=k \operatorname{det}(A) \end{gathered}$	In the matrix B the first row of A was multiplied by k.
$\begin{aligned} \left\|\begin{array}{lll} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| & =-\left\|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ \operatorname{det}(B) & =-\operatorname{det}(A) \end{aligned}$	In the matrix B the first and second rows of A were interchanged.
$\begin{gathered} \left\|\begin{array}{ccc} a_{11}+k a_{21} & a_{12}+k a_{22} & a_{13}+k a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\|=\left\|\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ \operatorname{det}(B)=\operatorname{det}(A) \end{gathered}$	In the matrix B a multiple of the second row of A was added to the first row.

EXAMPLE 3 Using Row Reduction to Evaluate a Determinant

Evaluate $\operatorname{det}(A)$ where

$$
A=\left[\begin{array}{rrr}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right]
$$

Solution We will reduce A to row echelon form (which is upper triangular) and then apply Theorem 2.1.2.

$$
\begin{aligned}
& \operatorname{det}(A)=\left|\begin{array}{rrr}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right|=-\left|\begin{array}{rrr}
3 & -6 & 9 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right| \\
& \longleftarrow \text { The first and second rows of } \\
& A \text { were interchanged. } \\
& =-3\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right| \\
& \text { ـ A common factor of } 3 \text { from } \\
& \text { the first row was taken } \\
& \text { through the determinant sign. } \\
& =-3\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 10 & -5
\end{array}\right| \\
& \longleftarrow \quad-2 \text { times the first row was } \\
& \text { added to the third row. } \\
& =-3\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 0 & -55
\end{array}\right| \\
& =(-3)(-55)\left|\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right| \\
& =(-3)(-55)(1)=165
\end{aligned}
$$

- EXAMPLE 5 Row Operations and Cofactor Expansion

Evaluate $\operatorname{det}(A)$ where

$$
A=\left[\begin{array}{rrrr}
3 & 5 & -2 & 6 \\
1 & 2 & -1 & 1 \\
2 & 4 & 1 & 5 \\
3 & 7 & 5 & 3
\end{array}\right]
$$

Solution By adding suitable multiples of the second row to the remaining rows, we obtain

$$
\left.\begin{array}{rl}
\operatorname{det}(A) & =\left|\begin{array}{rrrr}
0 & -1 & 1 & 3 \\
1 & 2 & -1 & 1 \\
0 & 0 & 3 & 3 \\
0 & 1 & 8 & 0
\end{array}\right| \\
= & -\left|\begin{array}{rrr}
-1 & 1 & 3 \\
0 & 3 & 3 \\
1 & 8 & 0
\end{array}\right| \\
= & -\left|\begin{array}{rrr}
-1 & 1 & 3 \\
0 & 3 & 3 \\
0 & 9 & 3
\end{array}\right| \\
& =-(-1)\left|\begin{array}{ll}
3 & 3 \\
9 & 3
\end{array}\right| \\
=-18
\end{array} \quad \begin{array}{l}
\text { Cofactor expansion along } \\
\text { the first column }
\end{array}\right\} \begin{aligned}
& \text { We added the first row to the } \\
& \text { third row. } \\
& \text { Cofactor expansion along } \\
& \text { the first column }
\end{aligned}
$$

24. Verify the formulas in parts (a) and (b) and then make a conjecture about a general result of which these results are special cases.
(a) $\operatorname{det}\left[\begin{array}{lll}0 & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=-a_{13} a_{22} a_{31}$
(b) $\operatorname{det}\left[\begin{array}{llll}0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]=a_{14} a_{23} a_{32} a_{41}$

