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Had crazy idea (1807):
Any periodic function can be rewritten as 

a weighted sum of Sines and Cosines of different 

frequencies. 

Don’t believe it?  
Neither did Lagrange, Laplace, Poisson and 

other big wigs

Not translated into English until 1878!

But it’s true!
called Fourier Series

Possibly the greatest tool used in Engineering

Jean Baptiste Joseph Fourier (1768-1830)
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• X-ray diffraction

• Electron microscopy (and diffraction)

• NMR spectroscopy

• IR spectroscopy

• Fluorescence spectroscopy

• Image processing

Fourier Transforms are used in

This image for example looks ordered but I 

couldn’t tell you exactly what that order is.

After taking a FT of the image it 

is very apparent what sort of 

order it has and one can 

determine all the distances 

between nearest neighbors just 

by taking the reciprocal of the 

distances between a dot and the 

center of the image.
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• any function that satisfies

( ) ( )f t f t T 
where T is a constant and is called the period of the function.

Periodic Function 

A periodic sequence

T 2T 3T

t

f(t)

I’m calling the variable t here because I have to call it something, but the 
definition is general and is not meant to imply periodic functions of time.

(1)
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Can be represented by:

So what does this mean exactly?

When you let these three waves interfere with each other 

you get your original wave function!

A periodic function can be described by a summation of waves with different 

amplitudes and phases.
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,the fundamental frequency (rad/sec) of the signal 

Any reasonable function can be expressed as a (infinite) linear 
combination of sines and cosines

(2)

(3)
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where the constant coefficients an and bn are called the 

Fourier coefficients of f

• even functions

• odd functions
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• a periodic signal f(t), has a Fourier series if it satisfies the 

following conditions:

1. f(t) is absolutely integrable over any period. 

2. f(t) has only a finite number of maxima and minima over any 

period

3. f(t) has only a finite number of discontinuities over any period

Dirichlet Conditions
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Example: Find Fourier series of this function

We have

We obtain b2n = 0 and

Therefore, the 

Fourier series 

of f(x) is
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Let us then generalize the Fourier series to complex functions.
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Reciprocal lattice vectors

In the reciprocal lattice

In one dimension these points lie on a line.

What about 3D?

The electron number density n.(r) is a

periodic function of r,
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Reciprocal Lattice 
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321 blbkbhG 

G is the reciprocal lattice vector

G must be invariant when we do translation T
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Where s=hu+kv+lw

u, v, w: integer

h, k, l: integer, Miller indices
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Each point represents all parallel crystal  planes.  Eg., all

planes parallel to the a-c plane are captured by (010) spot.

For every real lattice there is an equivalent reciprocal lattice. 

A two dimension (2‐D) real lattice is defined by two unit cell 

vectors, say 𝑎1 and 𝑎2 inclined at an angle. 

The equivalent reciprocal lattice in reciprocal space is 

defined by two reciprocal vectors, say 𝑏1 and 𝑏2. 

Reciprocal Lattice 
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The reciprocal vectors are defined as follows:

•𝑏1 is of magnitude 1/d1 where d1 is the spacing of

the vertical planes, and is perpendicular to 𝑎2

•𝑏2 is of magnitude 1/d2 where d2 is the spacing of

the horizontal planes, and is perpendicular to 𝑎1.

• A reciprocal lattice can be built using reciprocal

vectors. Both the real and reciprocal constructions

show the same lattice, using different but

equivalent descriptions.

Reciprocal Lattice 

a1

a2

b1

b2
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Any set of planes can be defined by:

(1) their orientation in the crystal (hkl) 

(2) their d-spacing 

The orientation of a plane is defined by 

the direction of a normal (vector product)

c

b

a
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• To make the choice we should use the shortest such reciprocal lattice vector. 
In this way we arrive at the Miller indices of the plane.

• Miller indices of a lattice plane are the coordinates of the shortest reciprocal 
lattice vectors normal to that plane, with respect to the specified set of 
primitive reciprocal lattice vectors.
• A plane with Miller indices h,k,l is normal to the reciprocal lattice vector  .
• h,k,l are integers.
• They have no common factor.
• They depend on particular choice of primitive vectors.

