
1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Operating System Debugging

 Operating System Generation

 System Boot

2

2.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To describe the services an operating system provides to
users, processes, and other systems

 To discuss the various ways of structuring an operating
system

 To explain how operating systems are installed and
customized and how they boot

2.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Uniprogramming

 One active program at a time.

 The processor spends a certain amount of time
executing, until it reaches an I/O instruction; it must then
wait until that I/O instruction concludes before
proceeding

3

2.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiprogramming

 There must be enough memory to hold the OS (resident monitor) and at
least two user programs.

 When one job needs to wait for I/O, the processor can switch to the other
job, which is likely not waiting for I/O

2.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiprogramming

 Multiprogramming
 also known as multitasking

 memory is expanded to hold three, four, or more programs and
switch among all of them.

 It is the central theme of modern operating systems.

4

2.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

 Operating systems provide an environment for execution of
programs and services to programs and users

 One set of operating-system services provides functions that are
helpful to the user:

 User interface - Almost all operating systems have a user
interface (UI).

 Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

 Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may
involve a file or an I/O device

2.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

 One set of operating-system services provides functions that are helpful to
the user (Cont.):

 File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same
computer or between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

5

2.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of
the system itself via resource sharing

 Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file storage,
I/O devices.

 Accounting - To keep track of which users use how much and what
kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

 Protection involves ensuring that all access to system resources is
controlled

 Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

2.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

6

2.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

 Sometimes implemented in kernel, sometimes by systems
program

 On systems with multiple command interpreters (e.g. Unix
and Linux) the interpreters are known as shells

 Primarily fetches a command from user and executes it

 Sometimes commands built-in (understands the command
and makes the appropriate parameter initialization and
system calls), sometimes just names of programs (does not
need to understand the command just load the appropriate
file)

 If the latter, adding new features doesn’t require shell
modification

2.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bourne Shell Command Interpreter

7

2.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

 Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

2.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Touchscreen Interfaces

n Touchscreen devices require new
interfaces

l Mouse not possible or not desired

l Actions and selection based on
gestures

l Virtual keyboard for text entry

l Voice commands.

8

2.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The Mac OS X GUI

2.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Key Programming Interfaces

Application programming interface (API)

Application binary interface (ABI)

 Instruction set architecture (ISA)

9

2.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Computer Hardware and Software Infrastructure

2.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Programming Interface: Application Programming interface

 The API gives a program access to the hardware resources and services
available in a system through the user ISA supplemented with high-level
language (HLL) library calls.

 Any system calls are usually performed through libraries.

 Using an API enables application software to be ported easily, through
recompilation, to other systems that support the same API.

 From the perspective of an application , the machine characteristics are
specified by high-level language capabilities, and OS and system library
calls. Thus, the API defines the machine for an application.

10

2.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Programming Interface: Application binary interface

 The ABI defines a standard for binary portability across programs.

 The ABI defines the system call interface to the operating system and the
hardware resources and services available in a system through the user
ISA.

 This is the set of System Calls that can be used by a program or a library to
invoke services from the operating systems.

 ABI defines the machine as seen by a process.

2.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Programming Interface: Instruction Set Architecture

 The ISA defines the repertoire of machine language instructions that a
computer can follow / execute.

 These are the instructions executed by the processor.

 This interface is the boundary between hardware and software. Note that
both application programs and utilities may access the ISA directly.

 For these programs, a subset of the instruction repertoire is available (user
ISA, accessible in user mode).

 The OS has access to additional machine language instructions that deal
with managing system resources (system ISA, accessible in kernel mode).

 From the OS perspective, therefore, it is the ISA that provides the interface
between the system and machine.

11

2.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

 Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Note that the system-call names used throughout this
text are generic

2.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

12

2.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Standard API

2.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to
these numbers

 The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented

 Just needs to obey API and understand what OS will do as a
result call

 Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built
into libraries included with compiler)

13

2.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

2.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Parameter Passing

 Often, more information is required than simply identity of desired
system call

 Exact type and amount of information vary according to OS
and call

 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register

 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

14

2.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Parameter Passing via Table

2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

 Process control

 create process, terminate process

 end, abort

 load, execute

 get process attributes, set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

 Dump memory if error

 Debugger for determining bugs, single step execution

 Locks for managing access to shared data between processes

15

2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls(Cont.)

