
Crystal Structure

•All metals are crystalline solids (special atomic arrangements 
that extend through out the entire material)

•Amorphous solids: atoms are arranged at random positions 
(rubber)

•Crystal structure: atoms form a repetitive pattern called lattice.

•Crystal lattice: arrays of points (atoms) arranged such that each 
point has an identical surroundings.

Crystal 
lattice

Unit 
cell

*Unit cell: The smallest building 
block of the crystal lattice



Lattice parameters: parameters that completely defines the unit cell 
geometry.

There are seven possible combinations of a,b,c and α,β,γ that give 
rise to seven crystal systems



* There are 14 types of unit cell that stems from 7 crystal systems:





Most common types of unit cell

Simple cube

Number of atoms per unit cell : 8 (corner atoms) x 1/8 =1 atom / unit cell



Face center cubic (FCC)

CRYSTAL 
STRUCTURE

Number of atoms per unit cell : 8 (corner atoms)  x 1/8  + 6 (face atoms) x 
1/2 =4 atoms / unit cell



Body Center Cube 
BCC 

CRYSTAL 
STRUCTURE

Number of atoms per unit cell : 8 (corner atoms)  x 1/8  + 1 (interior atom) = 
2 atoms / unit cell



Hexagonal close packed  (HCP)

crystal structure

c/a =  1.63

For most HCP metals

Number of atoms per unit cell : 

12 (corner atoms)  x 1/6 + 3 (interior atoms) 

+ 2 (face atoms) x 1/2= 6 atoms / unit cell

A sites

B sites

A sites



Atomic radius versus lattice parameter:

(Look for the close packed directions in the unit cell)

Close packed direction: Directions in the unit cell in which 
atoms are in continuous contact.

* FCC ( close packed directions are the face diagonals)

a

√2 a = 4R

a = 4R/ √2  = 2 √2  R √2 aa



√2 a

a√3
 a

*BCC (close packed direction are body diagonals )

√3 a = 4R

a = 4R/ √3

* SC (close packed direction is any edge of the cube)

l k d di ti

a

R=0.5a

a= 2R



•HCP (close packed directions are the edges and the 
diagonals of the upper and lower faces)

a=2R

a



Atomic packing factor (APF)

APF = 
Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

(No.of atoms/unit cell) * volume of each atom

Volume of unit cell

APF = 
a3

4

3
π (0.5a)31

atoms

unit cell
atom

volume

unit cell
volume

Simple Cube

=0.52



BCC

APF = 
a3

4

3
π ( 3a/4)32

atoms

unit cell atom
volume

unit cell

volume
=0.68

APF = 
a3

4

3
π ( 2a/4)34

atoms

unit cell atom
volume

unit cell

volume
=0.74

FCC





Example:  Copper

ρ = n A
VcNA

# atoms/unit cell Atomic weight (g/mol)

Volume/unit cell 

(cm3/unit cell)
Avogadro's number 

(6.023 x 1023 atoms/mol) 

Data from Table inside front cover of Callister 
• crystal structure = FCC:  4 atoms/unit cell
• atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
• atomic radius R = 0.128 nm   (1 nm = 10   cm)-7

Vc = a3 ; For FCC, a = 4R/  2 ;  Vc = 4.75 x 10-23cm3

Compare to actual: ρCu = 8.94 g/cm3
Result:  theoretical ρCu = 8.89 g/cm3

THEORETICAL DENSITY, ρ



ALLOTROPY: Ability of the material to have more than one 
crystal structure depending on temperature and pressure.

e.g. Pure iron has a BCC crystal structure at room temperature 
which changes to FCC at 912 C.

Example: Determine the volume change of a 1 cm3 cube iron 
when it is heated from 910C, where it is BCC with a lattice 
parameter of 0.2863 nm, to 915 C, where it is FCC with a 
lattice parameter of 0.3591.

VBcc= a3 = (0.2863)3 Vfcc= (0.3591)3

On the basis of equivalent number of atoms: 1 fcc unit cell has 4 
atoms, while 1 bcc unit cell has 2 atoms
Volume change = V fcc – 2V Bcc

2 VBcc

= 0.046307 – 2 (0.023467  x100

2 (0.023467)
= -1.34 %

Iron contracts upon heating



Determine the volume change in cobalt when it transforms from 
HCP at room temperature to FCC at higher temperatures. 



Crystrallographic points:

First put the three axes (X,Y,Z) at one of the corners.