Miller Indices Of lattice Planes
In general we describe the orientation of a lattice plane by giving a vector 
normal to that plane.
• There are reciprocal lattice vectors normal to any family of planes, we pick a 
reciprocal lattice vector to represent the normal.
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In 2D
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In 3D
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 A lattice point is taken as common origin.

 From the common origin,  draw a normal to each plane.

 Place a point on the normal to each plane (h k l) at a distance from the 

origin equal to  1/d       .

 Such points form a periodic array called reciprocal lattice.

How To Build The Reciprocal Lattice
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a

Real space lattice - basis vectors
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(100)

planes

n100

Real space lattice - choose set of planes
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n100

d100

1/d100

(100)

planes

Real space lattice - interplanar spacing d
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(100)

planes

n100

d100

(100)
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(100)

planes

n010

d010

(100)

(010)
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(100)

planes

(100)

(010) (020)

n110
d110

(110)
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 Direct lattice is a lattice in ordinary space whereas the reciprocal lattice is a lattice in the Fourier

space.

 The vectors in reciprocal lattice has the dimensions of (length)-1 whereas the primitive vectors

of the direct lattice have the dimensions of length

 A diffraction pattern of a crystal is a map of the reciprocal lattice of the crystal whereas a

microscopic image is a map of direct lattice

 When we rotate a crystal, both direct and reciprocal lattice rotates

 Each point in the reciprocal lattice represents a set of parallel planes of the crystal lattice

 If the coordinates of reciprocal vector G have no common factor, then G is inversely

proportional to the spacing of the lattice planes normal to G

 The volume of unit cell of the reciprocal lattice is inversely proportional to the volume of unit cell

of the direct lattice

 The direct lattice is the reciprocal of its own reciprocal lattice

Reciprocal Lattice properties

ib
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The reciprocal lattice of a simple cubic lattice with primitive cell side a 

is again a simple cubic lattice, but with cell side 2π/a.

– The reciprocal lattice of an fcc Bravais lattice with conventional 

cubic cell side a is a bcc lattice with conventional cubic cell side 4π/a.

– The reciprocal lattice of an bcc lattice with conventional cell side a is 

similarly an fcc lattice with conventional cell side 4π/a.

– The reciprocal lattice on a simple hexagonal Bravais lattive with 

lattice constants a and c is also a simple hexagonal lattice but with 

lattice constants 4π/ᴦ3a

and 2π/c, and rotated 30around the c-axis.

– The volume vg of the reciprocal lattice primitive cell is vg = (2π)3=vc, 

where vc is the volume of the direct lattice primitive cell. The cell 

volumes can be obtained from the corresponding primitive vectors by 

taking vc = a1 .(a2 × a3) and vg = b1 .(b2 × b3).
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4
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FCC and BCC
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 Reciprocal Lattices to SC, FCC and BCC
Direct lattice Reciprocal lattice Volume
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FCC to BCC
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Interplanar distances in reciprocal lattice
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Example: calculate d spacing in the simple cubic lattice, a,b,c are all 
perpendicular and identical in length=a ,also A,B, C are all perpendicular 
and identical in length=2π/a
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Interaction of X-rays and Matter

Scattering.

coherent, incoherent

elastic (Thomson), inelastic (Compton)

Absorption.

atoms: can then be emitted as fluorescence, photoelectrons, Auger

electrons

molecules: can emit fluorescence, phosphorescence, transfer heat,

(stimulated emission)

Diffraction. The bending of waves due to obstructions and small apertures, as

with crystals.

Refraction. The bending of a wave as it passes from one medium to another

Reflection. Radiation bouncing back from one medium to the original medium,
where the wavelength << size of the object.
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X-ray Scattering

Coherent scattering occurs when the X-ray

particle collides with an atom and

deviates without a loss in energy.

Coherent

Incoherent scattering is where the

incident X-ray loses some of its energy to

the scattering electron. As total momentum

is preserved, the wavelength of the

scattered photon is increased. Incoherent
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 Scattering is the phenomenon that is seen when any radiation interacts with 

particles.

