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Energy Of Harmonic Oscillator

Obtained by in a classical way of considering the normal modes that

we have found are independent and harmonic.
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It is possible to consider as constructed by adding n excitation

quanta each of energy to the ground state.
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• The converse transition results an emission of phonon with an energy .

• Phonons are quanta of lattice vibrations with an angular frequency of .

• Phonons are not localized particles.

• Its momentum is exact, but position can not be determined because of the uncertainity princible.

• However, a   slightly   localized   wavepacket  can  be considered by combining modes of slightly 

different and     . 
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•Phonons are not conserved

•They can be created and destroyed during collisions .



Thermal Energy And Lattice Vibrations

•Atoms vibrate about their equilibrium position.

•They produce vibrational waves.

•This motion is increased as the temperature is 

raised.

In a solid, the energy associated with this vibration and perhaps also with 

the rotation of atoms and molecules is called as thermal energy.

Note: In a gas, the translational motion of atoms and molecules 

contribute to this energy.
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Therefore, the concept of thermal energy is fundamental to an understanding many

of the basic properties of solids. We would like to know:

• What is the value of this thermal energy?

• How much is available to scatter a conduction electron in a metal; since this

scattering gives rise to electrical resistance.

• The energy can be used to activate a crystallographic or a magnetic transition.

• How the vibrational energy changes with temperature since this gives a

measure of the heat energy which is necessary to raise the temperature of the

material.

• Recall that the specific heat or heat capacity is the thermal energy which is

required to raise the temperature of unit mass or 1gmole by one Kelvin.
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The energy given to lattice vibrations is the dominant contribution to the heat

capacity in most solids. In non-magnetic insulators, it is the only contribution.

Other contributions;

• In metals from the conduction electrons.

• In magnetic materials from magneting ordering.

Atomic vibrations leads to band of normal mode frequencies from zero up to some

maximum value. Calculation of the lattice energy and heat capacity of a solid

therefore falls into two parts:

i) the evaluation of the contribution of a single mode, and

ii) the summation over the frequency distribution of the modes.

Heat capacity from Lattice vibrations



Heat Capacity
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You may remember from your study of 
thermal physics that
the specific heat is the amount of energy per 
unit mass required to raise the temperature 
by one degree Celsius.  
Q = mcT

Thermodynamic models give us this 
definition:

electrons phonons
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Heat Capacity
Equipartition Theorem (Classical model):
The internal energy of a system of N particles is

The solid is one in which each atom is bound to its side by a harmonic force. when 

the solid is heated, the atoms vibrate around their  sites like a set of harmonic 

oscillators. the  average energy for a 1D oscillator is kT. therefore, the averaga 

energy per atom, regarded as a 3D oscillator, is 3kT, 

Monatomic particles have only 3 translational degrees of freedom.  They possess 

no rotational or vibrational degrees of freedom.

TNkB3

RTTNkB 33 

The mean energy is 
spread equally over all 
degrees of freedom, 
hence the terminology –
equipartition.
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where N is avagadro’s number, kB is boltzmann constant and R is the gas

constant. the differentiation wrt temperature gives;
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• At high temperatures, all crystalline solids have a specific heat of

6 cal/K per mole; they require 6 calories per mole to raise their

temperature 1 K.

•This arrangement between observation and classical theory break

down if the temperature is not high.

•Observations show that at room temperatures and below the

specific heat of crystalline solids is not a universal constant.
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In all of these materials 

(Pb,Al, Si,and Diamond) 

specific heat approaches 

constant value asymptotically 

at high T’s. But at low T’s, the 

specific heat decreases 

towards zero which is in a 

complete contradiction with 

the above classical result.



Phonons

• Quanta Of Lattice Vibrations

• Energies Of Phonons Are Quantized

~a0=10-10m
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PHOTONS

• Quanta of electromagnetic radiation

• Energies of Photons are quantized as well
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We Need To Use Quantum Statistics To Describe This Properly.

• Bosons And Fermions

• Bosons: Particles That Can Be In The Same Energy State (E.G. Photons, Phonons)

• Fermions: Particles That Cannot Be In The Same Energy Level (E.G. Electrons)



Planck Distribution



Planck Distribution

number of phonons in 
energy level n 

total number of phonons

all possible energy levels 0, 1, 2, etc.



