The Vector Spaces

Mongi BLEL

King Saud University
January 23, 2021

Table of contents

(1) Introduction to Vector Spaces
(2) Vector Sub-Spaces
(3) Linear Combination and Generating sets

4 Linear Dependence and Independence
(5) Base and Dimension
(6) Coordinate System and Change of Basis
(7) Rank of Matrix

Introduction to Vector Spaces

Definition

We say that a non empty set \mathbb{E} is a vector space on \mathbb{R} if:
(1) (Closure for the sum operation) $u+v \in \mathbb{E}, \forall u, v \in \mathbb{E}$.
(2) (Associativity of the sum operation) $u+(v+w)=(u+v)+w$, for all $u, v, w \in \mathbb{E}$
(3) (The identity element) There is $0 \in \mathbb{E}$ called the identity element of the sum operation such that $u+0=0+u=u, \quad \forall u \in \mathbb{E}$.
(4) For all $u \in \mathbb{E}$, there is $v \in \mathbb{E}$ such that $u+v=v+u=0$. The vector v is called the symmetric of u and written $-u$.
(3) (Commutativity) $u+v=v+u, \quad \forall u, v \in \mathbb{E}$.
(1) (The closure of the exterior operation) $\forall a \in \mathbb{R}$ and $u \in \mathbb{E}$, $a u \in \mathbb{E}$,
(2) If $u, v \in \mathbb{E}$ and $a \in \mathbb{R}$, then $a(u+v)=a u+a v$.
(3) If $u \in \mathbb{E}$ and $a, b \in \mathbb{R}$, then $(a+b) u=a u+b u$,
(4) If $u \in \mathbb{E}$ and $a, b \in \mathbb{R}$, then $(a . b) u=a(b u)$,
(5) If $u \in \mathbb{E}$, then $1 . u=u$.

Examples

(1) \mathbb{R}^{n} is a vector space .
(2) The set $\{(x, y, 2 x+3 y) ; x, y \in \mathbb{R}\}$ is a vector space.
(3) The set of polynomials $\mathcal{P}=\mathbb{R}[X]$ is a vector space. Also the set of polynomials of degree less then $n, \mathcal{P}_{n}=\mathbb{R}_{n}[X]$ is a vector space.

The Vector Sub-Spaces

Definition

Let V be a vector space and F a subset of V. We say that F is a sub-space of V if F is vector space with the same operations of the vector space V.

Theorem

Let V be a vector space and F a subset of V.
F is a sub-space of V if and only if
(1) $0 \in F$,
(2) If $u, v \in F$, then $u+v \in F$,
(3) If $u \in F, a \in \mathbb{R}$, then $a u \in F$.

Examples

(1) The set $F=\left\{\left(\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right) ; a, b \in \mathbb{R}\right\}$ is a sub-space of $V=M_{2}(\mathbb{R})$.
(2) Let $A \in M_{m, n}(\mathbb{R})$ be a matrix and $F=\left\{X \in \mathbb{R}^{n} ; A X=0\right\}$. F is sub-space of $V=\mathbb{R}^{n}$. (F is the set of solutions of the homogeneous system $A X=0$).
(3) The set $F=\{(x, x+1) ; x \in \mathbb{R}\}$ is not a sub-space of \mathbb{R}^{2} since $(0,0) \notin F$.

Example

The set $W=\left\{A \in M_{n} / A=-A^{T}\right\}$ is a sub-space of $M_{n}(\mathbb{R})$. Indeed: if $A, B \in W$ and $\lambda \in \mathbb{R}$

$$
(A+B)^{T}=A^{T}+B^{T}=-A-B
$$

and

$$
(\lambda A)^{T}=\lambda A^{T}=-\lambda A
$$

Then W is a sub-space of M_{n}.

Example

The set $E=\left\{(x, y) \in \mathbb{R}^{2} ; x y=0\right\}$ is not a sub-space since $(1,0) \in E$ and $(0,1) \in E$ but $(1,0)+(0,1)=(1,1) \notin E$.