In Exercises 25-28, confirm the identities without evaluating the determinants directly.
25. $\left|\begin{array}{lll}a_{1} & b_{1} & a_{1}+b_{1}+c_{1} \\ a_{2} & b_{2} & a_{2}+b_{2}+c_{2} \\ a_{3} & b_{3} & a_{3}+b_{3}+c_{3}\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
26. $\left|\begin{array}{ccc}a_{1}+b_{1} t & a_{2}+b_{2} t & a_{3}+b_{3} t \\ a_{1} t+b_{1} & a_{2} t+b_{2} & a_{3} t+b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=\left(1-t^{2}\right)\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
27. $\left|\begin{array}{lll}a_{1}+b_{1} & a_{1}-b_{1} & c_{1} \\ a_{2}+b_{2} & a_{2}-b_{2} & c_{2} \\ a_{3}+b_{3} & a_{3}-b_{3} & c_{3}\end{array}\right|=-2\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
28. $\left|\begin{array}{lll}a_{1} & b_{1}+t a_{1} & c_{1}+r b_{1}+s a_{1} \\ a_{2} & b_{2}+t a_{2} & c_{2}+r b_{2}+s a_{2} \\ a_{3} & b_{3}+t a_{3} & c_{3}+r b_{3}+s a_{3}\end{array}\right|=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

Questions were raised in exams:

2. Compute the following determinant $A=\left|\begin{array}{cccc}-1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right|$.
(b) The matrix A satisfies $A^{3}+4 A^{2}-2 A+2 I=\underline{0}$. Show that A is invertible.

Question 1: [7pts]

1. Let A, B, C and D be matrices of order 3 such that $A B+A C-D=0$, $|D|=6, B=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2 \\ -1 & 1 & 0\end{array}\right)$ and $C=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & -2 & -1 \\ 1 & -1 & 3\end{array}\right)$.
Find $|A|$.
2. Let R and S be matrices of order 3 such that $R S+R-2 I=0$.

Find R^{-1} if $S=\left(\begin{array}{lll}1 & 0 & 2 \\ 2 & 3 & 4 \\ 0 & 2 & 5\end{array}\right)$.
I) Choose the correct answer:
(a) If A, B, C are square matrices of the same size, then

$$
(A-B)(C-A)+(C-B)(A-C)+(C-A)^{2}
$$

equals

$\mathrm{A}-\mathrm{B}$	B	B C-B

(b) If A and B are 3×3 invertible square matrices and

$$
\operatorname{det}\left[2 A^{-1}\right]=\operatorname{det}\left[A^{3}\left(B^{-1}\right)^{T}\right]=-4,
$$

then

```
det(A)=4
det(B)=4
```

$$
\begin{aligned}
& \operatorname{det}(A)=-4 \\
& \operatorname{det}(B)=4
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(A)=2 \\
& \operatorname{det}(B)=-2
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(\mathrm{A})=-2 \\
& \operatorname{det}(\mathrm{~B})=2
\end{aligned}
$$

(c) If $A^{3}-2 B^{T}=\left[\begin{array}{cc}18 & -2 \\ -6 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-5 & 3 \\ 1 & 0\end{array}\right]$, then the matrix A is

II) Decide if the following statements are true (T) or false (F). Justify your answer.
(a) If A and B are two matrices, such that $A \cdot B=O$, then either $A=O$ or $B=O$.
(b) If A and B are square matrices of the same size, such that $A+B$ is symmetric, then both A and B are symmetric.
(c) If A is a $n \times n$ square matrix, $n>1$ and $k \in \mathbb{R}, k \neq 0, k \neq \pm 1$, then $\operatorname{det}[k A]=k \cdot \operatorname{det}[A]$.
I) Choose the correct answer (write it on the table above):

1) If $A^{3}-2 B^{T}=\left[\begin{array}{cc}18 & -2 \\ -6 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-5 & 3 \\ 1 & 0\end{array}\right]$, then the matrix A is
(A) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
(B) $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$
(C) $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]$
(D) None
2) If $A^{T}=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$ and $p(x)=x^{2}-x+3$, then $p(A)$ equals
(A) $\left[\begin{array}{cc}5 & 3 \\ 6 & 11\end{array}\right]$
(B) $\left[\begin{array}{cc}5 & 11 \\ 3 & 6\end{array}\right]$
(C) $\left[\begin{array}{cc}5 & 6 \\ 3 & 11\end{array}\right]$
(D) None
3) The values of x and y for which the matrix $\left[\begin{array}{ccc}x^{2} & 0 & x^{2}-4 \\ -1 & 3 & 2 y-6 \\ 1 & 7 & 2 x-5 y\end{array}\right]$ is lower triangular are
(A) $x=2, y=3$
(B) $x= \pm 2, y=3$
(C) $x= \pm 2, y= \pm 3$
(D) None