Coordinates of a point is given as  a fraction of length a (x-axis), 
fraction of length b (y-axis) and fraction of length c (z-axis)



Example:



Directions in unit cell:

1. Subtract the coordinates of the tail point from the coordinates 
of the head point.

2. Clear fractions by multiplying or dividing by a common factor 
and reduce to lowest integers.

[110]
•A direction and its multiple is 
identical, [100] is identical to 
[200], the second was not 
reduced to lowest integer.

•Changing the sign of all 
indices produces a vector that is 
opposite in direction.

•Parallel vectors have same 
indices



Equivalent Directions:

• Directions along which spacing of atoms is the same are 
considered equivalent directions, they create family of 
directions.

<100> : [100] [ 100], [010] [010], [001] [001]

• Directions having the same indices with out regard to order or sign 
are equivalent: [123] is equivalent to [213]



Example: Sketch the following directions: [111], [121], [110]



Hexagonal 

crystals: 



*Planes in Unit cell

1. Identify the intercept of the plane with the three axes in terms
of a, b and c

2. Take the reciprocal of these numbers.

3. Clear fractions by multiplying or dividing by a common factor.

Intercepts: 1   1   1

Reciprocal: 1  1   1

Plane: (111)



Intercept:   1    1    ∞

Reciprocal: 1   1    0

Plane :  (110)

Intercept:  1 ∞ ∞

Reciprocal: 1  0  0

Plane: (100)



•If the plane passes through the origin, then the origin point 
has to be shifted by one lattice parameter to another corner.

Example:

Equivalent planes 



Intercepts: 1  ∞ 1   1

Reciprocal: 1 0 1 1

Plane: (101 1)

Intercept:  1 ∞ 1 ∞

Reciprocal: 1 0 1 0



Linear density:    No. of atoms

Magnitude of the direction

Linear Packing:    Length occupied by atoms

Magnitude of the direction



Example:

Choose which would be a possible slip direction :

[100], [110] and [111] in FCC unit cell.

Calculate the linear density and linear packing factor

[100]

a

1/2 1/2 L.D= 1/a = 1/ 2  √2  r

L.P= 2r / 2  √2  r  =  0.71r r



[110]

√2 a

r r2r
1/2 1/21

L.D= 2 / √2 a

L.P= 4r/ √2 2 √2 r= 1.0

Length of burgers vector is √2 a /2

½ the face diagonal
[111]

√3 a

1/2 1/2
L.D= 1 / √3 a

L.P= 2r/ √3 2 √2 r= 0.4
r r

In FCC unit cell any face diagonal is highly packed with 
atoms referred to as close packed direction.



Planar density:    No. of atoms

Area of plane

Planar Packing:    Area occupied by atoms

Area of plane



Example:

Choose which would be a possible slip plane :

(100), (110) and (111) in FCC unit cell.

Calculate the planar density and planar packing factor

1/41/4

1/41/4

1

a

a

P.D = 2/ a2= 2/ 8r2

P.F=2 πr2 / 8r2 = 0.79



P.F=2 πr2 / 4r2 √3= 0.9 

1/6

1/2

No. of atoms= 3x 1/6  +3x 1 / 2

= ½ x base x height



1/41/2

1/2 1/4

1/4

1/4
a

√2 a
P.D = 2/ √2 a2= 2/ 8 √2 r2

P.F=2 πr2 / 8 √2 r2 = 0.56

(111) Plane in fcc is the slip plane because it has the highest atomic 
packing  density



Example



nucleation Growth

Grains are formed

liquidNuclei for  
crystallites

Solidification of a polycrystalline metal



liquid nucleation growth Grain with different 
lattice orientations

•Different grains have different orientations of atoms separated by 
grain boundaries.

• Anistropy: Properties depend on crystallographic direction.

• Isotropic: Properties are independent of directions.



• Most engineering materials are polycrystals.
POLYCRYSTALS

Adapted from Fig. K, 
color inset pages of 
Callister 6e.
(Fig. K is courtesy of 
Paul E. Danielson, 
Teledyne Wah Chang 
Albany)

1 mm

• Nb-Hf-W plate with an electron beam weld.
• Each "grain" is a single crystal.
• If crystals are randomly oriented,

overall component properties are not directional.
• Crystal sizes typ. range from 1 nm to 2 cm

(i.e., from a few to millions of atomic layers).



• Single Crystals
-Properties vary with

direction:  anisotropic.

