STAT 105
 Chapter 1
 Some Discrete and Continuous Probability Distributions

Dr. Mona Elwakeel

Discrete Probability Distributions:
Definition:
The set of ordered pairs $(\mathbf{x}, \mathbf{f}(\mathbf{x})$) is a probability function, probability mass
function or probability distribution of the discrete random variable \mathbf{X} if
for each possible outcome \mathbf{x},

1. $f(x) \geq 0$
2. $\sum_{\forall x} f(x)=1$
3. $P(X=x)=f(x)$

The Cumulative distribution Function:

The cumulative distribution function, denoted by $\mathbf{F}(\mathbf{x})$ of a discrete random variable \mathbf{X} with probability distribution $\mathbf{f}(\mathbf{x})$ is given by:

$$
F(x)=P(X \leq x)=\sum_{X<x} f(x) \quad \text { for }-\infty<x<\infty
$$

For example $F(2)=P(x \leq 2)$

$$
P(a \leq X \leq b)=F(b)-F(a-1)
$$

For example $F(3 \leq x \leq 7)=F(7)-F(2)$

Theorem:

The mean and variance of the discrete distributions are given by:

$$
\begin{aligned}
& \mu=\frac{\sum_{i=1}^{n} X_{i}}{n} \\
& \sigma^{2}=\frac{\sum_{i=1}^{n}(X-\mu)^{2}}{n}=\frac{\sum_{i=1}^{n} X_{i}^{2}-n \mu^{2}}{n}
\end{aligned}
$$

Continuous Probability Distributions

The function $\mathbf{f}(\mathbf{x})$ is a probability density function for the continuous random variable \mathbf{X} defined over the set of real numbers \mathbf{R}, if:

1. $f(x) \geq 0 \quad$ for all $x \in R$
2. $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\text { 3. } P(a<X<b)=\int_{a}^{b} f(x) d x
$$

The Cumulative Distribution

The cumulative distribution $\mathbf{F}(\mathbf{x})$ of a continuous random variable \mathbf{X} with density function $\mathbf{f}(\mathbf{x})$ is given by:

$$
\begin{gathered}
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x \text { for }-\infty<x<\infty \\
P(a \leq X \leq b)=P(a<X<b)=F(b)-F(a)
\end{gathered}
$$

Normal Distribution:

- The probability density function of the normal random variable \mathbf{X}, with mean μ and variance σ^{2} is given by:

$$
f\left(x, \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \Pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty
$$

Properties of The Normal Curve:

- The mode, which is the point on the horizontal axis where the curve is a maximum, occurs at $X=\mu$, (Mode = Median = Mean).
- The curve is symmetric about a vertical axis through the mean μ.
- The normal curve approaches the horizontal axis asymptotically as we proceed in either direction away from the mean.
- The total area under the curve and above the horizontal axis is equal to1.

Standard Normal Distribution:

- The distribution of a normal random variable with mean zero and variance one is called a standard normal distribution denoted by $Z \approx N(0,1)$
- Areas under the Normal Curve:

$$
\begin{gathered}
X \approx N(\mu, \sigma) \\
Z=\frac{X-\mu}{\sigma} \approx N(0,1)
\end{gathered}
$$

- Using the standard normal tables to find the areas under the curve.

The pdf of $\mathrm{Z} \sim \mathrm{N}(0,1)$ is given by:

EX (1):

Using the tables of the standard normal distribution, find:

$$
\begin{aligned}
& \text { (a) } P(Z<2.11) \\
& \text { (b) } P(Z>-1.33) \\
& \text { (c) } P(Z=3) \\
& \text { (d) } P(-1.2<Z<2.1)
\end{aligned}
$$

Solution:

(a) $P(Z<2.11)=0.9826$

(b) $P(Z>-1.33)=1-0.0918=0.9082$

(c) $P(Z=3)=0$
(d) $P(-1.2<Z<2.1)=0.9821-0.1151=0.867$

EX (2):
Using the standard normal tables, find the area under the curve that lies:
A. to the right of $\mathrm{Z}=1.84$
B. to the left of $\mathrm{z}=2.51$
C. between $\mathrm{z}=-1.97$ and $\mathrm{z}=0.86$
D. at the point $z=-2.15$

Solution:

A. to the right of $Z=1.84$

$$
P(Z>1.84)=1-0.9671=0.0329
$$

B. to the left of $z=2.51$

$$
P(Z<2.51)=0.9940
$$

C. between $\mathrm{z}=-1.97$ and $\mathrm{z}=0.86$

$$
P(-1.97<Z<0.86)=0.8051-0.0244=0.7807
$$

D. at the point $\mathrm{z}=-2.15$

$$
P(Z=-2.15)=0
$$

EX (3):

Find the constant \mathbf{K} using the tables such that:
(a) $P(Z>K)=0.3015$
$P(K<Z<-0.18)=0.4197$
(b)

Solution:

(a) $P(Z>K)=0.3015$

$$
P(Z>K)=0.3015 \Rightarrow 1-0.3015=0.6985 \Rightarrow k=0.52
$$

(b) $\quad P(K<Z<-0.18)=0.4197$
$\Rightarrow 0.4286-0.4197=0.0089$
$\Rightarrow k=-2.37$

EX (4):

Given a normal distribution with $\mu=50$, $\sigma=10$. Find the probability that X assumes a value between 45 and 62.

