
Slide 1

Introduction:

System Analysis and Design

King Saud University

College of Computer and Information Sciences

Department of Computer Science

Dr. S. HAMMAMI

Chapter 1

Course Objectives

To provide students with new ways of looking at information in the

world in order to solve business problems

To introduce students to concepts and methods of SAD

To describe the systems development life cycle (SDLC)

To teach students effective methods for gathering essential information

during system analysis

To teach students approaches to documenting and modeling of gathered

information

To teach students effective methods for designing systems to solve

problems effectively using appropriate methodology and technology

• Systems Analysis means understanding and specifying in detail what an

information system should do.

• System Design has to do with specifying in detail how the parts of an

information system should be implemented

Why is it important?

• Success of information systems depends on good SAD

• Widely used in industry - proven techniques

• Part of career growth in IT - lots of interesting and well-paying jobs!

• Increasing demand for systems analysis skills

Introduction

SA&D

15

software

 Systems Analysis and Design is the process
people use to create information systems

Introduction

Slide 5

FAQs about software engineering

 What is software?

 What is software engineering?

 What is the difference between software engineering and computer science?

 What is the difference between software engineering and system engineering?

 What is a software process?

 What is a software process model?

 What are the costs of software engineering?

 What are software engineering methods?

 What is CASE (Computer-Aided Software Engineering)

 What are the attributes of good software?

 What are the key challenges facing software engineering?

Slide 6

What is Software?

Software is a set of items or objects

that form a “configuration” that

includes

• programs

• documents

• data ...

that is needed to

make these programs

operate correctly

Slide 7

The Nature of Software...

Software is abstract and intangible

• Hard to understand development effort

Software is easy to reproduce

• Cost is in its development

—in other engineering products, manufacturing is the costly stage

The industry of the software is labor-intensive

• The process of the development is hard to automate

Slide 8

Types of Software...

Custom (Bespoke)

• For a specific customer according to their specification.

• Examples: air traffic control systems, ….

Generic

• Sold on open market

• Examples: databases, word processors, ….

Embedded

• Built into hardware

• Hard to change

Software products may be developed for a particular customer or may

be developed for a general market:

Slide 9

Types of Software

Real time software

• E.g. control and monitoring systems

• Must react immediately

• Safety often a concern

Data processing software

• Used to run businesses

• Accuracy and security of data are key

Some software has both aspects

Slide 10

Variety of Software Products

Examples

Real time: air traffic control

Embedded systems: digital camera, GPS

Data processing: telephone billing, pensions

Information systems: web sites, digital libraries

Sensors: weather data

System software: operating systems, compilers

Communications: routers, mobile telephones

Offices: word processing, video conferences

Scientific: simulations, weather forecasting

Graphical: film making, design

etc., etc., etc.,

Slide 11

Software engineering diversity

 There are many different types of software system and there is no

universal set of software techniques that is applicable to all of these

 The software engineering methods and tools used depend on the type of

application being developed, the requirements of the customer and the

background of the development team

Slide 12

Essential attributes of good software

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a

changing business environment.

Dependability and

Security

Software dependability includes a range of characteristics

including reliability, security and safety. Dependable software

should not cause physical or economic damage in the event of

system failure. Malicious users should not be able to access or

damage the system.

Efficiency Software should not make wasteful use of system resources such

as memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

Slide 13

What is Software Engineering?...

The process of solving customers’ problems by the systematic development

and evolution of large, high-quality software systems within cost, time and

other constraints.

Software engineering is an engineering discipline that is concerned with all

aspects of software production from the early stages of system specification

through to maintaining the system after it has gone into use.

 Engineering discipline

 Using appropriate theories and methods to solve problems bearing in mind

organizational and financial constraints.

 All aspects of software production

 Not just technical process of development. Also project management and the

development of tools, methods etc. to support software production.

Importance of software engineering

 More and more, individuals and society rely on advanced software

systems. We need to be able to produce reliable and trustworthy

systems economically and quickly.

 It is usually cheaper, in the long run, to use software engineering

methods and techniques for software systems rather than just write

the programs as if it was a personal programming project. For most

types of system, the majority of costs are the costs of changing the

software after it has gone into use.

Slide 15

Software engineering fundamentals

 Some fundamental principles apply to all types of software system,

irrespective of the development techniques used:

 Systems should be developed using a managed and understood development

process. Of course, different processes are used for different types of

software.

 Dependability and performance are important for all types of system

 Understanding and managing the software specification and requirements

(what the software should do) are important

 Where appropriate, you should reuse software that has already been

developed rather than write new software

Slide 16

Frequently asked questions about software engineering

Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular

customer or may be developed for a general market.

What are the attributes of good

software?

Good software should deliver the required functionality

and performance to the user and should be

maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software development, software

validation and software evolution.

What is the difference between

software engineering and computer

science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities

of developing and delivering useful software.

What is the difference between

software engineering and system

engineering?

System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering. Software

engineering is part of this more general process.

Slide 17

Question Answer

What are the key challenges facing

software engineering?

Coping with increasing diversity, demands for reduced

delivery times and developing trustworthy software.

What are the costs of software

engineering?

Roughly 60% of software costs are development costs,

40% are testing costs. For custom software, evolution

costs often exceed development costs.

What are the best software engineering

techniques and methods?