 File management

 create file, delete file

 open, close file

 read, write, reposition

 get and set file attributes

 Device management

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices

2.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

 Information maintenance

 get time or date, set time or date

 get system data, set system data

 get and set process, file, or device attributes

 Communications

 create, delete communication connection

 send, receive messages if message passing model to host
name or process name

 From client to server

 Shared-memory model create and gain access to memory
regions

 transfer status information

 attach and detach remote devices

16

2.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

 Protection

 Control access to resources

 Get and set permissions

 Allow and deny user access

2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Windows and Unix System Calls

17

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: MS-DOS

 Single-tasking

 Shell invoked when system
booted

 Simple method to run
program

 No process created

 Single memory space

 Loads program into memory,
overwriting all but the kernel

 Program exit -> shell
reloaded

At system startup running a program

18

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: FreeBSD

 Unix variant

 Multitasking

 User login -> invoke user’s choice of
shell

 Shell executes fork() system call to create
process

 Executes exec() to load program into
process

 Shell waits for process to terminate or
continues with user commands

 Process exits with:

 code = 0 – no error

 code > 0 – error code

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs

 System programs provide a convenient environment for program
development and execution. They can be divided into:

 File manipulation

 Status information sometimes stored in a File modification

 Programming language support

 Program loading and execution

 Communications

 Background services

 Application programs

 Most users’ view of the operation system is defined by system
programs, not the actual system calls

19

2.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs

 Provide a convenient environment for program development and
execution

 Some of them are simply user interfaces to system calls; others
are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available
memory, disk space, number of users

 Others provide detailed performance, logging, and debugging
information

 Typically, these programs format and print the output to the
terminal or other output devices

 Some systems implement a registry - used to store and
retrieve configuration information

2.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs (Cont.)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform
transformations of the text

 Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

 Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

20

2.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs (Cont.)

 Background Services

 Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

 Provide facilities like disk checking, process scheduling, error
logging, printing

 Run in user context not kernel context

 Known as services, subsystems, daemons

 Application programs

 Don’t pertain to system

 Run by users

 Not typically considered part of OS

 Launched by command line, mouse click, finger poke

2.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast (note these requirements
are vague and may be interpreted in different ways i.e. not
solvable)

 System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient (again these requirements are vague and may be
interpreted in different ways)

k1

Slide 40

k1 There is, in short, no unique solution to the problem of defining the requirementsfor an operating
system. The requirements are vague and may be interpreted in various was. For example, the system
should be easy to design, implement, and maintain; and it should be flexible, reliable, error free, and
efficient. Again, these requirements are vague and may be interpreted in various ways.
khindi, 6/20/2015

21

2.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

 Specifying and designing an operating system is a highly
creative task.

 Although no textbook can tell you how to do it, general
principles have been developed in the field of software
engineering

 Important principle to separate

Policy: What will be done? (how long the timer is set for a
particular user)
Mechanism: How to do it? (e.g. the timer construct to protect
CPU)

 Mechanisms determine how to do something, policies decide
what will be done

 The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)

 Specifying and designing an OS is highly creative task of
software engineering

k3

2.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

 Much variation

 Early OSes in assembly language

 Then system programming languages like Algol, PL/1

 Now C, C++

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

 More high-level language easier to port to other hardware

 Emulation can allow an OS to run on non-native hardware (emulators
are programs that duplicate the functionality of one system on another
system.)

Slide 41

k3 For instance, consider a mechanism for giving priority to certain types of programs over others. If the
mechanism is properly separated from policy, it can be used either to support a policy decision that
I/O-intensive programs should have priority over CPU-intensive ones or to support the opposite
policy.
khindi, 6/20/2015

22

2.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

 General-purpose OS is very large program

 It must be engineered carefully if it is to function properly and
be modified easily.

 A common approach is to partition the task into small
components, or modules.

 Each with carefully defined inputs, outputs, and functions.

 Various ways to structure ones

 Simple structure – MS-DOS

 More complex -- UNIX

 Layered – an abstraction

 Microkernel -Mach

2.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simple Structure -- MS-DOS

 MS-DOS – written to provide the
most functionality in the least
space

 Not divided into modules

 Although MS-DOS has some
structure, its interfaces and
levels of functionality are not
well separated

 For instance, application
programs are able to access
the basic I/O routines to write
directly to the display and
disk drives.

