Chapter 10: Estimation and Hypothesis Testing for Two Population Parameters

Multiple Choice

This activity contains 10 questions.

1. Calculate the standard error of $\bar{x}_1 - \bar{x}_2$ when [Hint] $\sigma_1^2 = 8.7$ $\sigma_2^2 = 13.3$ $n_1 = 45$ $n_2 = 67$ 0 0.392 0 0.559 0 0.626 0 0.638

2. Develop a 95% confidence interval to estimate the difference in SAT math scores from students in Delaware and New jersey. A sample of 45 [Hint] students from Delaware had an average score of 560 with a standard deviation of 110 while a sample of 40 New Jersey students had an average score of 530 with a standard deviation of 115.

- -9.20 to 69.20
- -29.78 to 89.78
- 9.42 to 50.58
- -17.98 to 77.98

3. Calculate the z-test statistic to test the difference in SAT math scores from students in Delaware and New jersey. A sample of 45 students [Hint] from Delaware had an average score of 560 with a standard deviation of 110 while a sample of 40 New Jersey students had an average score of 530 with a standard deviation of 115. 0.56
0.89
-1.56
1.23

When σ²₁ and σ²₂ are not known, they can be replaced with s²₁ and s²₂ if what condition is met?
Equal variances
Large samples (i.e. greater than 30)
Normal populations
Ordinal data

5. When the population standard deviation is unknown and the sample sizes are small, which of the following is <u>not</u> one of the assumptions [Hint] made for estimating the difference between population means?

- The populations are normally distributed.
- The populations have equal variances.
- The samples are independent.
- The samples are the same size.

6. Two samples were obtained with the following standard deviations: $s_1 = 3.75$ and $s_2 = 6.25$; which of the following is a possible value for the pooled standard deviation? 0 3.0 0 3.75 0 4.0 0 10.0 7. A company tracks satisfaction scores based on customer feedback from individual stores on a scale of 0-100. The following data represents the [Hint] customer scores from Store #1 and #2.

 $\overline{x}_1 = 88.3$ $\overline{x}_2 = 82.4$ $s_1 = 7.30$ $s_2 = 6.74$ $n_1 = 11$ $n_2 = 10$

Calculate the pooled standard deviation. Assume normal populations and equal population variances.

0	3.22

- O 14.84
- 0 10.69
- O 7.04

8. A company tracks satisfaction scores based on customer feedback from individual stores on a scale of 0-100. The following data represents the [Hint] customer scores from Store #1 and #2.

 $\overline{x}_1 = 88.3$ $\overline{x}_2 = 82.4$ $s_1 = 7.30$ $s_2 = 6.74$ $n_1 = 11$ $n_2 = 10$

Calculate the t-test statistic with a hypothesized population difference equal to zero. Assume normal populations and equal population variances.

- C 1.92
- 0 1.64
- 0 2.33
- 0 2.57

9. A set of paired samples is given below. Find the Sample Standard Deviation for Paired Differences rounded to 2 decimal places.

Trial 1	Trial 2
157	143
91	98
177	183
216	190
188	163
157	151
138	140
229	199
207	231
148	157
16.232	
17.024	
17.944	
19.033	
	157 91 177 216 188 157 138 229 207 148 16.232 17.024 17.944

10. A set of paired samples is given below. Find the 95% confidence interval for the difference of means.

	Trial 1	Trial 2
1	157	143
2	91	98
3	177	183
4	216	190
5	188	163
6	157	151
7	138	140
8	229	199
9	207	231
10	148	157
0	-13.166 to 23.766	
O	-7.537 to 18.137	
0	-1.845 to 12.445	
0	3.816 to 6.784	