 Diffraction is the special case of scattering. One sees diffraction as a result of 

coherence of scattered waves i.e. when there is periodicity.

 Scattering will happen at all angles while diffraction is possible only at angles 

which satisfies Bragg's equation.

 Scattering is a kind of particle behavior, but diffraction is a kind of wave behavior.

Of course every matter have wave-particle duality, so if one particle interacted with another, 

both of the scattering and diffraction will happen.

 Scattering may change the wavelength(energy) of the particle, like Raman scattering, but 

diffraction often do not involve the energy change, but more referred to wavelength 

dispersion (spatial dispersion), like diffraction from grating, or X-ray diffraction from crystals.

Scattering and Diffraction
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 For electromagnetic radiation to be diffracted the spacing in the grating should be of the 

same order as the wavelength

 In crystals the typical interatomic spacing ~ 2-3 Å so the suitable radiation is X-rays

 Hence, X-rays can be used for the study of crystal structures

To investigate atomic/molecular structure, we use X-rays, electrons,

and neutrons, since they can have wavelengths about the sizes of
atoms.



Interference

 For waves with the same frequency and amplitude, we see constructive 

interference when two waves have a phase difference of n, where (n  ℤ)

- called “in phase”

 Destructive interference is observed for a phase difference of (n + ½), 

where (n  ℤ)

-called “out of phase”

 A phase difference can result from a path difference

-happens in slit experiments

-the same thing happens when X-rays are diffracted by a crystal

-The X-rays penetrate deeply and many layers contribute to the reflected intensity

-The diffracted peak intensities are therefore very sharp (in angle)

-The physics of the lattice planes is totally obscure! 



BRAGG’s EQUATION

d









 The path difference between ray 1 and ray 2 = 2d Sin

 For constructive interference: n = 2d Sin

Ray 1

Ray 2



Deviation = 2

Bragg’s law tells you at 

which angle θ to expect 

maximum diffracted 

intensity for a particular 

family of crystal planes. 

For large crystals, all 

other angles give zero 

intensity.

William Lawrence Bragg and his father, 

Sir William Henry Bragg, were awarded 

the Nobel Prize in physics in 1915 for 

their work in determining crystal 

structures beginning with NaCl, ZnS, 

and diamond.
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Recognizing d as the hypotenuse of the right triangle Abz, we can use trigonometry to 

relate d and θ to the distance (AB + BC). The distance AB is opposite θ so,

AB = d sinθ (3).

Because AB = BC eq. (2) becomes,

nλ = 2AB (4) 

Substituting eq. (3) in eq. (4) we have,

nλ = 2 d sinθ,                     (1)

and Bragg's Law has been derived. The location of the surface does not change the 

derivation of Bragg's Law.

Bragg's Law can easily be derived by considering the conditions necessary to make the phases of the beams 

coincide when the incident angle equals and reflecting angle. 

The rays of the incident beam are always in phase and parallel up to the point at which the top beam strikes the top 

layer at atom z (Fig. 1). The second beam continues to the next layer where it is scattered by atom B. The second 

beam must travel the extra distance AB + BC if the two beams are to continue traveling adjacent and parallel. This 

extra distance must be an integral (n) multiple of the wavelength (λ) for the phases of the two beams to be the same:

nλ = AB +BC (2). 
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• The periodicity and interatomic spacing of crystals had been deduced earlier.

• Von laue realized that if x-rays were waves with short wavelength, interference 

phenomena should be observed like in young’s double slit experiment.

• experiment in 1912, nobel prize in 1914

Von Laue Diffraction Theory In Crystals

Laue’s diffraction condition

k’ = k + Ghkl

• Given an incident k, want to find a k’ that satisfies this condition

(under the constraint |k’|=|k|=2π/λ)
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Graphical Laue

 If, and only if the three vectors involved 

form a closed triangle, is the Laue 

condition met. If the Laue condition is not

met, the incoming wave just moves through 

the lattice and emerges on the other side of 

the crystal (neglecting absorption). 
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The Laue Equations

• waves scattered from two lattice points separated by a 

vector r will have a path difference in a given 

direction.