Definition

Let V be a vector space and let v_{1}, \ldots, v_{n} be a finite vectors in V. We say that a vector $w \in V$ is a linear combination of the vectors v_{1}, \ldots, v_{n} if there is $x_{1}, \ldots, x_{n} \in \mathbb{R}$ such that

$$
w=x_{1} v_{1}+\ldots+x_{n} v_{n} .
$$

Example

The vector $(4,1,1)$ is a linear combination of the vectors
$(1,0,2),(2,-1,3),(0,-1,1)$ because

$$
(4,1,1)=-2(1,0,2)+3(2,-1,3)-4(0,-1,1)
$$

Example

The vector $(1,1,2)$ is not a linear combination of the vectors
$(1,0,2),(0,-1,1)$ because the linear system
$(1,1,2)=x(1,0,2)+y(0,-1,1)$ don't have a solution.

Example

In \mathbb{R}^{4} is the vectors $(a, 1, b, 1)$ and $(a, 1,1, b)$ are linear combination of the vectors $e_{1}=(1,2,3,4)$ and $e_{2}=(1,-2,3,-4)$.
The vector $(a, 1, b, 1) \in \operatorname{Vect}\left(e_{1}, e_{2}\right)$ if and only if the linear system
$A X=B$ is consistent with $A=\left(\begin{array}{cc}1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4\end{array}\right)$ and $B=\left(\begin{array}{l}a \\ 1 \\ b \\ 1\end{array}\right)$.
The system is not consistent because the second and the forth equations can not be true in the same time. $((2 a-2 b=1,4 a-4 b=1))$

The vector $(a, 1,1, b) \in \operatorname{Vect}\left(e_{1}, e_{2}\right)$ if and only if the linear system
$A X=B$ is consistent with $A=\left(\begin{array}{cc}1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4\end{array}\right)$ and $B=\left(\begin{array}{l}a \\ 1 \\ 1 \\ b\end{array}\right)$.
The system has a unique solution and in this case $a=\frac{1}{3}$ and $b=2$.

Example

Let E be the vector sub-space of \mathbb{R}^{3} generated by the vectors $(2,3,-1)$ and $(1,-1,-2)$ and let F be the sub-space of \mathbb{R}^{3} generated by the vectors $(3,7,0)$ and $(5,0,-7)$.
The sub-spaces E and F are equal.

$$
\left\{\begin{array}{c}
2 x+y=a \\
3 x-y=b \\
-x-2 y=c
\end{array}\right.
$$

This system is equivalent with the following system

$$
\left\{\begin{array}{l}
x+2 y=-c \\
-3 y=a+2 c . \\
-7 y=b+3 c
\end{array}\right.
$$

This system is consistent if and only if $7 a-3 b+5 c=0$.

We remark that the vectors $(2,3,-1)$ and $(1,-1,-2)$ are solutions of the system, then $F \subset E$.
With the same method, the vectors $(2,3,-1)$ and $(1,-1,-2)$ are in the sub-space F. This proves that $E=F$.

Example

Is there $a, b \in \mathbb{R}$ such that the vector $v=(-2, a, b, 5)$ is in the sub-space of \mathbb{R}^{4} generated by the vectors $u=(1,-1,1,2)$ and $v=(-1,2,3,1)$.

Solution

The vector $v=(-2, a, b, 5)$ is in the sub-space of \mathbb{R}^{4} generated by the vectors $u=(1,-1,1,2)$ and $v=(-1,2,3,1)$ if the following linear system is consistent $A X=B$ with $A=\left(\begin{array}{cc}1 & -1 \\ -1 & 2 \\ 1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{c}-2 \\ a \\ b \\ 5\end{array}\right)$.
This system is consistent if and only if $3=a-2=\frac{b+2}{4}$. Then $a=5$ and $b=10$.

Theorem

Let A be the matrix of type (m, n) and let $X=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ be the matrix of type $(n, 1)$. If C_{1}, \ldots, C_{n} are the columns of the matrix A, then

$$
A X=x_{1} C_{1}+\ldots+x_{n} C_{n} .
$$

Corollary

Let A be a matrix of type (m, n).
The linear system $A X=B$ is consistent if and only if the matrix B is a linear combination of the columns of the matrix A.

Definition

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V. We say that the vector space V is generated (or spanned) by the set S if any vector in V is a linear combination of the vectors v_{1}, \ldots, v_{n}. (We say also that S is a spanning set of V).

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{m}$ and A the matrix of type (m, n) with columns v_{1}, \ldots, v_{n}.
The set S spans the vector space \mathbb{R}^{m} if and only if the system $A X=B$ is consistent for all $B \in \mathbb{R}^{m}$.

