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Crystal Dynamics

• In previous chapters we have assumed that the atoms were at rest at their
equilibrium position. this can not be entirely correct (against to the hup); atoms
vibrate about their equilibrium position at absolute zero.

• The energy they possess as a result of zero point motion is known as zero point
energy.

• The amplitude of the motion increases as the atoms gain more thermal energy at
higher temperatures.

• In this chapter we discuss the nature of atomic motions, sometimes referred to as
lattice vibrations.

• In crystal dynamics we will use the harmonic approximation , amplitude of the
lattice vibration is small. at higher amplitude some unharmonic effects occur.
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From the theory viewpoint,

a solid is a system with a

VERY LARGE

number of coupled atoms. 
The form of the coupling between the atoms depends on the type of bonding that holds the 

solid together.

→ Thermal conductivity of insulators is due to dispersive lattice vibrations (e.g., thermal 

conductivity of diamond is 6 times larger than that of metallic copper).

→ They reduce intensities of diffraction spots and allow for inellastic scattering where the 

energy of the scatter (e.g., neutron) changes due to absorption or creation of a phonon in the 

target.

→ Electron-phonon interactions renormalize the properties of electrons (electrons 

become heavier). 

→ Superconductivity (conventional BCS) arises from multiple electron-phonon scattering 

between time-reversed electrons.

•Thermal lattice vibrations are responsible for:
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lattice dynamics (LD) extends the concept of crystal lattice to an array of atoms with finite 
masses that are capable of motion. This motion is not random but a coherent superposition of 
vibrations of atoms around their equilibrium sites due to the interaction with neighbor atoms. 
A collective vibration of atoms in the crystal forms a wave with given wavelength and 
amplitude

Lattice Dynamics

The problem of lattice dynamics is to find the normal modes of vibration of a crystal and 
to calculate their energies (or frequencies, ω) as a function of their wavevector k . The 
relationship ω(k) is called phonon dispersion .

LD offers two different ways of finding the dispersion relation:
Quantum-mechanical approach 

Semiclassical treatment of lattice vibrations
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This is a Classical Treatment! , this treatment makes no direct reference to PHONONS. This is 

because 

Phonons are Quantum Mechanical Quasiparticles.
Here, first we’ll outline the method to find the classical normal modes.  Once those are 

found, then we can quantize & start talking about Phonons

•Crystal lattices at zero temperature posses long range order – translational symmetry 

(e.g., generates sharp diffraction pattern)

•At T>0 ions vibrate with an amplitude that depends on temperature – because of lattice 

symmetries, thermal vibrations can be analyzed in terms of collective motion of ions 

which can be populated and excited just like electrons – unlike electrons, phonons are 

bosons (no Pauli principle, phonon number is not conserved).

Semiclassical treatment of lattice vibrations
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• Sound waves propagate through solids. this tells us that wavelike lattice vibrations of
wavelength long compared to the interatomic spacing are possible. the detailed atomic
structure is unimportant for these waves and their propagation is governed by the
macroscopic elastic properties of the crystal.

• We discuss sound waves since they must correspond to the low frequency, long wavelength
limit of the more general lattice vibrations considered later in this chapter.

• At a given frequency and in a given direction in a crystal it is possible to transmit three
sound waves, differing in their direction of polarization and in general also in their velocity.

• mechanical waves are waves which propagate through a material medium (solid, liquid,
or gas) at a wave speed which depends on the elastic and inertial properties of that
medium. there are two basic types of wave motion for mechanical waves: longitudinal
waves and transverse waves.

Sound Waves
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There are two possible polarizations for the vibrations of atoms in a crystal:
longitudinal and transverse

In case of longitudinal modes the displacement of the atoms from their 
equilibrium position coincides with the propagation direction of the wave, whereas 
for transverse modes, atoms move perpendicular to the propagation of the wave.

Types of polarization

For one atom per unit cell the phonon dispersion curves are represented only by acoustical 
branches. However, if we have more than one atom in the unit cell optical branches will 
appear additionally. 

