Chapter 12

12.2:

Fitting a straight line to a set of data yields the prediction line $\widehat{Y}_1 = 7 + 2X_{i}$.

The values of X used to find the prediction line range from 1 to 25

a)X=3	b)X=-3	c)X=0	d)X=24	
Yes	No	No	Yes	

12.5:

Zimmer's posts restaurant ratings for various locations in the United States. a sample of 100 restaurants in New York city was selected.

a) Develop a regression model to predict the cost per person? $b_0\!=\!\!-46.7718$, $b_1\!=\!1.4963$

$$\hat{Y} = -46.7718 + 1.4963x$$

b) Predict the mean cost per person for a restaurant when $X_i = 50$

 $\hat{Y} = -46.7718 + 1.4963(50) = \28.04

12.17

If SSR=9740.062, and SST=17844.75, from a sample of 100

a) Compute the coefficient of determination, and interpret its meaning.

 $r^2 = 9740.062/17844.75 = 0.5458.$

So, 54.58% of the variation in the cost of a restaurant meal can be explained by the variation in the summated rating.

b) Determine the standard error of the estimate

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{8104.688}{98}} = 9.0940$$

SSE = SST - SSR = 17844.75 - 9740.062 = 8104.688

12.43

based on 12.5, $b_1 = 1.4963_{and S_{b1}} = 0.1379$

a) at the 0.05 level of significance. Is there evidence of liner relationship between rating of the restaurant and the cost of the meal

$$1 - H_0: \beta_1 = 0 \qquad \qquad H_1: \beta_1 \neq 0$$

2- α=0.05

3-
$$t_{STAT} = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{1.4963 - 0}{0.1379} = 10.85$$

4-
$$t_{0.05/2,98} = \pm 1.9845$$

5- Since $t_{stat} > 1.9845$, reject H_0 at 5% level of significance.

There is evidence of a linear relationship between the cost of a meal and the summated rating.

b) Construct a 95% confidence interval estimate of the population slope, $\beta 1$.

 $b_1 \pm t_{\alpha/2} S_{b_1}$ 1.4963±1.9845 (0.1379) 1.2227 ≤ $\beta_1 \le 1.7699$

12.51

The table below contains the calories and fat, in grams, of seven different types of coffee

Coffee	Calories(X)	Fat(Y)	
1	238	7.9	
2	259	3.4	
3	346	22.2	
4	347	19.8	
5	419	16.3	
6	505	21.5	
7	527	18.5	

a) At the 0.05 level of significance. is there a significant linear relationship between calories and fat? (use T-test)

ŀ.									
		Coefficient	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	Intercept	-1.2703	8.056900953	-0.157668478	0.880887605	-21.98124255	19.440604	-21.9812425	19.44060393
$\left[- \right]$	X Variable 1	0.04487	0.020586676	2.17939153	0.081175276	-0.008053308	0.0977862	-0.00805331	0.097786163

1- $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

2- α=0.05

3- t_{STAT}=2.17939

 $4\text{--}{\pm}\,t_{\alpha\!/2}\!=\!\pm\,2.5706$

5- Since $-2.5706 < t_{stat} < 2.5706$, do not reject H_0 . There is insufficient evidence to conclude that there is a significant linear relationship between calories and fat.

b)At the 0.05 level of significance. is there a significant linear relationship between calories and fat? (use *F* test)

ANOVA

ANOVA		1		
	df	SS	MS	F
Regression	1	152.491373	152.491373	4.749747443
Residual	5	160.5257699	32.10515397	
Total	6	313.0171429		
-				

1- H_0 : $\beta_1 = 0$ $H_1: \beta_1 \neq 0$

2- α=0.05

$$3-F_{\text{STAT}} = \frac{MSR}{MSE} = \frac{152.4913}{32.1051} = 4.7497$$

 $4 - F_{0.05,1,5} = 6.61$

5- Since $F_{0.05,1,5} = 6.61 > F_{STAT}$, do not reject H_0 . There is insufficient evidence to conclude that there is a significant linear relationship between calories and fat.