Example

Determine whether the vectors $v_{1}=(1,-1,4), v_{2}=(-2,1,3)$, and $v_{3}=(4,-3,5)$ span \mathbb{R}^{3}.
We solve the following linear system $A X=B$, where
$A=\left(\begin{array}{ccc}1 & -2 & 4 \\ -1 & 1 & -3 \\ 4 & 3 & 5\end{array}\right), B=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ for arbitrary $a, b, c \in \mathbb{R}$.

A reduced of the augmented matrix is given by:
$\left[\begin{array}{ccc|c}1 & 0 & 2 & -a-2 b \\ 0 & 1 & -1 & -a-b \\ 0 & 0 & 0 & 7 a+11 b+c\end{array}\right]$.

This system has a solution only when $7 a+11 b+c=0$. Thus, the vectors do not span \mathbb{R}^{3}.

Example

Determine whether the vectors $v_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$, span the vector space $F=\left\{\left(\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right) ; a, b \in \mathbb{R}\right\}$.
$\left(\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right)=x v_{1}+y v_{2} \Longleftrightarrow\left\{\begin{aligned} x+2 y & =a \\ x+y & =b \\ x+3 y & =2 a-b\end{aligned}\right.$.
This system has the unique solution $x=2 b-a$ and $y=a-b$.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V, then
(1) the set W of linear combinations of the vectors of S is a linear sub-space in V.
(2) W is the smallest sub-space of V which contains S. This sub-space is called the sub-space generated (or spanned) by the set S and denoted by $\langle S\rangle$ or $\operatorname{Vect}(S)$.

Example

$$
\begin{aligned}
& \text { Let } F=\left\{\left(\begin{array}{lc}
a & b \\
0 & 2 a-b
\end{array}\right) ; a, b \in \mathbb{R}\right\} . \\
& \left(\begin{array}{cc}
a & b \\
0 & 2 a-b
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)+b\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right) . \text { Then } F \text { is the sub-space } \\
& \text { of } V=M_{2}(\mathbb{R}) \text { spanned by }\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right)\right\} .
\end{aligned}
$$

Definition

We say that the set of vectors v_{1}, \ldots, v_{n} in a vector space V are linearly independent if the equation

$$
x_{1} v_{1}+\ldots,+x_{n} v_{n}=0
$$

has 0 as unique solution.

Example

The vectors $u=(1,1,-2), v=(1,-1,2)$ and $w=(3,0,2)$ are linearly independent in \mathbb{R}^{3}.

$$
x u+y v+z w=(0,0,0) \Longleftrightarrow\left\{\begin{array}{cl}
x+y+3 z & =0 \\
x-y & =0 \\
-2 x+2 y+2 z & =0
\end{array}\right.
$$

This system has 0 as unique solution.
The matrix of this system is $\left(\begin{array}{ccc}1 & 1 & 3 \\ 1 & -1 & 0 \\ -2 & 2 & 2\end{array}\right)$ and its determinant is -4 .

Example

The set of vectors $\left\{P_{1}=1+x+x^{2}, P_{2}=2-x+3 x^{2}, P_{3}=x-x^{2}\right\}$ is linearly independent in \mathcal{P}_{2}.
$a P_{1}+b P_{2}+c P_{3}=0 \Longleftrightarrow(a+2 b)+(a-b+c) x+(a+3 b-c) x^{2}=$
$0 \Longleftrightarrow\left\{\begin{array}{cc}a+2 b & =0 \\ a-b+c & =0 \\ a+3 b-c & =0\end{array}\right.$

Definition

We say that the vectors v_{1}, \ldots, v_{n} in a vector space V are linearly dependent if they are not linearly independent.

Example

The vectors $u=(0,1,-2,1), v=(1,0,2,-1)$ and $w=(3,2,2,-1)$ are linearly dependent in \mathbb{R}^{4}.
$x u+y v+z w=(0,0,0,0) \Longleftrightarrow\left\{\begin{array}{cll}y+3 z & = & 0 \\ x+2 z & = & 0 \\ -2 x+2 y+2 z & = & 0 \\ x-y-z & = & 0\end{array}\right.$.
This system has infinite solutions.

The extended matrix of this system is $\left[\begin{array}{ccc|c}0 & 1 & 3 & 0 \\ 1 & 0 & 2 & 0 \\ -2 & 2 & 2 & 0 \\ 1 & -1 & -1 & 0\end{array}\right]$ and the
reduced row form of this matrix is : $\left[\begin{array}{lll|l}1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V, with $n \geq 2$.
The set S is linearly dependent if and only if there is a vector of S which is a linear combination of the rest of vectors.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{m}$ and A the matrix of type (m, n) such that its columns are the vectors of S.
The set S is linearly independent if and only if the homogeneous system $A X=0$ has 0 as unique solution.