Fraction of small as n gets large

Phonons
at energy n a constant

Planck Distribution
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Planck Distribution

Average occupied 
energy level
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Avarage energy of a harmonic

oscillator and hence of a lattice

mode of angular frequency at

temperature T Energy of oscillator 
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The probability of the oscillator being in this 

level as given by the Boltzman factor 

exp( / )n Bk T

Energy And Heat Capacity Of A 
Harmonic Oscillator, Einstein Model
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Eqn (*) can be written
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This is the mean energy of phonons.The first term in the above

equation is the zero-point energy. As we have mentioned before even

at 0ºK atoms vibrate in the crystal and have zero-point energy. This is

the minimum energy of the system.

The avarage number of phonons is given by Bose-Einstein

distribution as
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The second term in the mean energy is the contribution of 

phonons to the energy.



 Mean energy of a 

harmonic oscillator 

as a function of T

low temperature limit
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• is independent of frequency of

oscillation.

•This is the classical limit because the

energy steps are now small compared with

the energy of the harmonic oscillator.

•So that is the thermal energy of the

classical 1D harmonic oscillator.
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Heat Capacity C

• Heat Capacity c can be found by differentiating the average energy of phonons of
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Einstein Model

T

How did Einstein do?



Einstein Model

How did Einstein do?

 K0T



Einstein Heat Capacity Of Solids

• The theory explained by Einstein is the first quantum theory of solids. He made the

simplifying assumption that all 3N vibrational modes of a 3D solid of N atoms had the

same frequency, so that the whole solid had a heat capacity 3N times

• In this model, the atoms are treated as independent oscillators, but the energy of the

oscillators are taken quantum mechanically as

This refers to an isolated oscillator, but the atomic oscillators in a solid are not

isolated.they are continually exchanging their energy with their surrounding atoms.

• Even this crude model gave the correct limit at high temperatures, a heat capacity of

dulong-petit law where R is universal gas constant.
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The Discrepancy Of Einstein Model
• Einstein model also gave correctly a

Specific Heat tending to zero at absolute

zero, but the temperature dependence near

T=0 did not agree with experiment.(It is

exponential relation)

• Taking into account the actual distribution

of vibration frequencies in a solid this

discrepancy can be accounted using one

dimensional model of monoatomic lattice

The Einstein model failed to identically match the 
behavior of real solids, but it showed the way.

In real solids, the lattice can vibrate at more than 
one frequency at a time.
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Dulong-Petit model (1819) • 

• Atoms on lattice vibrate 
independently of each other • 

• Completely classical • 

• Heat capacity independent of 
temperature (3NkB ) • 

• Poor agreement with 
experiment, except at high 
temperatures

Einstein model (1907) • 

• Atoms on lattice vibrate 
independently of each other • 

• Quantum mechanical (vibrations 
are quantised) •

• Heat Capacity depends on 
Temperature 

• Agreement with experiment good 
at very high (~3NkB ) and very low 
(~0) temperatures, but not in 
between
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Debye model

Basic idea similar to Einstein model, with one key difference:

Einstein: Energy of system = Phonon Energy x Average number of phonons 

Debye: Energy of system = Phonon Energy x Average number of phonons x number of modes

Einstein: number of modes = number of atoms

Debye: each mode has its own k value (and hence frequency)

The number and 
type of modes are 
the key difference 



Density Of States

according to Quantum Mechanics if a particle is constrained;

• The energy of particle can only have special discrete energy values.

• It cannot increase infinitely from one value to another.

• It has to go up in steps.



• These steps can be so small depending on the system that the energy

can be considered as continuous.

• This is the case of classical mechanics.

• But on atomic scale the energy can only jump by a discrete amount

from one value to another.

Definite energy levels Steps get small Energy is continuous



• In some cases, each particular energy level can be associated with more than

one different state (or wavefunction )

• This energy level is said to be degenerate. 

• The density of states 𝐷(ε) is the number of discrete states per unit energy

interval, and so that the number of states between and will be

.

d 

𝐷 𝜀 𝑑𝜀



There are two sets of waves for solution;

• Running waves

• Standing waves
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These allowed k wavenumbers corresponds to the running

waves; all positive and negative values of k are allowed. By

means of periodic boundary condition
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Length of 
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Running (Travelling) waves:

These allowed wavenumbers are uniformly distibuted in k at a 

density of    𝐷𝑅(𝑘) between k and k+dk.

running waves

𝑫𝑹 𝒌 𝒅𝒌 =
𝑳

𝟐𝝅
𝒅𝒌



In some cases it is more suitable to use standing waves,i.e. chain

with fixed ends. Therefore we will have an integral number of half

wavelengths in the chain;

Standing waves:
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These allowed k’s are uniformly distributed between k and k+dk 

at a density of

DOS of standing wave

DOS of running wave

•The density of standing wave states is twice that of the running waves.