• the scattered waves will be in phase and constructive 

interference will occur if the phase difference is 2π.

• the path difference is the difference between the 

projection of r on k and the projection of r on k0,

Two lattice 
points 
separated by a 
vector r

r
k

k0

k-k˳

r*hkl(hkl)

The Laue equations give three conditions for incident waves to be diffracted
by a crystal lattice 
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𝐴𝑝 = 𝐴𝑒−𝑖𝜔𝑡𝑒𝑖𝑘.𝑟

Von Laue Diffraction Theory in crystals

K wave vector

ω angular momentum
K=2π/λ

λ wavelength

Scattering center p
It is an atom

Amplitude of plane wave

Only fraction ɣ of the amplitude will scattered to the 

observation point B described by vector R

𝐴𝐵 = 𝛾𝐴𝑝

𝑒𝑖  𝑘.𝜚

𝜚

𝜚 is a vector describe B w.r.t the scattering center.

𝜚 = 𝑅 − 𝑟

B
R

kʹ

r

k

p

𝜚

We suppose elastic scattering

|k|=|kʹ|=2π/λ

𝑟 ≪ 𝑅
R parallel to 

𝜚 ≈ 𝑅

𝜚
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𝐴𝐵 =
𝛾

𝑅
𝐴𝑒−𝑖𝜔𝑡𝑒𝑖𝑘.𝑟𝑒𝑖  𝑘. 𝑅−𝑟

=
𝐴

𝑅
𝑒−𝑖𝜔𝑡𝑒𝑖  𝑘.𝑅𝛾𝑒 𝑘−  𝑘 .𝑟

= 𝐴𝑜𝛾𝑒 Δ𝑘.𝑟

Δ𝑘 = 𝑘 −  𝑘

𝐴𝑜 =
𝐴

𝑅
𝑒−𝑖𝜔𝑡𝑒𝑖  𝑘.𝑅

𝑟 = 𝑢  𝑎 + 𝑣  𝑏 + 𝑤  𝑐

𝐴𝑡𝑜𝑡 =  

𝑢.𝑣.𝑤

𝐴𝐵

= 𝐴𝑜𝛾  

𝑢.𝑣.𝑤

𝑒𝑖 Δ𝑘. 𝑢  𝑎+𝑣  𝑏+𝑤  𝑐

The maximum amplitude will at
𝑢 Δ𝑘. 𝑎 + 𝑣 Δ𝑘. 𝑏 + 𝑤 Δ𝑘. 𝑐 = 2𝜋𝑚

𝑒𝑖2𝜋𝑚=1

Δ𝑘. 𝑎 = 2𝜋𝑚1, Δ𝑘. 𝑏 = 2𝜋𝑚2, Δ𝑘. 𝑐 = 2𝜋𝑚3

Δ𝑘 = 𝐺

G  satisfy these relations

Laue conditions
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The wavevectors of the incoming and outgoing beams are k and k'. We suppose that the amplitude of 

the wave scattered from a volume element is proportional to the local electron concentration n(r). The 

total amplitude of the scattered wave in the direction of k' is proportional to the integral over the 

crystal of n(r) dV times the phase factor exp[i(k - k') · r].

The total scattering amplitude:

𝐹 =  𝑑𝑉𝑛(𝑟)𝑒𝑖(Δ𝑘.𝑟)

𝐹 =  
𝐺

.

𝑑𝑉𝑛𝐺𝑒−𝑖𝐺.𝑟𝑒𝑖Δ𝑘.𝑟

𝐹 =  
𝐺

.