Examples

(1) If A is a matrix of type (m, n) with $m<n$. Then the homogeneous system $A X=0$ has an infinite solutions.
(2) If $S=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{m}$ with $m<n$, then the set S is linearly dependent.

Base and Dimension

Definition

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V.
We say that S is a basis of the vector space V if :
(1) The set S generates the vector space V
(2) The set S is linearly independent.

Theorem

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of the vector space V.
Any vector $v \in V$ can be written uniquely as a linear combination of vectors in the basis S.

Remark

Let $S=\left\{e_{1}, \ldots, e_{n}\right\}$ be the set of the vectors in the vector space \mathbb{R}^{n}, where
$e_{1}=(1,0, \ldots, 0), \ldots, e_{k}=(0, \ldots, 0,1,0, \ldots 0), \ldots, e_{n}=(0, \ldots, 0,1)$.
The set S is a basis of \mathbb{R}^{n} and is called the natural basis of \mathbb{R}^{n}.

Exercise

Prove that $S=\left\{1, X, \ldots, X^{n}\right\}$ is a basis of the vector space \mathcal{P}_{n}.

Example

$$
\text { Let } v_{1}=(\lambda, 1,1), v_{2}=(1, \lambda, 1) \text { and } v_{3}=(1,1, \lambda) \text {. }
$$

Find the values of $\lambda \in \mathbb{R}$ such that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of the vector space \mathbb{R}^{3}.

Solution

The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent if 0 the unique solution of the equation

$$
x v_{1}+y v_{2}+z v_{3}=0
$$

This is equivalent that the following matrix has an inverse :
$A=\left(\begin{array}{ccc}\lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda\end{array}\right)$.
Then $\lambda \notin\{-2,1\}$.
The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ generates the vector space \mathbb{R}^{n} because the linear system $A X=B$ is consistent for all $B \in \mathbb{R}^{n}$ since the matrix A has an inverse.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of the vector space V and let $T=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of vectors.
If $m>n$, then T is linearly dependent.

Corollary

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ and $T=\left\{u_{1}, \ldots, u_{m}\right\}$ are basis of the vector space V, then $m=n$.

Definition

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of the vector space V then the number of vectors n of S is called the dimension of the vector space V and denoted by: $\operatorname{dim} V=n$.

Theorem

Let V is a vector space of dimension n. If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ in V.
Then
S is linearly independent if and only if S generates the vector space V and this is equivalent also with S is a basis of V.

Theorem

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ generates the vector space V, then it contains a basis of the vector space V.

Remark

If $S=\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathbb{R}^{n}$ is a set of vectors and F the vector sub-space generated by S. We have the following two algorithms to construct a basis of F.

First Algorithm

(1) Construct the matrix A such that its rows are the vectors of S
(2) The non zeros rows of any row echelon form of the matrix A are a basis of the vector space $F=\langle S\rangle$.

Second Algorithm

(1) Construct the matrix A such that its columns are the vectors of S
(2) Take any row echelon form C of the matrix A.
(3) Let $C_{k_{1}}, \ldots C_{k_{p}}$ be the columns which contain a leading number and $k_{1}<\ldots<k_{p}$. Then $\left\{v_{k_{1}}, \ldots, v_{k_{p}}\right\}$ is a basis of the vector space $F=\langle S\rangle$.

Theorem

(1) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of vectors and generates the vector space V, then S contains a basis of the vector space V.
(2) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of linearly independent vectors in the vector space V, then there is a basis T of V which contains the set S.

Example

Let W be the sub-space of \mathbb{R}^{5} generated by the set of following vectors:
$v_{1}=(1,0,2,-1,2), v_{2}=(2,0,4,-2,4), v_{3}=(1,2,-1,2,0)$, $v_{4}=(1,4,-4,5,-2)$.
(1) Find a basis of the sub-space W in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
(2) Find a basis of \mathbb{R}^{5} and contains $\left\{v_{1}, v_{3}\right\}$.

