Crystal Structure

•All metals are crystalline solids (special atomic arrangements that extend through out the entire material)

•Amorphous solids: atoms are arranged at random positions (rubber)

- •Crystal structure: atoms form a repetitive pattern called lattice.
- •Crystal lattice: arrays of points (atoms) arranged such that each point has an identical surroundings.

Crystal lattice

*Unit cell: The smallest building block of the crystal lattice

Lattice parameters: parameters that completely defines the unit cell geometry.

There are seven possible combinations of a,b,c and α , β , γ that give rise to Seven crystal systems

Crystal System	Axial Belationships	Interaxial Angles	Unit Cell Geometry
Cubic	a – b – c	$\alpha = \beta = \gamma = 90^{\circ}$	
Hexagonal	$a - b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	$a - b \neq c$	$\alpha=\beta=\gamma=90^{o}$	c a a
Rhombohedral	a - b - c	$\alpha = \beta = \gamma \neq 90^{\circ}$	A Contraction of the second se

6 G.

* There are 14 types of unit cell that stems from 7 crystal systems:

Most common types of unit cell

Simple cube

Number of atoms per unit cell : 8 (corner atoms) x 1/8 = 1 atom / unit cell

Number of atoms per unit cell : 8 (corner atoms) x 1/8 + 6 (face atoms) x 1/2 = 4 atoms / unit cell

Body Center Cube BCC

CRYSTAL STRUCTURE

Number of atoms per unit cell : 8 (corner atoms) $x \frac{1}{8} + 1$ (interior atom) = 2 atoms / unit cell

A sites

Atomic radius versus lattice parameter:

(Look for the close packed directions in the unit cell)

Close packed direction: Directions in the unit cell in which atoms are in continuous contact.

* FCC (close packed directions are the face diagonals)

$$\sqrt{2} a = 4R$$

 $a = 4R/\sqrt{2} = 2\sqrt{2} R$

a

*BCC (close packed direction are body diagonals)

 $\sqrt{3} a = 4R$

$$\mathbf{a} = \mathbf{4R}/\sqrt{3}$$

a= 2R

* SC (close packed direction is any edge of the cube)

•HCP (close packed directions are the edges and the diagonals of the upper and lower faces)

Atomic packing factor (APF)

APF = Volume of atoms in unit cell* Volume of unit cell

*assume hard spheres

(No.of atoms/unit cell) * volume of each atom

Volume of unit cell

Atomic Packing factor for HCP 25 2 25 $V = 6X \frac{1}{2} \times 2r \times 2r \sin 60 \times 1.63(2r)$ $V = 6 \times \frac{1}{2} \times 2r \times 2r \times sin 6 \circ \times C$ $APF = \frac{6x4}{12r^2\sqrt{3}} \frac{\pi r^3}{x^{1.63}(2r)=0.74}$

THEORETICAL DENSITY, ρ

Example: Copper

Data from Table inside front cover of Callister

- crystal structure = FCC: 4 atoms/unit cell
- atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
- atomic radius R = 0.128 nm (1 nm = 10^{-7} cm) V_c = a^3 ; For FCC, a = 4R/ $\sqrt{2}$; V_c = 4.75 x 10^{-23} cm³

Result: theoretical ρ Cu = 8.89 g/cm³ Compare to actual: ρ Cu = 8.94 g/cm³ ALLOTROPY: Ability of the material to have more than one crystal structure depending on temperature and pressure.

e.g. Pure iron has a BCC crystal structure at room temperature which changes to FCC at 912 C.

Example: Determine the volume change of a 1 cm3 cube iron when it is heated from 910C, where it is BCC with a lattice parameter of 0.2863 nm, to 915 C, where it is FCC with a lattice parameter of 0.3591. VBcc= a3 = (0.2863)3 Vfcc= (0.3591)3

On the basis of equivalent number of atoms: 1 fcc unit cell has 4 atoms, while 1 bcc unit cell has 2 atoms Volume change = V fcc - 2V Bcc = $0.046307 - 2 (0.023467 \times 100)$

	2 VBcc	2 (0.023467)
= -1.34 %	T	1
	Iron contracts up	pon heating

Determine the volume change in cobalt when it transforms from HCP at room temperature to FCC at higher temperatures.

Crystrallographic points:

First put the three axes (X,Y,Z) at one of the corners.

Coordinates of a point is given as a fraction of length a (x-axis), fraction of length b (y-axis) and fraction of length c (z-axis)

Example:

Directions in unit cell:

- 1. Subtract the coordinates of the tail point from the coordinates of the head point.
- 2. Clear fractions by multiplying or dividing by a common factor and reduce to lowest integers.
- •A direction and its multiple is identical, [100] is identical to [200], the second was not reduced to lowest integer.
- •Changing the sign of all indices produces a vector that is opposite in direction.
- •Parallel vectors have same indices

Equivalent Directions:

• Directions along which spacing of atoms is the same are considered equivalent directions, they create family of directions.

<100> : [100] [100], [010] [010], [001] [001]

• Directions having the same indices with out regard to order or sign are equivalent: [123] is equivalent to $[\overline{2}1\overline{3}]$

Example: Sketch the following directions: [111], [121], [110]

*Planes in Unit cell

- 1. Identify the intercept of the plane with the three axes in terms of a, b and c
- 2. Take the reciprocal of these numbers.
- 3. Clear fractions by multiplying or dividing by a common factor.

Intercepts: 1 1 1 Reciprocal: 1 1 1 Plane: (111)

Intercept: $1 \propto \infty$ Reciprocal: 1 0 0 Plane: (100) •If the plane passes through the origin, then the origin point has to be shifted by one lattice parameter to another corner.