Lecture 6.2 : Inverse by method of Cofactors

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq \mathbf{0} .
$$

Step:1. Find Matrix of cofactors

$$
\mathbf{C}=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]
$$

Step : 2. Find Adjoint of matrix A, $\operatorname{adj}(A)$

$$
\operatorname{Adj}(\mathbf{A})=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]^{T}
$$

Step: 3.

$$
\begin{aligned}
& \text { If } \mathbf{A} \text { is an invertible matrix, } \operatorname{det}(\mathbf{A}) \neq \mathbf{0} \text {, then } \\
& \qquad A^{-1}=\frac{1}{\operatorname{det} A}[\operatorname{adj}(A)]
\end{aligned}
$$

(1) $A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=|A| I_{n}$ where, \mathbf{A} is a square matrix, \mathbf{I} is an identity matrix of same order as of \mathbf{A} and $|A|$ represents determinant of matrix A.
(2) $|\operatorname{adj} A|=|A|^{n-1} \quad$ determinant of adjoint \mathbf{A} is equal to determinant of A power $n-1$ where A is invertible $\mathbf{n} \times \mathbf{n}$ square matrix.
(3) $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} \cdot A \quad\{\mathbf{A}$ is $\mathbf{n} \mathbf{x} \mathbf{n}$ invertible square matrix $\}$
(4) $\operatorname{adj}(A B)=\operatorname{adj}(B) \cdot \operatorname{adj}(A)$

Example: 3. Find A^{-1} of matrix A

$$
A=\left[\begin{array}{ccc}
2 & 0 & 3 \\
0 & 3 & 2 \\
-2 & 0 & -4
\end{array}\right] \text { by the method of cofactors. }
$$

Solution: Cofactors of the matrix A are

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{cc}
3 & 2 \\
0 & -4
\end{array}\right|=-12, C_{12}=-\left|\begin{array}{cc}
0 & 2 \\
-2 & -4
\end{array}\right|=-4, C_{13}=\left|\begin{array}{cc}
0 & 3 \\
-2 & 0
\end{array}\right|=6 \\
& C_{21}=-\left|\begin{array}{ll}
0 & 3 \\
0 & 4
\end{array}\right|=0, \quad C_{22}=\left|\begin{array}{cc}
2 & 3 \\
-2 & -4
\end{array}\right|=-2, C_{23}=-\left|\begin{array}{cc}
2 & 0 \\
-2 & 0
\end{array}\right|=0, \\
& C_{31}=\left|\begin{array}{ll}
0 & 3 \\
3 & 2
\end{array}\right|=-9, \quad C_{32}=-\left|\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right|=-4, \quad C_{33}=\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right|=6 \\
& \text { Matrix of cofactors, } C=\left[\begin{array}{ccc}
-12 & -4 & 6 \\
0 & -2 & 0 \\
-9 & -4 & 6
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Adjoint of matrix } \mathrm{A}, \operatorname{adj}(\mathrm{~A})=\left[\begin{array}{ccc}
-12 & 0 & -9 \\
-4 & -2 & -4 \\
6 & 0 & 6
\end{array}\right] \\
& \qquad \begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& =2(-12)+0(-4)+3(6) \\
& =-24+18=-6 \neq 0
\end{aligned}
\end{aligned}
$$

Inverse of the matrix A is

$$
A^{-1}=\frac{1}{\operatorname{det} A}[\operatorname{adj}(A)]=\frac{1}{-6}\left[\begin{array}{ccc}
-12 & 0 & -9 \\
-4 & -2 & -4 \\
6 & 0 & 6
\end{array}\right]
$$

Exercise:
(c) Find $\left|3(a d j A)^{-1}+A\right|$ where A is a matrix of size 4×4 such that $|A|=3$.

