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Many solids conduct electricity.

There are electrons that are not bound to atoms but are able to move through the whole crystal.

Conducting solids fall into two main classes; metals and semiconductors.

And increases by the addition of small amounts of impurity.

The resistivity normally decreases monotonically with decreasing temperature.

And can be reduced by the addition of small amounts of impurity.

Semiconductors tend to become insulators at low T.
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Free Electron Model

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

Schematic model of metallic crystal, such as Na, Li, K, etc.

The equilibrium positions of the atomic cores are positioned on 

the crystal lattice and surrounded by a sea of conduction 

electrons.

For Na, the conduction electrons are from the 3s valence 

electrons of the free atoms.  The atomic cores contain 10 

electrons in the configuration: 1s22s2p6.

In this model, electrons are completely free to move about, free 
from collisions, except for a surface potential that keeps the 
electrons inside the metal.

In the alkali metals, with a bcc structure, the cores take up about 
15% of the volume of the crystal, but in the noble metals (Cu, Ag, 
Au), with an fcc structure, the atomic cores are relatively larger 
and maybe close to contacting or in contact with each other.



PAUL Drude

(1863-1906) 

• resistivity ranges from 108 m (Ag) to 1020 m (polystyrene)

• Drude (circa 1900) was asking why?  He was working prior to the 

development of quantum mechanics, so he began with a classical 

model:

• positive ion cores within an electron gas that follows Maxwell-

Boltzmann statistics

• following the kinetic theory of gases- the electrons in the gas move 

in straight lines and make collisions only with the ion cores – no 

electron-electron interactions.

• He envisioned instantaneous collisions in which electrons lose any energy gained from the electric 

field.

• The mean free path was approximately the inter-ionic core spacing.

• Model successfully determined the form of Ohm’s law in terms of free electrons and a relation 

between electrical and thermal conduction σ / κ , but failed to explain electron heat capacity and 

the magnetic susceptibility of conduction electrons, and mean free path



abeer alshammari,2016 5

• The removal of the valance electrons leaves a positively charged ion.

• The charge density associated the positive ion cores is spread uniformly throughout the
metal so that the electrons move in a constant electrostatic potential. All the details of the
crystal structure is lost when this assunption is made.

 According to FEM this potential is taken as zero and the repulsive force between
conduction electrons are also ignored.

• Therefore, these conduction electrons can be considered as moving independently in a square

well of finite depth and the edges of well corresponds to the edges of the sample.

Fermi Gas model
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Consider a metal with a shape of cube with edge length of L,
Ψ and E can be found by solving schrödinger equation
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• By means of periodic boundary conditions Ψ’s are running waves.
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Energy Levels In One Dimension
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Energy Levels In One Dimension
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Since the n  x) is a continuous function and is equal to zero beyond the length L, the 
boundary conditions for the wave function are

These solutions correspond to standing waves with a different 
number of nodes within the potential well as is shown in Fig.



Pauli-exclusion principle:  No two electrons can occupy the same quantum state.

Quantum numbers for free electrons:  (n, ms ) ,sm  

Degeneracy:  number of orbitals having the same energy.

Fermi energy εF = energy of topmost filled orbital when system is in ground state (at T=0K).
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where n describes the orbital  n (x) , and ms describes the projection of the spin momentum on 
a quantization axis

For the onedimensional system of N electrons we find

In metals the value of the Fermi 
energy is of the order of 5 eV.

(a) Occupation of energy levels according to the Pauli 

exclusion principle, (b) The distribution function f(E), 
at T = 0°K and T> 0°K.



Effect Of Temperature On The Fermi-Dirac
Distribution

Fermi-Dirac distribution :    
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(Boltzmann distribution)

3D e-gas

Fermi distribution function determines the probability of finding an electron at the energy E.

At T = 0, Fermions occupy the lowest energy levels.
Near T = 0, there is little chance that thermal agitation will 
kick a Fermion to an energy greater than EF.



Free Electron Gas In Three Dimensions
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Periodic boundary conditions:

Standing 

waves
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If the electrons are confined to a cube of edge L, the solution is the standing wave

our wavefunction is periodic in x, y, and z directions with period L,
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In the ground state a system of N electrons occupies states with lowest possible 

energies. Therefore all the occupied states lie inside the sphere of radius kF

• The Fermi energy and the Fermi wavevector (momentum) are 

determined by the number of valence electrons in the system.

• In order to find the relationship between N and kF, we need to 

count the total number of orbitals in a sphere of radius kF

which should be equal to N. There are two available spin 

states for a given set of kx, ky, and kz. 

• The volume in the k space which is occupies by this state is 

equal to (2 / L) . Thus in the sphere of (4 / 3)  k the total 
number of states is

Fermi velocity

which depends only of the electron concentration

The surface of the Fermi sphere 
represent the boundary between 

occupied and unoccupied  k states 
at absolute zero for the free 

electron gas.
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Only at temperatures above TF will the free electron gas behave like a
classical gas.

Fermi (degeneracy) Temperature TF by

F B FE k T



Density of states:
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•The Density of States D(E) specifies how many states exist at a given 

energy E. 

•The Fermi Function f(E) specifies how many of the existing states at 

energy E will be filled with electrons.

Fermi-Dirac distribution function
is a symmetric function; at finite
temperatures, the same number
of levels below EF is emptied and
same number of levels above EF

are filled by electrons.