Solution

(1) Let matrix $A=\left(\begin{array}{cccc}1 & 2 & 1 & 1 \\ 0 & 0 & 2 & 4 \\ 2 & 4 & -1 & -4 \\ -1 & -2 & 2 & 5 \\ 2 & 4 & 0 & -2\end{array}\right)$ with columns the
components of the vectors $v_{1}, v_{2}, v_{3}, v_{4}$.
The reduced row form the matrix A is $\left(\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Then $\left\{v_{1}, v_{3}\right\}$ is basis of the sub-space W.
(2) If $e_{1}=(1,0,0,0,0), e_{2}=(0,1,0,0,0), e_{3}=(0,0,1,0,0)$. Then $\left\{v_{1}, v_{3}, e_{1}, e_{2}, e_{3}\right\}$ is basis of \mathbb{R}^{5} and contains $\left\{v_{1}, v_{3}\right\}$.

Example

Let $W=\left\{(x, y, z, t) \in \mathbb{R}^{4} ; 2 x+y+z=0, x-y+z=0\right\}$
(1) Prove that W is sub-space of \mathbb{R}^{4}
(2) Find basis of the sub-space W.

Solution

(1) $u=(x, y, z, t) \in W \Longleftrightarrow A X=0$, where

$$
A=\left(\begin{array}{cccc}
2 & 1 & 1 & 0 \\
1 & -1 & 1 & 0
\end{array}\right), X=\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)
$$

Since the set of solutions of an homogeneous linear system is a vector sub-space, then W is vector sub-space of \mathbb{R}^{4}.

$$
\begin{aligned}
& \text { (2) } A X=0 \Longleftrightarrow\left\{\begin{array} { c }
{ 2 x + y + z = 0 } \\
{ x - y + z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x=-2 y \\
z=3 y
\end{array}\right.\right. \\
& \quad \Longleftrightarrow X=y\left(\begin{array}{c}
-2 \\
1 \\
3 \\
0
\end{array}\right)+t\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Then $\{(-2,1,3,0),(0,0,0,1)\}$ is basis of the vector sub-space W.

Example

In the vector space $V=\mathbb{R}^{3}$, give a set S of vectors in V such that S generates the vector space V and not linearly independent. Solution
We can take
$S=\{(1,0,0)\}$ and $T=\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$.

Coordinate System and Change of Basis

Definition

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of the vector space V and if $v \in V$ such that

$$
v=x_{1} v_{1}+\ldots x_{n} v_{n}
$$

then $\left(x_{1}, \ldots x_{n}\right)$ are called the system of coordinates of the vector v with respect to the basis S. We denote

$$
[v]_{S}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

and called the vector of coordinates of the vector v with respect to the basis S.

Theorem

If $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $C=\left\{u_{1}, \ldots, u_{n}\right\}$ are two basis of the vector space V. We define the matrix ${ }_{c} P_{B}$ of type n such that its columns are $\left[v_{1}\right]_{C}, \ldots,\left[v_{n}\right]_{C}$. This matrix ${ }_{C} P_{B}$ has an inverse and

$$
[v]_{C}={ }_{C} P_{B}[v]_{B}
$$

for all $v \in V$.
The matrix ${ }_{C} P_{B}$ is called the change of basis matrix from the basis B to the basis C.

Exercise

Let $B=\left\{v_{1}=(0,1,1), v_{2}=(1,0,-2), v_{3}=(1,1,0)\right\}$ be a basis of the vector space \mathbb{R}^{3} and let $C=\left\{u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=\right.$ $(0,0,1)\}$ be the standard basis of the vector space \mathbb{R}^{3}.
(1) Find the following matrix ${ }_{C} P_{B}$ and ${ }_{B} P_{C}$.
(2) Find $[v]_{B}$ if $[v]_{C}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.

Exercise

$$
\begin{aligned}
& \text { (1) }{ }_{C} P_{B}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & -2 & 0
\end{array}\right){ }_{B} P_{C}=\left(\begin{array}{ccc}
-2 & 2 & -1 \\
-1 & 1 & -1 \\
2 & -1 & 1
\end{array}\right) . \\
& \text { (2) }[v]_{B}={ }_{B} P_{C}[v]_{C}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Example

Prove that in \mathbb{R}^{3}, the vectors $u=(1,0,1), v=(-1,-1,2)$ and $w=(-2,1,-2)$ form a basis and find the coordinate system of the vector $X=(x, y, z)$ in this basis.