•However in the case of standing waves only positive values are allowed

•Then the total number of states for both running and standing waves will be the

same in a range dk of the magnitude k

•The standing waves have the same dispersion relation as running waves, and for

a chain containing N atoms there are exactly N distinct states with k values in the

range 0 to ./ a

𝑫𝒔 𝒌 𝒅𝒌 =
𝑳

𝝅
𝒅𝒌

𝑫𝑹 𝒌 𝒅𝒌 =
𝑳

𝟐𝝅
𝒅𝒌

𝐷𝑠(𝑘)



modes with frequency from  to +d corresponds

modes with wavenumber from k to k+dk

The Density Of States Per Unit Frequency Range g():

• the number of modes with frequencies  and +d will be 

g()d.

• g() can be written in terms of Ds(k) and DR(k).

dn

dR



Choose standing waves to obtain ( )g 

Let’s remember dispertion relation for 1D monoatomic lattice
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constant density of states
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 

/d dk

( )g 



The energy of lattice vibrations will then be found by

integrating the energy of single oscillator over the distribution

of vibration frequencies. Thus
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Mean energy of a harmonic 

oscillator

for 1D

It should be better to find 3D DOS in order to compare the 

results with experiment.



• is a new density of states in 3D.This eqn can be obtained by

using running waves as well.

• (frequency) space can be related to k-space:
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Let’s find C at low and high temperature by means of

using the expression of . g 
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k
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High And Low Temperature Limits

• this  result is true only  if               ≫

• At low T’s only lattice modes having low frequencies can be 

excited from their ground states;

3 BNk T 
Each of the 3N lattice

modes of a crystal

containing N atoms

d
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dT


 3 BC Nk



k



a
0

Low frequency long 

sound waves

sv k  sv
k


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depends on the direction and there are two transverse, 

one longitudinal acoustic branch:
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Velocities of sound in 
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transverse direction
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How Good İs The Debye 
Approximation At Low T?

3T

3

2

3 3

2 1 2

15

B
v B

L T

k Td
C V k

dT v v




  
    

  

The lattice heat capacity of solids thus

varies as at low temperatures; this is

referred to as the Debye law.

Figure illustrates the excellent aggrement

of this prediction with experiment for a

non-magnetic insulator. The heat

capacity vanishes more slowly than the

exponential behaviour of a single

harmonic oscillator because the vibration

spectrum extends down to zero

frequency.

3T



The Debye İnterpolation Scheme

the calculation of is a very heavy calculation for 3D, so it
must be calculated numerically.

debye obtained a good approximation to the resulting heat
capacity by neglecting the dispersion of the acoustic waves, i.e.
assuming

for arbitrary wavenumber. ın a one dimensional crystal this is
equivalent to taking as given by the broken line of density of
states figure rather than full curve. debye’s approximation gives the
correct answer in either the high and low temperature limits, and the
language associated with it is still widely used today.

( )g 

sk 

( )g 



1. approximate the dispersion relation of any branch by a linear

extrapolation of the small k behaviour:

Einstein 
approximation 
to the 
dispersion

Debye 
approximation 
to the 
dispersion

vk 

The Debye approximation has two main steps:
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2. ensure the correct number of modes by imposing a cut-off
frequency , above which there are no modes. the cut-off
freqency is chosen to make the total number of lattice modes
correct. since there are 3N lattice vibration modes in a crystal

having N atoms, we choose so that
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the lattice vibration energy of 

becomes

and

first term is the estimate of the zero point energy, and 
all T dependence is in the second term. the heat capacity is 
obtained by differentiating above eqn wrt temperature.

/

0

1
( ) ( )
2 1Bk T

E g d
e




  



 


3 3
2

/ /3 3

0 0 0

9 1 9
( )
2 1 2 1

D D D

B Bk T k T

D D

N N
E d d d

e e

  

 

  
    

 

 
    

   
  

3

/3

0

9 9

8 1

D

B
D k T

D

N d
E N

e





 



 





dE
C

dT


 

/2 4

23 2
/

0

9

1

D B

B

k T

D
k T

D B

dE N e
C d

dT k T e

 







 




3

/3

0

9 9

8 1

D

B
D k T

D

N d
E N

e





 



 



Let’s convert this complicated integral into an expression for 

the specific heat  changing  variables to 

and define the Debye temperature 
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How does        limit at high and low temperatures?

High temperature

DC
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X is always small

• 𝑇 ≫ Θ𝐷
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How does        limit at high and low temperatures?