𝑑𝑉𝑛𝐺𝑒−𝑖(𝐺−Δ𝑘).𝑟

This scattering is maximum when 𝐺 − Δ𝑘 . 𝑟 ≈ 0

𝐺 = ∆𝑘

When the scattering vector ∆k is equal to a particular reciprocal lattice vector
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The diffraction condition is written as

𝑘 + 𝐺 =  𝑘

Using elastic scattering : 𝑘 =  𝑘

(𝑘 + 𝐺)2= 𝑘2

𝑘2 + 2𝑘𝐺 + 𝐺2 = 𝑘2

−2𝑘. 𝐺 = 𝐺2

2 𝑘 . 𝐺 cos(
𝜋

2
− 𝜃) = 𝐺 2

Here θ is the angle between the incident beam and the crystal plane

𝑑 =
2𝜋

𝐺
,     𝑘 =

2𝜋

𝜆

2
2𝜋

𝜆
.
2𝜋

𝑑
𝑠𝑖𝑛𝜃 = (

2𝜋

𝑑
)2

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 Bragg law

Bragg law in vector form



Abeer Alshammari 54

k’

Reciprocal lattice

k

G• One problem: there are infinitely many Ghkl’s.

• It’s convenient to solve it graphically using the Ewald construction

The Ewald construction

The observed diffraction pattern is the part of the reciprocal lattice 

that is intersected by the Ewald sphere

• vector representation of Bragg law

• |k|=|k0|=2π/λ

We draw a sphere of radius k=2π/λ. about the origin of k.

A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.

The sphere as drawn iatercepts a point connected with the end of k by a reciprocal lattice vector G. 

The diffracted x-ray beam is in the direction k‘=k + G. 

http://www.chembio.uoguelph.ca/educmat/chm729
/recip/ewindex.htm
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A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice

Brillouin Zone

𝑘.
1

2
𝐺 =

1

2
𝐺

2

 The Brillouin construction exhibits all wavevectors k that can be Bragg 

reflected by the crystal.

 The constructions divide the Fourier space into fragments, out of which the 

first Brillouin zone is of greatest importance.

2𝑘. 𝐺 = 𝐺2

The Brillouin zone gives a vivid geometrical interpretation of the diffraction condition

÷ 4 both sides



Abeer Alshammari 56

Draw lines connecting the origin point to its 

nearest neighbors.

Draw perpendicular bisectors to these lines. 

These perpendicular bisectors are Bragg 

Planes.

Taking the smallest polyhedron containing 

the point bounded by these planes is first 
Brillouin zone

Construction of first Brillouin zone
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The second Brillouin zone is the set of points that can be reached 
from the first zone by crossing only one Bragg plane.

The (n + 1)th Brillouin zone is the set of points not in the (n ‐ 1)th
zone that can be reached from the nth zone by crossing n ‐ 1 Bragg 
planes. 

The nth Brillouin zone can be defined as the set of points that can 
be reached from the origin by crossing n ‐ 1 Bragg planes, but no 
fewer.

Higher Brillouin Zones
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The locus of points in 
reciprocal space that 
have no Bragg Planes 
between them and the 
origin defines the first 
Brillouin Zone. 

It is equivalent to the 
Wigner‐Seitz unit cell 
of the reciprocal lattice. 
Small black dots 
represent point 
of intersection of Bragg 
planes
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The second Brillouin Zone is the 
region of reciprocal space in which 
a point has one Bragg Plane 
between it and the origin.

Note that the areas of the first and 
second Brillouin Zones are the 
same.

Small black dots represent point 
of intersection of Bragg planes

all BZs have exactly the 

same area/volume



Abeer Alshammari 60

The construction can quite 
rapidly become complicated 
as you move beyond the 
first few zones, and it is 
important to be systematic 
so as to avoid missing out 
important Bragg Planes.
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Small black dots 
represent point 
of intersection of Bragg 
planes



Abeer Alshammari 62

First BZ in SC Second BZ in SC Third BZ in SC

First BZ in BCC Second BZ in BCCSecond BZ in BCC



Electron Atom Unit cell (uc)Scattering by a crystal

A B C

Scattering by an atom is essentially the sum of the scattering of the electron cloud” around the nucleus.

•Because of the distance between electrons scattering within the atom and the fact that the x-ray wavelength is 

of the same order as the atomic dimensions, there will be path differences between the scattered waves. These 

differences will always be less than one wavelength, so the interference will always be partially destructive.

•This phenomenon is called the atomic scattering factor, described by the quantity 𝑓. At zero degrees, 𝑓 will be 
equal to the number of electrons surrounding the atom or ion. At higher scattering angles, the factor will be less.