Example:

Equivalent planes

Linear density: No. of atoms

Magnitude of the direction

Linear Packing: Length occupied by atoms Magnitude of the direction Example: Calculate the linear density and linear packing factor Choose which would be a possible slip direction :

[100], [110] and [111] in FCC unit cell.

[110]

L.D= 2 / $\sqrt{2}$ a L.P= 4r/ $\sqrt{2}$ 2 $\sqrt{2}$ r= 1.0

Length of burgers vector is $\sqrt{2}$ a /2 ¹/₂ the face diagonal

[111]

L.D= 1 /
$$\sqrt{3}$$
 a
L.P= 2r/ $\sqrt{3}$ 2 $\sqrt{2}$ r= 0.4

In FCC unit cell any face diagonal is highly packed with atoms referred to as close packed direction. Planar density: <u>No. of atoms</u> Area of plane

Planar Packing: Area occupied by atoms

Area of plane

Example: Calculate the planar density and planar packing factorChoose which would be a possible slip plane :(100), (110) and (111) in FCC unit cell.

P.D = $2/a^2 = 2/8r^2$ P.F= $2\pi r^2/8r^2 = 0.79$

$$(2R)^2 + h^2 = (4R)^2$$

No. of atoms= $3x \frac{1}{6} + 3x \frac{1}{2}$

which leads to $h = 2R \sqrt{3}$. Thus, the area is equal to

Area =
$$\frac{4 \text{ R(h)}}{2} = \frac{(4 \text{ R})(2 \text{ R}\sqrt{3})}{2} = 4 \text{ R}^2 \sqrt{3} = \frac{1}{2} \text{ x base x height}$$

And, thus, the planar density is

$$PD_{111} = \frac{\text{number of atoms centered on (111) plane}}{\text{area of (111) plane}}$$
$$= \frac{2 \text{ atoms}}{4 \text{ B}^2 \sqrt{3}} = \frac{1}{2 \text{ B}^2 \sqrt{3}}$$
$$P.F=2 \pi r^2 / 4r^2 \sqrt{3} = 0.9$$

(111) Plane in fcc is the slip plane because it has the highest atomic packing density

Example

Solidification of a polycrystalline metal

nucleation

Growth

^dGrains are formed

1 1	1	growth	Grain with different		
liquid	nucleation	growth	lattice orientations		

- •Different grains have different orientations of atoms separated by grain boundaries.
- Anistropy: Properties depend on crystallographic direction.
- Isotropic: Properties are independent of directions.

• *Most* engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of *Callister 6e.* (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

SINGLE VS POLYCRYSTALS

- Single Crystals

 Properties vary with
 direction: anisotropic.
 - -Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
 - -Properties may/may not vary with direction.
 - -If grains are randomly_{equiaxed} oriented: isotropic.
 - -If grains are textured, anisotropic.

E (diagonal) = 273 GPa

Data from Table 3.3, *Callister 6e*. (Source of data is R.W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd ed., John Wiley and Sons, 1989.)

E (edge) = 125 GPa

200 μm

Adapted from Fig. 4.12(b), *Callister 6e*. (Fig. 4.12(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Structure of Ceramic Materials

Factors that Determine Crystal Structure

 Relative sizes of ions – Formation of stable structures: --maximize the # of oppositely charged ion neighbors.

m, p values to achieve charge neutrality

Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:

IA																	0
Н								He									
2.1	IIA						. 5.		90			IIIA	IVA	VA	VIA	VIIA	-
Li	Be					Ci	. .	ma				B	X	Ν	0	F	Ne
1.0	1.5					SIC	ງ. ວ					2.0	2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	P	S	CI	Ar
0.9	1.2	HiB	IVB	VB	VIB	VIIB				IB	IIB	1.5	1.8	2.1	2.5	3.0	-
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	La–Lu	Ηf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra	Ac–No															
0.7	0.9	1.1–1.7															

Coordination # and Ionic Radii

ranion

Coordination # increases with

To form a stable structure, how many anions can surround a cation?

Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry
2	<0.155	
3	0.155-0.225	
4	0.225-0.414	3
6	0.414-0.732	
8	0.732–1.0	

Table 3.3 Coordination Numbers and Geometries for Various Cation-Anion Radius Ratios (r_c/r_A)

Computation of Minimum Cation-Anion Radius Ratio

• Determine minimum r_{cation}/r_{anion} for an octahedral site

Example Problem: Predicting the Crystal Structure of FeO

 On the basis of ionic radii, what crystal structure would you predict for FeO?

<u>Cation</u>	<u>lonic radius (</u> nm
AI 3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca ²⁺	0.100
<u>Anion</u>	
02-	0.140
CI	0.181
F ⁻	0.133

• Answer:

<u>r</u>	0.077
r _{anion} –	0.140
=	0.550

based on this ratio, -- coord # = 6 because 0.414 < 0.550 < 0.732

-- crystal structure is similar to NaCl

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

• Na⁺ $r_{Na} = 0.102 \text{ nm}$ • Cl⁻ $r_{Cl} = 0.181 \text{ nm}$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

: cations (Na⁺) prefer octahedral sites

AX Crystal Structures

Cs

Cŀ

AX–Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

$$\frac{r_{Cs^{+}}}{r_{Cl^{-}}} = \frac{0.170}{0.181} = 0.939$$

∴ Since 0.732 < 0.939 < 1.0, cubic sites preferred

So each Cs⁺ has 8 neighbor Cl⁻

SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC and HCP.
 Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.