Solution:

$P(45<X<62)=P\left(\frac{45-50}{10}<Z<\frac{62-50}{10}\right)=P(-0.5<Z<1.2)$

$$
=0.8849-0.3085=0.5764
$$

EX(5) :

Given a normal distribution with $\mu=300$, $\sigma=50$, find the probability that \mathbf{X} assumes a value greater than 362.

Solution:

$$
\begin{aligned}
P(X>362) & =P\left(Z>\frac{362-300}{50}\right)=P(Z>1.24) \\
& =1-0.8925=0.1075
\end{aligned}
$$

t - Distribution:

* t distribution has the following properties:

1. It has mean of zero.
2. It is symmetric about the mean.
3. It ranges from $-\infty$ to ∞

4. Compared to the normal distribution, the t distribution is less peaked in the center and has higher tails.
5. It depends on the degrees of freedom ($\mathbf{n} \mathbf{- 1}$).
6. The t -distribution approaches the normal distribution as ($\mathbf{n}-\mathbf{1}$) approaches ∞.

EX(6):

Find:

$$
\begin{aligned}
& \text { (a) } t_{0.025} \text { when } v=14 \\
& \text { (b) } t_{0.01} \text { when } v=10 \\
& \text { (c) } t_{0.995} \text { when } v=7
\end{aligned}
$$

solution

(a) $t_{0.025}$ at $v=14 \rightarrow t=-2.1448$
(b) $t_{0.01} \quad$ at $\quad v=10 \rightarrow t=-2.764$
(c) $t_{0.995} \quad$ at $\quad v=7 \rightarrow t=3.4995$

The Chi- Square Distribution

The chi-square distribution is important because it is the basis for a number of procedures in statical inference. The central role played by the chi-square distribution in inference springs from its relationship to normal distribution. We will discuss this distribution in more detail in later chapters.

Let v be a positive integer. Then a random variable X is said to have a chi-square distribution with parameter v if the pdf of X is the gamma density with $\alpha=v \backslash 2$ and $\beta=2$. The pdf of a chi-square rv is:

$$
f(x ; v)= \begin{cases}\frac{1}{2^{v / 2} \Gamma(v / 2)} x^{(v / 2)-1} e^{-x / 2} & , x \geq 0 \\ 0 & , \text { otherwise }\end{cases}
$$

The parameter v is called the number of degrees of freedom (df) of X . The symbol χ^{2} is often used in place of "chi-square"

EX(9):

By using table of chi- square distribution,

 Find:a) $\chi_{0.995}^{2}$ when $v=19$
b) $\chi_{0.025}^{2}$ when $v=15$
c) $\chi_{0.95}^{2}$ when $v=2$

solution

$$
\begin{aligned}
& \text { a) } x_{19,0.055}^{2}=38.582 \\
& \text { b) } x_{15,0.025}^{2}=6.262 \\
& \text { c) } x_{2,0.05}^{2}=5.991
\end{aligned}
$$

Note that:
When the degree of freedom (df) not exist in the table of chi square, we have to use the following rule :
$\chi_{A, d f}^{2}=\chi_{A, d f(L)}^{2}+\frac{d f-d f(L)}{d f(H)-d f(L)}\left[\chi_{A, d f(H)}^{2}-\chi_{A, d f(L)}^{2}\right]$

EX(10):

By using table of chi- square distribution, Find:

Solu:

$$
\begin{aligned}
\chi_{42,0.975}^{2} & =\chi_{40,0.975}^{2}+\frac{42-40}{45-40}\left[\chi_{45,0.975}^{2}-\chi_{40,0.975}^{2}\right] \\
& =59.342+\frac{2}{5}[65.410-59.342]=61.7692
\end{aligned}
$$

F-Distribution:

The F-distribution

For tests involving two variances, it is necessary to have independent samples (of size n_{1}, n_{2}) from two normal distributions. Under these conditions, we can get a new random variable has F-distribution with degrees of freedom $\left(n_{1}-1\right),\left(n_{2}-1\right)$ and denoted by $F_{\left(n_{1}-1\right),\left(n_{2}-1\right)}$ which can be obtained from its tables at a different values of α. Note that a variable with F distribution can only have positive values.

EX(11):

From the tables of F-distribution ,Find:
a) $F_{0.995,15,24}$
b) $F_{0.005,15,24}$
c) $F_{0.9,10,8}$

solution

a) $F_{0.995,15,24}=3.25$
b) $F_{0.005,15,22}=\frac{1}{F_{0.995,4,15}}=\frac{1}{3.79}=0.2639$
c) $F_{0.9,10,8}=2.54$