Structure Factor and Atomic Form Factor



B Scattering by an Atom

Scattering by an atom  [Atomic number, (path difference suffered by scattering from each e−, )]

Scattering by an atom  [Z, (, )]  Angle of scattering leads to path differences
 In the forward direction all scattered waves are in phase

electronan by  scattered  waveof Amplitude

atoman by  scattered  waveof Amplitude
   

Factor Scattering Atomic



f

f→


 )(Sin
(Å−1) →

0.2 0.4 0.6 0.8 1.0

10

20

30

Schematic



 )(Sin



C Scattering by the Unit cell (uc)

 Coherent Scattering 
 Unit Cell (uc) representative of the crystal structure
 Scattered waves from various atoms in the uc interfere to create the diffraction pattern

The wave scattered from the middle plane is out of phase with 
the ones scattered from top and bottom planes

Structure Factor (F): The resultant wave
scattered by all atoms of the unit cell



 If  atom B is different from atom A  the amplitudes must be weighed by the respective

atomic scattering factors (f)

 The resultant amplitude of all the waves scattered by all the atoms in the uc gives the 

scattering factor for the unit cell

 The unit cell scattering factor is called the Structure Factor (F)

Scattering by an unit cell = f(position of the atoms, atomic scattering factors)

electronan by  scattered  waveof Amplitude

ucin  atoms allby  scattered  waveof Amplitude
Factor  StructureF  2FI 
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atomic form factor

for the j-th atom
Structure factor 

(of the basis)

The Structure Factor is independent of the shape and size of the unit cell; but is 
dependent on the position of the atoms within the cell 
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Structure factor calculations

A Atom at (0,0,0) and equivalent positions
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D Atom at (0,0,0) & (½, ½, 0) and equivalent positions
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(h, k, l) unmixed
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 Presence of additional atoms/ions/molecules in the uc (as a part of the motif ) can 

alter the intensities of some of the reflections



Crystal structure determination

Monochromatic X-rays

Panchromatic X-rays

Monochromatic X-rays

Many s (orientations)
Powder specimen

POWDER 
METHOD

Single 
LAUE

TECHNIQUE

 Varied by rotation

ROTATING
CRYSTAL
METHOD
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Powder Method (Debye-Scherrer geometry)
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• If a powdered crystal is used, then there is no need to rotate it, because there will always be 

some small crystals at an orientation for which diffraction is permitted. here a 

monochromatic x-ray beam is incident on a powdered or polycrystalline sample.

• Useful for samples that are difficult to obtain in single crystal form.

• The powder method is used to determine the lattice parameters accurately. lattice 

parameters are the magnitudes of the primitive vectors a, b and c which define the unit cell 

for the crystal.

• For every set of crystal planes, by chance, one or more crystals will be in the correct 

orientation to give the correct Bragg angle to satisfy Bragg's equation. every crystal plane 

is thus capable of diffraction. 

• Each diffraction line is made up of a large number of small spots, each from a separate 

crystal. each spot is so small as to give the appearance of a continuous line.
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Important advantages and uses of powder diffraction:

1. The need to grow crystals is eliminated.

2.  A powder diffraction pattern can be recorded very rapidly and the technique

is non-destructive.

3. With special equipment very small samples may be used (1-2mg.)

4.  A powder diffraction pattern may be used as a fingerprint. It is often superior to

an infrared spectrum in this respect.

5.  It can be used for the qualitative, and often the quantitative, determination of

the crystalline components of a powder mixture. 

6.  Powder diffractometry provides an easy and fast method for the detection of

crystal polymorphs. (Polymorphs are different crystal forms of the same

substance.)
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In the rotating crystal method, a single crystal is mounted with an axis 
normal to a monochromatic x-ray beam. A cylindrical film is placed 
around it and the crystal is rotated about the chosen axis. As the crystal 
rotates, sets of lattice planes will at some point make the correct Bragg 
angle for the monochromatic incident beam, and at that point a 
diffracted beam will be formed. 
The reflected beams are located on the surface of imaginary cones. When 
the film is laid out flat, the diffraction spots lie on horizontal lines.