Solution

The matrix which columns the vectors $u=(1,0,1), v=(-1,-1,2)$
and $w=(-2,1,-2)$ is $A=\left(\begin{array}{ccc}1 & -1 & -2 \\ 0 & -1 & 1 \\ 1 & 2 & -2\end{array}\right)$.
Since $|A|=-3$, then $u=(1,0,1), v=(-1,-1,2)$ and $w=$ $(-2,1,-2)$ is a basis of the vector space \mathbb{R}^{3}.
If $X=a u+b v+c w$ then $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=A^{-1} X=\left(\begin{array}{c}2 y+z \\ \frac{-x+z}{3} \\ \frac{-x+3 y+z}{3}\end{array}\right)$.

Example

Prove that the system of vectors $S=\{(1,1,1),(-1,1,0),(1,0,-1)\}$ is a basis of the vector space \mathbb{R}^{3}.
Find the coordinates of the following vectors $(1,0,0),(1,0,1)$ and $(0,0,1)$ in this basis.
Solution:
$\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1\end{array}\right|=-3 \neq 0$.

Then S is a basis of the vector space \mathbb{R}^{3}.
$(1,0,0)=\frac{1}{3}(1,1,1)-\frac{1}{3}(-1,1,0)+\frac{1}{3}(1,0,-1)$.
Then coordinates in the basis S is $\left(\frac{1}{3},-\frac{1}{3}, \frac{1}{3}\right)$.

Solution

$(0,0,1)=\frac{1}{3}(1,1,1)-\frac{1}{3}(-1,1,0)-\frac{2}{3}(1,0,-1)$.
Then coordinates in the basis S is $\left(\frac{1}{3},-\frac{1}{3},-\frac{2}{3}\right)$.
$(1,0,1)=(1,0,0)+(0,0,1)$.
Then coordinates in the basis S is $\left(\frac{2}{3},-\frac{2}{3},-\frac{1}{3}\right)$.

Definition

Let A be a matrix of type (m, n).
The vector sub-space of \mathbb{R}^{n} spanned by the rows of the matrix A is called the row vector space of the matrix A and denoted by: $\operatorname{row}(A)$.
The vector sub-space of \mathbb{R}^{m} spanned by the columns of the matrix A is called the column vector space of the matrix A and denoted by: $\operatorname{col}(A)$.

Theorem

Let A be a matrix of type (m, n). If B is any matrix which is a result of some row operations on the matrix A, then $\operatorname{row}(A)=\operatorname{row}(B)$.

Theorem

Let A be a matrix of type (m, n) and if B any row echelon form of the matrix A. Then the set of non zero rows of the matrix B are linearly independent.

Definition

Let A be a matrix of type (m, n).
The dimension of the vector space $\operatorname{row}(A)$ is called the rank of the A.
$\operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))$.

Remark

Let A be a matrix of type (m, n).
The rank of the matrix A is the numbers of leading numbers in any row echelon form of the matrix A.

Theorem

Let A be a matrix of type (m, n), then

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))
$$

Corollary

Let A be a matrix of type (m, n), then

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)
$$

Corollary

If A is a matrix of type (m, n) and P is any invertible matrix of type m and Q an invertible matrix of type n, then

$$
\operatorname{rank}(A)=\operatorname{rank}(P A Q)
$$

Proof

There E_{1}, \ldots, E_{p} elementary matrix of order m such that $P=$ $E_{1} \ldots E_{p}$.
We know that if E is a elementary matrix which corresponds to an elementary row operation R, then $E A$ is the result of the elementary row operation R on the matrix A. Then

$$
\operatorname{rank}(A)=\operatorname{rank}(P A)
$$

Also $\operatorname{rank}(P A Q)=\operatorname{rank}(P A Q)^{T}=\operatorname{rank}\left(Q^{T} A^{T} P^{T}\right)=\operatorname{rank}\left(A^{T} P^{T}\right)=$ $\operatorname{rank}(P A)=\operatorname{rank}(A)$.

Theorem

If A is a matrix of type (m, n). We have the equivalence of the following statements:
(1) The homogeneous system $A X=0$ has 0 as unique solution.
(2) The columns of the matrix A are linearly independent.
(3) $\operatorname{rank}(A)=n$.
(9) The matrix $A^{T} A$ has an inverse.

Theorem

Let A be a matrix of type (m, n). We have the equivalence of the following statements
(1) The system $A X=B$ is consistent for all $B \in \mathbb{R}^{m}$.
(2) The columns of the matrix A generates the vector space \mathbb{R}^{m}.
(3) $\operatorname{rank}(A)=m$.
(9) The matrix $A A^{T}$ has an inverse.