Heat Capacity Of The Free Electron Gas

• From the diagram of N(E,T) the change in the distribution of electrons can be 

resembled into triangles of height  (½)g(Ef) and a base of 2kBT so (½)g(Ef)kBT

electrons increased their energy by kBT.

T>0

T=0

N(E,T)

E

g(E)

EF

• The difference in thermal energy from 

the value at T=0°K
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•The electron energy levels are mostly filled  up to the Fermi energy.

•So, only a small fraction of electrons, approximately T/TF,  can be excited to higher levels –

because there is only about kBT of thermal energy available.

• N(E,T) number of free electrons per unit energy range is just the area under N(E,T) graph.

N(E,T)=g(E) f(E,T)



• Differentiating With Respect To T Gives The Heat 

Capacity At Constant Volume,
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Free Flectron Gas



Low-Temperature Heat Capacity
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• Total  metallic heat capacity at low 

temperatures

Where γ & β are constants found plotting 

cv/T as a function of T2

3C T T  
Electronic

Heat capacity

Lattice Heat

Capacity
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Transport Properties Of Conduction Electrons

• Fermi-Dirac distribution function describes the

behaviour of electrons only at equilibrium.

• If there is an applied field (E or B) or a temperature

gradient the transport coefficient of thermal and

electrical conductivities must be considered.

Transport 
coefficients

σ,Electrical
conductivity

K,Thermal
conductivity



• Equation of motion of an electron with an applied
electric and magnetic field.

• This is just newton’s law for particles of mass me

and charge (-e).

• The use of the classical equation of motion of a
particle to describe the behaviour of electrons in
plane wave states, which extend throughout the
crystal. A particle-like entity can be obtained by
superposing the plane wave states to form a
wavepacket.
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• The velocity of the wavepacket is the group velocity 

of the waves. Thus

• So one can use equation of mdv/dt
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 = mean free time between collisions. An electron
loses all its energy in time 

(*)



• In the absence of a magnetic field, the applied E results a 

constant acceleration but this will not cause a continuous 

increase in current. Since electrons suffer collisions with

• Phonons

• Electrons

• The additional term cause the velocity v to decay 

exponentially with a time constant     when the applied E 

is removed.
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The Electrical Conductivity

• In The Presence Of DC Field Only, Eq.(*) Has The Steady 
State Solution

• Mobility Determines How Fast The Charge Carriers Move 
With An E.
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• Electrical Current Density, J

• Where n Is The Electron Density And v Is Drift 

Velocity. Hence
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Collisions

• In a perfect crystal; the collisions of electrons are with

thermally excited lattice vibrations (scattering of an

electron by a phonon).

• This electron-phonon scattering gives a temperature

dependent collision time which tends to

infinity as T 0.

• In real metal, the electrons also collide with impurity

atoms, vacancies and other imperfections, this result in a

finite scattering time even at T=0.

( )ph T
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• The total scattering rate for a slightly imperfect crystal at finite 
temperature; 

• So the total resistivity ρ,

This is known as mattheisen’s rule and illustrated in following 
figure for sodium specimen of different purity.
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Residual Resistance Ratio

Residual resistance ratio = room temp. Resistivity/ residual resistivity

And it can be as high as        for highly purified single crystals.
610
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Collision Time 
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These mean free paths are much longer than the interatomic
distances, confirming that the free electrons do not collide with the
atoms themselves.



Thermal Conductivity, K

metals non metalsK K 
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Due to the heat tranport by the conduction electrons

Electrons coming from a hotter region of the metal carry
more thermal energy than those from a cooler region, resulting in a
net flow of heat. The thermal conductivity
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where          is the specific heat per unit volume

is the mean free path;              and   Fermi energy 

is the mean speed of electrons responsible for thermal conductivity
since only electron states within about of change their
occupation as the temperature varies.
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Wiedemann-Franz Law
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The ratio of the electrical and thermal conductivities is independent of the 
electron gas parameters;
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• A uniform magnetic field B is 

applied in the y-direction.

• If the charge carriers are electrons 

moving in the negative x-

direction with a velocity vd, they 

will experience an upward 

magnetic force fb. 

• The electrons will be deflected 

upward, making the upper edge 

negatively charged and the lower 

edge positively charged. 

Hall Effect



Hall Effect
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Hall Effect

As a result, electrons 

move in the y direction 

and an electric field 

component appears in the 

y direction, Ey.  This will 

continue until the Lorentz 

force is equal and 

opposite to the electric 

force due to the buildup of 

electrons – that is, a 

steady condition arises.
B
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Hall Effect
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Hall Effect

The Hall coefficient is defined as:
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For copper:

n = 8.47 × 1028 electrons/m3.

The sign and magnitude of RH

gives the sign of the charge 
carriers and their density.
In most metals, the charge 
carriers are electrons and the 
charge density determined 
from the Hall effect 
measurements agrees with 
calculated values for metals 
which release a single valence 
electron and charge density is 
approximately equal to the 
number of valence electrons 
per unit volume.
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•The Hall Effect experiment suggests that a carrier can have a positive charge.

•These carriers are “holes” in the electron sea - the absence of an electron acts as a net positive 

charge. These were first explained by Heisenberg.

•We can’t explain why this would happen with our free electron theory.

Failure of Fermi gas model

Some successes:

1. electrical conductivity

2. heat capacity

3. thermal conductivity 

Some failures:

1. physical differences between conductors, insulators,

semiconductors, semi-metals

2. positive Hall coefficients – positive charge carriers ??