-Example:  the modulus
of elasticity (E) in BCC iron:

• Polycrystals

-Properties may/may not
vary with direction.

-If grains are randomly
oriented: isotropic.
(Epoly iron = 210 GPa)

-If grains are textured,
anisotropic.

E (diagonal) = 273 GPa

E (edge) = 125 GPa

200 µm

Data from Table 3.3, 
Callister 6e.
(Source of data is 
R.W. Hertzberg, 
Deformation and 
Fracture Mechanics of 
Engineering Materials, 
3rd ed., John Wiley 
and Sons, 1989.)

Adapted from Fig. 
4.12(b), Callister 6e.
(Fig. 4.12(b) is 
courtesy of L.C. Smith 
and C. Brady, the 
National Bureau of 
Standards, 
Washington, DC [now 
the National Institute 
of Standards and 
Technology, 
Gaithersburg, MD].)

SINGLE VS POLYCRYSTALS

equiaxed

elongated



Structure of Ceramic 

Materials

1



2

Factors that Determine Crystal Structure
1. Relative sizes of ions – Formation of stable structures:

--maximize the # of oppositely charged ion neighbors.

- -

- -
+

unstable

- -

- -
+

stable

- -

- -
+

stable

2. Maintenance of 

Charge Neutrality :
--Net charge in ceramic 

should be zero.

--Reflected in chemical 

formula:

CaF2: Ca2+

cation

F-

F-

anions+

AmXp

m, p values to achieve charge neutrality
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•  Bonding:
-- Can be ionic and/or covalent in character.

-- % ionic character increases with difference in

electronegativity of atoms.

•  Degree of ionic character may be large or small:

Atomic Bonding in Ceramics

SiC: small

CaF2: large
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•  Coordination # increases with

Coordination # and Ionic Radii

2 

rcation
ranion

Coord 

#

< 0.155 

0.155 - 0.225 

0.225 - 0.414

0.414 - 0.732 

0.732 - 1.0

3 

4

6

8

linear

triangular

tetrahedral

octahedral

cubic

ZnS 

(zinc blende)

NaCl
(sodium 

chloride)

CsCl
(cesium 
chloride)

rcation
ranion

To form a stable structure, how many anions can

surround a cation?





6

Computation of Minimum Cation-Anion 

Radius Ratio

• Determine minimum rcation/ranion for an octahedral site 
(C.N. = 6)

a = 2ranion

    



2ranion 2rcation= 2 2ranion

    



ranion rcation= 2ranion     



rcation= ( 2 1)ranion

arr 222 cationanion =

414.012
anion

cation ==
r

r

a
Measure the radii (blue 

and yellow spheres)

Substitute for “a” in the 

above equation
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•  On the basis of ionic radii, what crystal structure would you 

predict for FeO? 

•  Answer:

5500

1400

0770

anion

cation

.

.

.

r

r

=

=

based on this ratio,

-- coord # = 6 because

0.414 < 0.550 < 0.732

-- crystal structure is similar to NaCl

Example Problem: Predicting the Crystal 

Structure of FeO

Ionic radius (nm)

0.053

0.077

0.069

0.100

0.140

0.181

0.133

Cation

Anion

Al3+

Fe2+

Fe3+

Ca2+

O2-

Cl-

F-
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Rock Salt Structure

Same concepts can be applied to ionic solids in general. 

Example:  NaCl (rock salt) structure

rNa = 0.102 nm

rNa/rCl = 0.564

 cations (Na+) prefer octahedral sites

rCl = 0.181 nm
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AX Crystal Structures

939.0
181.0

170.0

Cl

Cs ==




r

r

Cesium Chloride structure:

 Since 0.732 < 0.939 < 1.0,   

cubic sites preferred

So each Cs+ has 8 neighbor Cl-

AX–Type Crystal Structures include NaCl, CsCl, and zinc blende
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•  Atoms may assemble into crystalline or amorphous structures. 

•  We can predict the density of a material, provided we know the 

atomic weight, atomic radius, and crystal geometry (e.g., FCC, 

BCC, HCP).

SUMMARY

•  Common metallic crystal structures are FCC, BCC and HCP. 

Coordination number and atomic packing factor are the same 

for both FCC and HCP crystal structures.

•  Ceramic crystal structures are based on:

-- maintaining charge neutrality

-- cation-anion radii ratios.

•  Interatomic bonding in ceramics is ionic and/or covalent.