Rotating Crystal Method 

The reflected beams are located on the surfaces of imaginary cones. By 

recording the diffraction patterns (both angles & intensities) for various 

crystal orientations, one can determine the shape & size of unit cell as 

well as the arrangement of atoms inside the cell.
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Laue Method 

• The laue method is mainly used to determine the orientation of 

large single crystals while radiation is reflected from, or 

transmitted through a fixed crystal.

• The diffracted beams form arrays of spots, that lie on curves on the film.

• The Bragg angle is fixed

for every set of planes in the crystal. each set of planes picks out & diffracts the 

particular wavelength from the white radiation that satisfies the Bragg law for the values 

of d & θ involved. 

• The symmetry of the Laue spot pattern reflects the symmetry

of the crystal when viewed along the direction of the incident beam. 
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• The Laue method is often used to determine the orientation of single crystals by illuminating the crystal with a 

continous spectrum of X-Rays.

Single Crystals

Continous Spectrum of X-Rays

Symmetry & Orientation of Crystals

Back-Reflection Laue MethodTransmission Laue Method

The film is placed behind 
the crystal to record beams
which are transmitted 
through the crystal. 

The film is placed between the x-ray 

source and the crystal. the beams 

which are diffracted in a backward 

direction are recorded.



Complementarity of the three types of radiation 

X-ray diffraction Electron diffraction Neutron diffraction

•Photon energies 10keV-100keV

large penetration depth

3D crystal structure

•scattering by electron density  

best results for 

atoms with high Z

•Charged particle 

“strong” interaction

with matter 

low penetration depth 

Study of: surfaces

thin films 

•Interaction with nuclei 

Improved efficiency

for light atoms 
Inelastic scattering:

phonons 
•Magnetic moment interacts

with moment of electrons 
Magnetic scattering:

Structure, magnons

•Other radiation sources than X-Rays, such as neutrons or electrons can  also be 
used in crystal diffraction experiments.
•The physical basis for the diffraction of electrons or neutrons is the same as that 
for the diffraction of X Rays. The only difference is in the mechanism of scattering.

Diffraction By Electron and Neutron
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Neutron Diffraction
• it is an important tool in the investigation of the magnetic ordering that occurs in some 

materials.

• light atoms such as h are better resolved in a neutron pattern because, having only a few 

electrons to scatter the x-rays, they do not contribute significantly to an x-ray diffraction

pattern.

• because they are neutral, neutrons do not interact with electrons in the crystal. so, unlike x-rays, which are 

scattered entirely by electrons, neutrons are scattered entirely by nuclei.

• although uncharged, neutrons have an intrinsic magnetic moment, so they will interact strongly with 

atoms & ions in the crystal which also have a magnetic moment.
• neutrons are more useful than x-rays for determining the crystal structures of solids 

containing light elements.

• neutron sources in the world are limited so neutron diffraction is a very special tool & is 

very expensive. 
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• ın order to enable an electron beam to penetrate into a crystal, it must have a very high energy (50 kev 

to 1mev). in addition, the crystal must be thin (100-1000 nm).

• If low electron energies are used, the penetration depth will be very small (only about 50 ǻ), & the beam 

will be reflected from the surface. consequently, electron diffraction is a useful technique for surface 

structure studies.

• Electrons are scattered strongly in air, so diffraction experiments must be carried out high vacuum. 

this brings complication and it is expensive as well.

Electron Diffraction

It has also been used in the analysis of crystal structure. The electron, like the 
neutron, possesses wave-like properties:

Of course, electrons are charged & so interact strongly with all atoms. So 
electrons with an energy of a few eV are completely absorbed by the crystal.
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advantages
• x-rays are the least expensive, the most convenient & the most widely used method to 

determine crystal structures.

• x-rays are not absorbed very much by air, so the sample need not be in an evacuated 

chamber.     

disadvantages
• x-rays do not interact very strongly with lighter elements.

Advantages & Disadvantages of XRD

Compared to Other Methods


