Process Strategy and Sustainability

PowerPoint presentation to accompany Heizer and Render Operations Management, 10e Principles of Operations Management, 8e

PowerPoint slides by Jeff Heyl

0M Strategy Decisions

© 2011 Pearson Education, Inc. publishing as Prentice Hall

Process Strategies

The objective of a process strategy is to build a production process that meets customer requirements and product specifications within cost and other managerial constraints

Process Strategies

- How to produce a product or provide a service that
 - Meets or exceeds customer requirements
 - Meets cost and managerial goals
- Has long term effects on
 - Efficiency and production flexibility
 - Costs and quality

Process Strategies

Four basic strategies

- **1. Process focus**
- **2.** Repetitive focus
- **3. Product focus**
- 4. Mass customization

Within these basic strategies there are many ways they may be implemented

Process Focus

- Facilities are organized around specific activities or processes to facilitate low-volume, high-variety production
- General purpose equipment and skilled personnel
- High degree of product flexibility
- Typically high costs and low equipment utilization
- Product flows may vary considerably making planning and scheduling a challenge

Process Focus

(low volume, high variety, intermittent processes)

Arnold Palmer Hospital

Figure 7.2(a)

Many inputs (surgeries, sick patients, baby deliveries, emergencies) Many departments and many routings Many different outputs (uniquely treated patients)

Repetitive Focus

- Definition: a production-oriented production process that uses modules
- Facilities often organized as assembly lines
- Characterized by modules with parts and assemblies made previously

Less flexibility than process-focused facilities but more efficient

© 2011 Pearson Education, Inc. publishing as Prentice Hall

Repetitive Focus

(modular) Harley Davidson

Figure 7.2(b)

© 2011 Pearson Education, Inc. publishing as Prentice Hall

Product Focus

- Facilities are organized by product
- High volume but low variety of products
- Long, continuous production runs enable efficient processes
- Typically high fixed cost but low variable cost
- Generally less skilled labor

(low-volume, high variety, continuous process)

Frito-Lay

Figure 7.2(c)

Output variations in size, shape, and packaging (3-oz, 5-oz, 24-oz package labeled for each material)

Product Focus

Mass Customization

- The rapid, low-cost production of goods and service to satisfy increasingly unique customer desires
- Combines the flexibility of a process focus with the efficiency of a product focus

Mass Customization

- Imaginative and fast product design
- Rapid process design
- Tightly controlled inventory management
- Tight schedules
- Responsive supply chain partners

Changing Processes

- Difficult and expensive
- May mean starting over
- Process strategy determines transformation strategy for an extended period
- Important to get it right

Process Analysis and Design

- Is the process designed to achieve a competitive advantage?
- Does the process eliminate steps that do not add value?
- **Does the process maximize customer** value?

Will the process win orders?

Process Analysis and Design

- Flow Charts Shows the movement of materials
- Time-Function Mapping Shows flows and time frame
- Value-Stream Mapping Shows flows and time and value added beyond the immediate organization
- Process Charts Uses symbols to show key activities
- Service Blueprinting focuses on customer/provider interaction

Value-Stream Mapping

Process Chart

Present Method 🛛		od 🔀	PROCESS CHART Proposed Method
SUBJECT CHARTED <u>Hamburger Assembly Process</u> DATE <u>8/1/10</u>			
DEPARTMENT			CHART BY \underline{KH} SHEET NO. $\underline{1}$ OF $\underline{1}$
DIST. IN FEET	TIME IN MINS.	CHART SYMBOLS	PROCESS DESCRIPTION
		$\bigcirc \Rightarrow \Box \bigcirc \forall$	Meat Patty in Storage
1.5	.05		Transfer to Broiler
	2.50		Broiler
	.05		Visual Inspection
1.0	.05	$\bigcirc \blacksquare \square \bigcirc \bigtriangledown$	Transfer to Rack
	.15		Temporary Storage
.5	.10		Obtain Buns, Lettuce, etc.
	.20		Assemble Order
.5	.05		Place in Finish Rack
		$\bigcirc \Rightarrow \square \bigcirc \bigtriangledown$	
3.5	3.15	241-2	TOTALS
Value-added time = Operation time/Total time = (2.50+.20)/3.15 = 85.7%			
\bigcirc = operation; \square = transportation; \square = inspection; \square = delay; \bigtriangledown = storage.			

Service Blueprinting

- Focuses on the customer and provider interaction
- Defines three levels of interaction
- Each level has different management issues
- \blacklozenge
 - Identifies potential failure points

Service Blueprint

Time-Function Mapping - Shows flows and time frame

"Baseline" Time-Function Map

Process Analysis Tools

- Flowcharts provide a view of the big picture
- Time-function mapping adds rigor and a time element
- Value-stream analysis extends to customers and suppliers
- Process charts show detail

Service blueprint focuses on customer interaction

Special Considerations for Service Process Design

- Some interaction with customer is necessary, but this often affects performance adversely
- The better these interactions are accommodated in the process design, the more efficient and effective the process
- Find the right combination of cost and customer interaction

Production Technology

- Machine technology
- Automatic identification systems (AISs)
 - Process control
 - Vision system
 - Robot

Automated storage and retrieval systems (ASRSs)

- Automated guided vehicles (AGVs)
- Flexible manufacturing systems (FMSs)

Computer-integrated manufacturing (CIM)

Machine Technology

- Increased precision
- Increased productivity
- Increased flexibility
- Reduced power requirements

Automatic Identification Systems (AISs)

A system for transforming data into electronic form

Reduced data entry errors

- Increased speed
- Increased scope

 of process
 automation
 Example Bar codes and RFID

Process Control

Real-time monitoring and control of processes

The use of IT to control a physical proces

- Sensors collect data
- Devices read data on periodic basis

- Measurements translated into digital signals then sent to a computer
- Computer programs analyze the data

Vision Systems

A system that use video cameras and computer technology in inspection roles

- Particular aid to inspection
- Consistently accurate
- Never bored
- Modest cost

Superior to individuals performing the same tasks

© 2011 Pearson Education, Inc. publishing as Prentice Hall

A flexible machine with the ability to hold move or grab items

Perform monotonous or dangerous tasks

- Perform tasks requiring significant strength or endurance
- Generally enhanced consistency and accuracy

Automated Storage and Retrieval Systems (ASRSs)

Computer-controlled warehouses that provide for the automatic placement of parts into and from designated places within a warehouse

Automated placement and withdrawal of parts and products

Reduced errors and labor

Particularly useful in inventory and test areas of manufacturing firms

Automated Guided Vehicle (AGVs)

Flexible Manufacturing Systems (FMSs)

- Computer controls both the workstation and the material handling equipment
- Enhance flexibility and reduced waste
- Can economically produce low volume at high quality
- Reduced changeover time and increased utilization
- Stringent communication requirement between components

Computer-Integrated Manufacturing (CIM)

Extension of flexible manufacturing systems

- Backwards to engineering and inventory control
- Forward into warehousing and shipping
- Can also include financial and customer service areas
- Reducing the distinction between lowvolume/high-variety, and highvolume/low-variety production

Computer-Integrated Manufacturing (CIM)

Figure 7.10

© 2011 Pearson Education, Inc. publishing as Prentice Hall