The difference between acoustical and optical branches arises because of the options for the 
vibration of the atoms in the unit cell. For example, atoms A and B of diatomic cell can move 
together in phase (acoustical branch) or out of phase (optical branch). 
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Elastic Waves

A solid is composed of discrete atoms, however when the wavelength is
very long, one may disregard the atomic nature and treat the solid as a
continous medium. Such vibrations are referred to as elastic waves.

• the relation connecting the frequency and wave number is known as the dispersion relation.

k

ω Continuum

Discrete

0

• At small λ k → ∞ (scattering occurs)

• At long λ k → 0 (no scattering)

• When k increases velocity decreases. As k increases
further, the scattering becomes greater since the strength
of scattering increases as the wavelength decreases, and
the velocity decreases even further.

* Slope of the curve gives

the velocity of  the wave.
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Crystal Vibration of a Monoatomic Linear Chain 
Longitudinal wave of a 1-D Array of Spring Mass System

us: displacement of the sth atom from its equilibrium position

 a 

Spring constant, g Mass, m

xn xn+1
xn-1

Equilibrium 
Position

Deformed 
Position

us-1
us us+1

M

Lets consider a linear chain of identical atoms of mass M spaced at a distance a, the 
lattice constant, connected by Hook's law springs. 

Us-1=displacement of atom s-1 from its equilibrium position 
Us+1=displacement of atom s+1 from its equilibrium position

• Atoms are separated by a distance of 
“a”.

• Atoms move only in a direction 
parallel to the chain.

• Only nearest neighbours interact 
(short-range forces).
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Solution of Lattice Dynamics `1

Identity:

Time dep.:

cancel

Trig:

s-1 s s+1

Same M

Wave solution:

u(x,t) ~ uexp(-it+iKx)

= uexp(-it)exp(isKa)exp(iKa)

: frequency 

K: wavelength

The force on atom s will be 
given by its displacement 
and the displacement of its 
nearest neighbors 

where C is a spring constant

𝐹𝑠 = 𝐶∆𝑢

Hawk's law

F=ma

Travelling 
wave
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This dispersion relation have a number of important properties

(i) Reducing to the first Brillouin zone. The frequency and the displacement of the atoms do 
not change when we change k by k+2π/a. This means that these solutions are physically 
identical. This allows us to set the range of independent values of k within the first Brillouin 
zone

𝑘𝑠 = 𝑘 +
2𝜋𝑠

𝑎

-/a<K< /a

(ii)The maximum frequency is               . 

The frequency is symmetric with respect to the sign change in k, i.e. ω(k)= ω(-k). This is not surprising 
because a mode with positive k corresponds to the wave traveling in the lattice from the left to the right 
and a mode with a negative k corresponds to the wave traveling from the right tot the left. Since these 
two directions are equivalent in the lattice the frequency does not change with the sign change in k. 

4𝐶

𝑚
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-K Relation: Dispersion Relation

K = 2/l

lmin  2a

Kmax = /a
-/a<K< /a

2a

l: wavelength

(iii) One important feature of the dispersion curve 
is the periodicity of the function. For unit cell 
length a , the repeat period is equal to the unit 
cell length in the reciprocal lattice. Therefore the 
useful information is contained in the waves with 
wave vectors lying between the limits 

-/a<K< /a

𝜔𝑚𝑎𝑥 = 2
𝐶

𝑚

𝑘𝑚𝑎𝑥 =
𝜋

𝑎
𝜆𝑚𝑖𝑛 =

2𝜋

𝑘𝑚𝑎𝑥
= 2𝑎

Lattice is Low-pass filter
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Phase velocity