Low temperature

DC

For low temperature the upper limit of the integral is

infinite; the integral is then a known integral of

We obtain the Debye        law in the form3T

• 𝑇 ≪ Θ𝐷

𝐸 =
9

8
𝑁ℏ𝜔𝐷 +

9𝑁ℏ

𝜔𝐷
3  

0

𝜔𝐷

(
𝑘𝐵𝑇

ℏ
)3

𝑥3

𝑒𝑥 − 1

𝑘𝑇 𝑑𝑥

ℏ

3

/3

0

9 9

8 1

D

B
D k T

D

N d
E N

e





 



 



𝐸 =
9

8
𝑁ℏ𝜔𝐷 +

9𝑁ℏ

𝜔𝐷
(
𝑘𝑇

ℏ
)4 

0

∞ 𝑥3

𝑒𝑥 − 1
𝑑𝑥

x is very large

𝐸 =
9

8
𝑁ℏ𝜔𝐷 +

9𝑁ℏ

𝜔𝐷
3

𝜋4

15
(
𝑘𝑇

ℏ
)4

𝐶𝐷 = 0 +
9𝑁ℏ

𝜔𝐷
3

𝜋4

15
(
𝑘

ℏ
)44𝑇3

D
D

Bk


 



Lattice Heat Capacity Due To Debye İnterpolation Scheme

figure shows the heat capacity
between the two limits of high and low
t as predicted by the debye
interpolation formula.

3 B

C

Nk T

Because it is exact in both high and low T

limits the Debye formula gives quite a good

representation of the heat capacity of most solids,

even though the actual phonon-density of states

curve may differ appreciably from the Debye

assumption.
Debye frequency and Debye temperature scale with the velocity of sound in

the solid. So solids with low densities and large elastic moduli have high . Values of

for various solids is given in table. Debye energy can be used to estimate

the maximum phonon energy in a solid.

Lattice heat capacity of a solid as 

predicted by the Debye interpolation 

scheme
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Specific Heats of Lead, Silver, Aluminum and Diamond



Anharmonic Effects

• Any real crystal resists compression to a smaller volume than its equilibrium value more
strongly than expansion due to a larger volume.

• This is due to the shape of the interatomic potential curve.

• This is a departure from hooke’s law, since harmonic application does not produce this
property.

• This is an anharmonic effect due to the higher order terms in potential which are ignored in
harmonic approximation.

• Thermal expansion is an example to the anharmonic effect.

• In harmonic approximation phonons do not interact with each other, in the absence of
boundaries, lattice defects and impurities (which also scatter the phonons), the thermal
conductivity is infinite.

• In anharmonic effect phonons collide with each other and these collisions limit thermal
conductivity which is due to the flow of phonons.
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Rising temperature results 

in the increase of the 

average amplitude of 

atomic vibrations. For an 

anharmonic potential, this 

corresponds to the increase 

in the average value of 

interatomic separation, i.e. 
thermal expansion.
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Thermal expansion is 

related to the asymmetric

(anharmonic) shape of 

interatomic potential. If 

the interatomic potential is 

symmetric (harmonic), the 

average value of 

interatomic separation 

does not change, i.e. no
thermal expansion.



Phonon-phonon Collisions

The coupling of  normal modes by the unharmonic terms in the 

interatomic forces can be pictured as collisions between the phonons 

associated with the modes. A typical collision process of 

phonon1

phonon2

1 1,k

2 2,k

3 3,k

After collision another phonon is 

produced

3 1 2k k k 

3 1 2k k k 

3 1 2   

3 1 2   

and

conservation of energy

conservation of momentum



Phonon3 has k
a


; Phonon3 has              and Phonon3=Phonon3’k
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

1
2

k



a


 0

a



3'

Umklapp process

(due to anharmonic effects)

3

1
2

k



a


 0

a



Normal process

3Longitudinal

Transverse

0n  
0n  

Phonons are represented by wavenumbers with

k
a a

 
  

If       lies outside this range  add a suitable multible of            to bring

it back within the range of                    .  Then,                      becomes

3k

3 1 2

2n
k k k

a


  

where        ,         ,   and           are  all in the above range.

2

a



3 1 2k k k k
a a

 
  

2k 3k1k

This phonon is indistinguishable  

from a phonon with wavevector  3k



Thermal Conduction By Phonons

• A flow of heat takes place from a hotter region to a cooler region
when there is a temperature gradient in a solid.

• The most important contribution to thermal conduction comes from
the flow of phonons in an electrically insulating solid.

• Transport property is an example of thermal conduction.

• Transport property is the process in which the flow of some quantity
occurs.

• Thermal conductivity is a transport coefficient and it describes the
flow.