Definition

Let A be a matrix of type (m, n). The vector sub-space

$$
\left\{X \in \mathbb{R}^{n} ; A X=0\right\}
$$

is called the nullspace of the matrix A and denoted by: $N(A)$. Its dimension is denoted by nullity (A).
Also the vector sub-space

$$
\left\{A X ; X \in \mathbb{R}^{n}\right\}
$$

is called the image of the matrix A and denoted by: $\operatorname{Im}(A)$.

Theorem

Let A be a matrix of type (m, n). Then $\operatorname{Im}(A)=\operatorname{col}(A)$.

Rank-Nullity Theorem

For any matrix A of type (m, n),

$$
\operatorname{nullity}(A)+\operatorname{rank}(A)=n
$$

Example

Let the matrix $A=\left(\begin{array}{cccc}1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 3 \\ 2 & 3 & 0 & 1 \\ 1 & 1 & 1 & 2\end{array}\right)$
(1) Find a basis of the vector space $N(A)$.
(2) Find a basis of the vector space $\operatorname{Col}(A)$.
(3) Find the rank of the matrix A.

Solution

The reduced row form the matrix A is $\left(\begin{array}{cccc}1 & 0 & 3 & 5 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(1) $(-3,2,1,0),(-5,3,0,1)$ is basis of the vector space $N(A)$..
(2) $(0,1,2,1),(-1,2,3,1)$ is a basis of the vector space $\operatorname{Col}(A)$.
(3) The rank of the matrix A is 2 .

Example

Let $e_{1}=(0,1,-2,1), e_{2}=(1,0,2,-1), e_{3}=(3,2,2,-1), e_{4}=$ $(0,0,1,0)$ and $e_{5}=(0,0,0,1)$ vectors in \mathbb{R}^{4}.
Is the following statements are true?
(1) $\operatorname{Vect}\left\{e_{1}, e_{2}, e_{3}\right\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}$.
(2) $(1,1,0,0) \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$.
(3) $\operatorname{Vect}\left\{e_{1}, e_{2}\right\}+\operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}=\mathbb{R}^{4}$.

Solution

(1) Let the matrix A which rows are the vectors e_{1}, e_{2}, e_{3}. The vector space Vect $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the row vector space of the matrix A.
The reduced row form of the matrix A is
$A_{1}=\left(\begin{array}{cccc}1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Then $\operatorname{dimVect}\left\{e_{1}, e_{2}, e_{3}\right\}=2$.
We have $\operatorname{Vect}\left\{e_{1}, e_{2}, e_{3}\right\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}$ if and only if the rank of the following matrix B is 2
$B=\left(\begin{array}{cccc}1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ -1 & 1 & -4 & 2 \\ 1 & 1 & 0 & 0\end{array}\right)$.
The reduced row form of the matrix B is $A_{2}=\left(\begin{array}{cccc}1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Then
$\operatorname{Vect}\left\{e_{1}, e_{2}, e_{3}\right\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}$.
(2) $(1,1,0,0)=e_{1}+e_{2}, 2(1,1,0,0)=e_{3}-e_{2}$. Then $(1,1,0,0) \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$.
(3) $(1,1,0,0) \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$ and $e_{2} \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$. Then $\operatorname{dimVect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}=2$ and

$$
\operatorname{dim} \operatorname{Vect}\left\{e_{1}, e_{2}\right\}+\operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\} \leq 3
$$

Then $\operatorname{Vect}\left\{e_{1}, e_{2}\right\}+\operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\} \neq \mathbb{R}^{4}$.

Example

Let in \mathbb{R}^{3} the vectors, $u_{1}=(1,2,1), u_{2}=(1,3,2), u_{3}=(1,1,0)$ and $u_{4}=(3,8,5)$.
Let $F=\operatorname{Vect}\left(u_{1}, u_{2}\right)$ and $G=\operatorname{Vect}\left(u_{3}, u_{4}\right)$.
Prove that $F=G$.

Solution

As the vectors u_{1}, u_{2} are linearly independent and also the vectors u_{3}, u_{4} are linearly independent, then
$\operatorname{dim} E=\operatorname{dim} F=2$.
$F=G$ if and only if the rank of the following matrix is $2, A=$ $\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 1 & 0 \\ 3 & 8 & 5\end{array}\right)$.
The reduced row form of this matrix is $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Then $F=G$.