𝑉𝑝 =
𝜔

𝑘

𝑉𝑝 =
2

𝐶
𝑀 𝑠𝑖𝑛

𝑘𝑎
2

𝑘

×÷
𝑎

2

𝑉𝑝 =

𝐶𝑎2

𝑀 𝑠𝑖𝑛
𝑘𝑎
2

𝑘𝑎
2

dK

d
Vg




Group velocity

𝑉𝑔 =
𝐶𝑎2

𝑀
𝑐𝑜𝑠

𝑘𝑎

2

 At the Brillion zone boundary 𝑘 = ±
𝜋

𝑎

𝑉𝑝 =
2𝑎

𝜋

𝐶

𝑀

 At the Brillion zone boundary 𝑘 = ±
𝜋

𝑎

𝑉𝑔 = 0

The wave is standing wave

𝑢𝑠 = 𝐴𝑒𝑖𝑠𝑘𝑎𝑒−𝑖𝜔𝑡 = 𝐴𝑒±𝑖𝑠𝜋𝑒−𝑖𝜔𝑡

= 𝐴(−1)𝑠𝑒−𝑖𝜔𝑡

The physical distinction between the two velocities is that vp is the velocity of the 
propagation of the plane wave, whereas the vg is the velocity of the propagation of the 
wave packet. The latter is the velocity for the propagation of energy in the medium
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Polarization and Velocity
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Relations between phase and group velocity 
and wave-vector

k
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Long wavelength Limit

When the wavelength is very long 
𝑘𝑎 ≪ 1 ,    or     𝜆 ≫ 𝑎

We expand sin
𝑘𝑎

2
=
𝑘𝑎

2
−

𝑘𝑎 3

3!
+

𝑘𝑎 5

5!
−⋯⋯ ≈

𝑘𝑎

2

𝜔 = 2
𝐶

𝑀
𝑠𝑖𝑛

𝑘𝑎

2
≈ 2

𝐶

𝑀

𝑘𝑎

2
=

𝐶𝑎2

𝑀
k

We see that the frequency of vibration is 
proportional to the wavevector. This is equivalent to 
the statement that velocity is independent of 
frequency. 

This is the velocity of sound for the 
one dimensional lattice which is 
consistent with the expression for 
elastic waves.

In this case 

𝑉𝑝 =
𝐶

𝑀
𝑎
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• This is the simplest possible model of an ionic crystal.

• Since a is the repeat distance, the nearest neighbors separations is a/2

• Two different types of atoms of masses M1 and M2 are connected by  identical springs of 

spring constant f;

Chain Of Two Types Of Atom

• We will consider only the first neighbour interaction although it is a poor approximation in
ionic crystals because there is a long range interaction between the ions.

• The model is complicated due to the presence of two different types of atoms which move
in opposite directions.

our aim is to obtain ω-k relation for diatomic lattice

Two equations of motion must be written;

One for mass M1, and

One for mass M2.
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Two Atoms Per Unit Cell

Solution:
Ka

Lattice Constant, a

xn yn
yn-1 xn+1

M2 M1

f: spring constant

Consider a lattice with two kinds 
of atoms - that is a lattice with a 
basis of two atoms in the 
primitive cell. Now we have to 
write two solutions for the 
displacement corresponding to 
the two masses M1 and M2. The 
equations of motion are:

Depending on sign in this formula there are two different solutions corresponding to 
two different dispersion curve
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1/µ  =  1/M1  + 1/M2

What is the group velocity of the optical branch? 

What if M1 = M2 ?

Acoustic and Optical Branches

K

Ka

Acoustic branch

Optical branch

μ is the effective mass

The lower curve is called the acoustic branch, while the upper curve 
is called the optical branch. The acoustic branch begins at k=0 and 
ω=0. Then with increasing k the frequency increases in a linear 
fashion. This is why this branch is called acoustic: it corresponds to 
elastic waves or sound. Eventually this curve saturates at the edge of 
the Brillouin zone. On the other hand, the optical branch has a 
nonzero frequency at zero k 

𝜔0 = 2𝑓
1

𝑀1
+

1

𝑀2
=

2𝑓

𝜇
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Lattice Constant, a

xn yn
yn-1 xn+1

Polarization

F
re

q
u

e
n

c
y,



Wave vector, K0 /a

LA
TA

LO

TO

Optical

Vibrational

Modes

LA & LO

TA & TO

Total 6 polarizations
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0 л/a 2л/a–л/a k


A

B

C

 ω versus k relation for diatomic chain;

• Normal mode frequencies of a chain of two types of atoms. 