While all software projects have to be professionally

managed and developed, different techniques are

appropriate for different types of system. For example,

games should always be developed using a series of

prototypes whereas safety critical control systems require

a complete and analyzable specification to be developed.

You can’t, therefore, say that one method is better than

another.

What differences has the web made to

software engineering?

The web has led to the availability of software services

and the possibility of developing highly distributed service-

based systems. Web-based systems development has led

to important advances in programming languages and

software reuse.

Frequently asked questions about software engineering

System Lifecycle

A Continuous Process

Investigation

Analysis

DesignImplementation

Operation

Investigation

Analysis

Design

Implementation

Operation

“Current”

System

“Next”

System

Slide 19

Software process activities

• A software process is a set of activities and their output, which

result in a software product:

Requirements and specification

Includes

- Domain analysis

- Defining the problem

- Requirements gathering

» Obtaining input from as many sources as possible

- Requirements analysis

» Organizing the information

- Requirements specification

» Writing detailed instructions about how the software should

behave

Slide 20

Design

Deciding how the requirements should be implemented, using the

available technology

Includes:

- Systems engineering: Deciding what should be in hardware and what

in software

- Software architecture: Dividing the system into subsystems and

deciding how the subsystems will interact

- Detailed design of the internals of a subsystem

- User interface design

- Design of databases

Software process activities

Slide 21

Implementation

Translate designs into a working system

- Coding

- Testing

- Documentation

- Data conversion (from old to new system)

- Training

- Installation

Software process activities

Slide 22

Maintenance: Evolving system

- Requirements WILL CHANGE to reflect dynamic environment of

business

- Continuous process

- Maintenance types:

Corrective: correct existing defects

Perfective: improve

Adaptive: to new environment / requirements

Software process activities

Slide 23

Software Process model

• An abstract representation of a software process,

presented from a particular perspective; for example,

workflow (sequence of activities), data-flow

(information flow), or role/action (who does what)

• These process models explain different approaches to

software development; for example, Waterfall, Iterative,

and Component Based Software Engineering

Slide 24

Software Engineering methods

• Structured approaches to software development, including:

— Model descriptions: Describes graphical models (i.e. object, data-flow, state
machine models, etc)

— Rules: Constraints applied to system models (i.e. entities must have unique
names)

— Recommendations: Best practices for designing software (i.e. include no more
than nine processes in a data flow diagram)

— Process guidance: what activities to follow (i.e. document object attributes
before defining its operations)

• Examples of methods:

— Functional oriented: DeMarco’s Structured Analysis and Jackson’s JSD

— Object oriented: Booch, Rumbaugh, and Boehm’s Obejct Oriented methods,
Rational Unified Process

25

CASE: Computer-Aided Software Engineering

• Computer-aided software engineering (CASE) is software to

support software development and evolution processes.

• Activity automation

• Graphical editors for system model development;

• Data dictionary to manage design entities;

• Graphical UI builder for user interface construction;

• Debuggers to support program fault finding;

• Automated translators to generate new versions of a program.

Slide 26

 Software engineering is an engineering discipline that is concerned with all

aspects of software production

 Essential software product attributes are maintainability, dependability and

security, efficiency and acceptability

 The high-level activities of specification, development, validation and

evolution are part of all software processes

 The fundamental notions of software engineering are universally applicable

to all types of system development

Key points [Professional Software Development]

Slide 27

 There are many different types of system and each requires

appropriate software engineering tools and techniques for their

development

 The fundamental ideas of software engineering are applicable to

all types of software system

Key points [Professional Software Development]

Slide 28

Software engineering ethics

 Software engineering involves wider responsibilities than simply

the application of technical skills

 Software engineers must behave in an honest and ethically

responsible way if they are to be respected as professionals

 Ethical behaviour is more than simply upholding the law but

involves following a set of principles that are morally correct

Issues of professional responsibility

 Confidentiality

 Engineers should normally respect the confidentiality of their
employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed

 Competence

 Engineers should not misrepresent their level of competence. They
should not knowingly accept work which is outwith their
competence

Issues of professional responsibility

 Intellectual property rights

 Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They should be

careful to ensure that the intellectual property of employers and

clients is protected.

 Computer misuse

 Software engineers should not use their technical skills to misuse

other people’s computers. Computer misuse ranges from relatively

trivial (game playing on an employer’s machine, say) to extremely

serious (dissemination of viruses).

ACM/IEEE Code of Ethics

 The professional societies in the US have cooperated to produce a
code of ethical practice

 Members of these organisations sign up to the code of practice when
they join

 The Code contains eight Principles related to the behaviour of and
decisions made by professional software engineers, including
practitioners, educators, managers, supervisors and policy makers, as
well as trainees and students of the profession

The ACM/IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the

clauses that are included in the full version give examples and details of how these aspirations

change the way we act as software engineering professionals. Without the aspirations, the

details can become legalistic and tedious; without the details, the aspirations can become high

sounding but empty; together, the aspirations and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design,

development, testing and maintenance of software a beneficial and respected profession. In

accordance with their commitment to the health, safety and welfare of the public, software

engineers shall adhere to the following Eight Principles:

Ethical principles

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests of

their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications meet the

highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their professional

judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote an ethical

approach to the management of software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession consistent

with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their profession

and shall promote an ethical approach to the practice of the profession.