• The thermal conductivity of a phonon gas in a solid will be
calculated by means of the elementary kinetic theory of the transport
coefficients of gases.

• Thermal conductivity is the property of a material's ability to conduct heat.



Kinetic Theory

In the elementary kinetic theory of gases, the steady state flux of a property

İn the z direction is

P

_1

3

dP
flux l

dz


Mean free path

Angular average

Constant average speed for molecules

In the simplest case where is the number density of particles the transport

coefficient obtained from above eqn. is the diffusion coefficient .

If is the energy density then the flux W is the heat flow per unit area so that
_ _1 1

3 3

dE dE dT
W l l

dz dT dz
  

Now               is the specific heat       per unit volume, so that the thermal 

conductivity; 
_1

3
K l C

P
_1

3
D l

P E

/dE dT C

Works well for a phonon gas



Heat Conduction İn A Phonon And Real Gas
The Essential Differences Between The Processes Of Heat 

Conduction İn A Phonon And Real Gas;

Phonon gas Real gas

•Speed is approximately constant.

•Both the number density and energy

density is greater at the hot end.

•Heat flow is primarily due to phonon

flow with phonons being created at the

hot end and destroyed at the cold end

•No flow of particles

•Average velocity and kinetic energy per

particle are greater at the hot end, but the

number density is greater at the cold end,

and the energy density is uniform due to the

uniform pressure.

•Heat flow is solely by transfer of kinetic

energy from one particle to another in

collisions which is a minor effect in phonon

case.

hot cold hot cold



Temperature Dependence Of Thermal Conductivity K

_1

3
K l C Approximately equal to

velocity of sound and so

temperature independent.
Vanishes exponentially at

low T’s and tends to classical

value at high T’sBk

?

•Temperature dependence of phonon mean free length is determined by phonon-phonon

collisions at low temperatures

•Since the heat flow is associated with a flow of phonons, the most effective collisions for

limiting the flow are those in which the phonon group velocity is reversed. It is the Umklapp

processes that have this property, and these are important in limiting the thermal conductivity



Conduction At High Temperatures

• At temperatures much greater then the debye temperature         the heat capacity is given 
by temperature-independent classical result of        

• The rate of collisions of two phonons     phonon density.

• If collisions involving larger number of phonons are important, however, then the 
scattering rate will increase more rapidly than this with phonon density.

• At high temperatures the average phonon density is constant and 

the total lattice energy           T ;        phonon number         T , so 

scattering rate         T and   mean free length   

Then the thermal conductivity of .               

1T 



D

3 BC Nk





_1

3
K l C  1T 





• Experimental results  do tend towards this behaviour at high temperatures as 

shown in figure (a). 
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(a)Thermal conductivity of a quartz 

crystal

(b)Thermal conductivity of artificial 

sapphire rods of different diameters



Conduction At  İntermediate  Temperatures

Referring figure a

At  T<        ;  the conductivity rises more steeply with falling temperature, although the heat capacity is falling in this 
region. Why?

This is due to the fact that umklapp processes which will only occur if there are phonons of sufficient energy to create a
phonon with . so

Energy of phonon must be       the debye energy (           ) 

the energy of relevant phonons is thus not sharply defined but their number is expected to vary roughly as                 

when 𝑇 < 𝜃𝐷 ,

Where  b   is a number of order unity 2 or 3.   Then

This exponential factor dominates any low power of T in thermal conductivity,

Such as a factor of         from the heat capacity.
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Dk
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e
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l e
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Conduction At  Low Temperatures

For phonon-phonon collisions becomes very long at low T’s and eventually exceeds the size of the solid, 
because

Number of high energy phonons necessary for umklapp processes decay exponentially as

İs then limited by collisions with the specimen surface, i.E.

Specimen diameter

T dependence of k comes from           which obeys          law in this region

Temperature dependence of         dominates.

l
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Size Effect

• When the mean free path becomes comparable to the dimensions of the sample, transport
coefficient depends on the shape and size of the crystal. This is known as a size effect.

• If the specimen is not a perfect crystal and contains imperfections such as dislocations, grain
boundaries and impurities, then these will also scatter phonons. At the very lowest t’s the
dominant phonon wavelength becomes so long that these imperfections are not effective
scatterers, so;

The thermal conductivity has a       dependence at these temperatures.

• The maximum conductivity between and region is controlled by imperfections.

• For an impure or polycrystalline specimen the maximum can be broad and low [figure (a)],
whereas for a carefully prepared single crystal, as illustrated in figure(b) , the maximum is
quite sharp and conductivity reaches a very high value, of the order that of the metallic copper
in which the conductivity is predominantly due to conduction electrons.
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