At  A, the two atoms are oscillating in antiphase with their center of 

mass at rest; 

at B, the lighter mass M2 is oscillating and M1 is at rest;

at C, M1 is oscillating and M2 is at rest.

Upper branch is due to the

+ve sign of the root.

Lower branch is due to the

-ve sign of the root.

Optical Branch

Acoustical Branch
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Acoustic modes

Neighbouring atoms in phase

Optical modes:

Neighbouring atoms out of phase



Abeer Alshammari



q = ±/a



Three Dimensions

For each mode in a given propagation direction,
the dispersion relation yields acoustic and optical branches:

• Acoustic
• Longitudinal (LA)
• Transverse (TA)

• Optical
• Longitudinal (LO)
• Transverse (TO)

NaCl – two atoms per 
primitive cell

6 branches:

1 LA

1 LO

2 TA

2 TO

Generally, for N atoms per unit cell there will be 3N 
branches, 3 acoustical branches (1 longitudinal and 
2 transverse) and 3N-3 optical branches (N-1 
longitudinal and 2N-2 transverse)
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Acoustic modes:
correspond to sound-waves in the long wavelength limit. Hence the name. 

ω    0 as k    0  

Optical modes:
- In the long-wavelength limit, optical modes interact strongly with electromagnetic radiation 
in polar crystals. Hence the name. 
- Strong optical absorption is observed (Photons annihilated, phonons created).

ω     finite value as k     0 
- Optical modes arise from folding back the dispersion curve as the lattice periodicity is 

doubled (halved in k-space). 

Zone boundary:
- All modes are standing waves at the zone boundary, ∂ω/∂ k = 0: a necessary consequence 

of the lattice periodicity. 
- In a diatomic chain, the frequency-gap between the acoustic and optical branches depends 

on the mass difference. In the limit of identical masses the gap tends to zero. 

Summary
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Phonon

h

Energy 

Distance

 

Equilibrium distribution

1exp

1









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Tk

n

B



• where ħ can be thought as the energy of a 

particle called phonon, as an analogue to photon

• n can be thought as the total number of 

phonons with a frequency , and follows the 

Bose-Einstein statistics:











2

1
nu

•The linear atom chain can only have 

N discrete K   is also discrete

• The energy of a lattice vibration mode at

frequency  was found to be

• It is quantized, in the form of phonons, similar to the quantization of light, as 
both are derived from a discrete harmonic oscillator model.

• Elastic waves in crystals are made up of phonons. 
• Thermal vibrations are thermally excited phonons.



Phonon Momentum

Earlier, we saw that the elastic scattering of x-rays from the 
lattice is governed by the rule:

Gkk



If the photon scattering is inelastic, with a creation of a 
phonon of wavevector q, then

Gkqk




qp







k k G q   

If the photon is absorbed, then

Wave-vector selection-rule



a phonon with a wavevector q will interact with particles, like neutrons, 

photons, electrons, as if it had a momentum (the crystal momentum)

qp






• Be careful!  Phonons do not carry momentum like photons do.  They can interact with particles as 
if they have a momentum.  For example, a neutron can hit a crystal and start a wave by transferring 
momentum to the lattice.

• However, this momentum is transferred to the lattice as a whole.  The atoms themselves are not 
being translated permanently from their equilibrium positions.

• The only exception occurs when q = 0, where the whole lattice translates.  This, of course, does 
carry momentum.

Inelastic scattering 



Measuring Phonons

Gkqk




scattered neutron

phonon wavevector
(+ for phonon created,
 for phonon absorbed)

incident neutron

reciprocal lattice vector



Measuring Phonons

q



Measuring Phonons



Measuring Phonons

• Inelastic X-ray Spectroscopy
• Raman Spectroscopy (IR, near IR, and visible light)
• Microwave Ultrasonics

Other Techniques