 Such freedom leaves MS-
DOS vulnerable to errant (or
malicious) programs, causing
entire system crashes when
user programs fail.

23

2.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non Simple Structure -- UNIX

UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two separable
parts

 Systems programs

 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions;

 a large number of functions for one level

 This monolithic structure was difficult to implement and maintain.

 It had a distinct performance advantage, however: there is very little
overhead in the system call interface or in communication within the
kernel.

2.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

24

2.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach
 The operating system is divided into a number

of layers (levels), each built on top of lower
layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user
interface.

 With modularity, layers are selected such that
each uses functions (operations) and services
of only lower-level layers

 This approach simplifies debugging and
system verification.

 A layer does not need to know how operations
at a lower layer are implemented; it needs to
know only what these operations do.

 Once the first layer is debugged, its correct
functioning can be assumed while the second
layer is debugged, and so on. If an error is
found during the debugging of a particular
layer, the error must be on that layer, because
the layers below it are already debugged.

2.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

problems with the layered approach

 The major difficulty is that layers need to be carefully defined

 They tend to be less efficient than other types.

 For instance, when a user program executes an I/O operation,

 it executes a system call that is trapped to the I/O layer, which calls the
memory-management layer, which in turn calls the CPU-scheduling layer,
which is then passed to the hardware.

25

2.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

 This method structures the operating system by removing all nonessential
components from the kernel and

 implementing them as system programs and user-level programs.

 The result is a smaller kernel.

 The kernel provides communication between the client program and the
various services that are also running in user space.

 Communication is provided through message passing.

 The client program and service never interact directly. Rather, they
communicate indirectly by exchanging messages with the microkernel.

2.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

 Benefits:

 Easier to extend a microkernel (All new services are added
to user space and consequently do not require modification
of the kernel)

 Easier to port the operating system to new architectures (a
few modifications)

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space
communication

 Mach example of microkernel (developed by researchers at
Carnegie Mellon Uni. in the mid-1980s)

 Mac OS X kernel (Darwin) partly based on Mach

26

2.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

 The best current methodology for operating-system design

 Many modern operating systems implement loadable kernel modules

 The kernel provides core services

 while other services are implemented dynamically, as the kernel is
running.

 Linking services dynamically is preferable to adding new features
directly to the kernel, which would require recompiling the kernel
every time a change was made.

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers (has defined, protected interfaces) but with
more flexible (any module can call any other module)

 Linux, Solaris, etc

27

2.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Modular Approach

2.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hybrid Systems

 Most modern operating systems are actually not one pure model

 Hybrid combines multiple approaches to address
performance, security, usability needs

 Linux and Solaris kernels in kernel address space, so
monolithic (for performance reasons), plus modular for
dynamic loading of functionality

 Windows mostly monolithic, plus microkernel for different
subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment

 Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus I/O kit and dynamically loadable modules (called
kernel extensions)

28

2.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

2.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

iOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added functionality

 Does not run OS X applications natively

 Also runs on different CPU architecture
(ARM vs. Intel)

 Cocoa Touch Objective-C API for
developing apps

 Media services layer for graphics, audio,
video

 Core services provides cloud computing,
databases

 Core operating system, based on Mac OS X
kernel

29

2.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Android

 Developed by Open Handset Alliance (mostly Google)

 Open Source

 Similar stack to IOS

 Based on Linux kernel but modified

 Provides process, memory, device-driver management

 Adds power management

 Runtime environment includes core set of libraries and Dalvik
virtual machine (designed for Android and is optimized for mobile
devices with limited memory and CPU processing capabilities)

 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

2.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Android Architecture

Application Framework

Android runtime

Core Libraries

Dalvik
virtual machine

Libraries

SQLite openGL

surface
manager

webkit libc

media
framework

30

2.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Generation

n Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

n SYSGEN program obtains information concerning the specific
configuration of the hardware system

l Used to build system-specific compiled kernel or system-
tuned

l Can general more efficient code than one general kernel

2.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Boot

 When power initialized on system, execution starts at a fixed
memory location

 Firmware ROM used to hold initial boot code

 Operating system must be made available to hardware so hardware
can start it

 Small piece of code – bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk

 Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

 Kernel loads and system is then running

31

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 2

