Continuous Charge Distributions and Gauss’s Law




Gauss’ Law
I ———

Gauss’ Law can be used as an alternative procedure for calculating electric
fields.

It is convenient for calculating the electric field of highly symmetric charge
distributions.

Gauss’ Law is important in understanding and verifying the properties of
conductors in electrostatic equilibrium.

Introduction



Electric Flux

Electric flux is the product of the
magnitude of the electric field and the

surface area, A, perpendicular to the
field. Area =4

Units: N - m?/C
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Electric Flux, General Area

The electric flux is proportional to the
number of electric field lines

penetrating some surface. The number of field lines that

go through the area A is the
same as the number that go
through area A.

The field lines may make some angle 6
with the perpendicular to the surface.

Then @, = EA cos 0

Normal
A s
~— \
—— \
/! =
A =Acos 0
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Electric Flux, Interpreting the Equation

The flux is a maximum when the surface is perpendicular to the field.

=0 =0
The flux is zero when the surface is parallel to the field.
= 0 =90°

If the field varies over the surface, (DE = EA cos @ is valid for only a small
element of the area.

Section 23.2
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Electric Flux, General
e —————————————

In the more general case, look at a

small area element. .
N The electric field makes an angle

= —
Op ;= EAA;cos0, = E; - AA, 6. with the vector AA,, defined as

In general, this becomes being normal to the surface

- -

surface

element.

= The surface integral means the
integral must be evaluated over the
surface in question.

In general, the value of the flux will
depend both on the field pattern and on
the surface.
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Electric Flux, Closed Surface

Assume a closed surface

—_
The vectors AA; point in different
directions.

= At each point, they are
perpendicular to the surface.

= By convention, they point outward.

The electric The electric The electric

flux through flux through flux through
this area this area this area
element is element is element is
negative. zero. positive.
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Flux Through Closed Surface, cont.

The electric The electric The electric
flux through flux through flux through
this area this area this area

element is element is element is
negative. Zero. positive.

At (1), the field lines are crossing the surface from the inside to the outside;
0 < 90°, d is positive.

At (2), the field lines graze surface; @ = 90°, ® =0

At (3), the field lines are crossing the surface from the outside to the inside;
180° > @ > 90°, ® is negative.
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Flux Through Closed Surface, final

The net flux through the surface is proportional to the net number of lines leaving
the surface.

= This net number of lines is the number of lines leaving the surface minus the
number entering the surface.

If E, is the component of the field perpendicular to the surface, then

= The integral is over a closed surface.

®,=$E - dA = §E,dA
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Example 23.04: Flux Through a Cube

_)
Consider a uniform electric field E oriented in the x direction in empty space. A cube of edge length £ is placed in the field,
oriented as shown in the figure. Find the net electric flux through the surface of the cube.

The flux through four of the faces (3), (4), and the unnumbered
faces) is zero becauge E is parallel to the four faces and therefore IdA3 ®
¢

perpendicular to d A on these faces.

- - - - dKl =
<I>E=[E~dA+J E-dA \---’
1 2 il ’\ .
~ ~ € -4 dA2
F-dA = | E(cos180)dA =—E| dA =—EA = — E£? /
J1 J1 1 ‘4 \ x
(]
[ — — [ ) Z/ ¢ / 1 @
E-dA=| E(cosO)dA=E| dA=+EA=E¢ +ﬁ

O, =—Ef?+E2+0+0+0+0=0
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Problem 23.10:

A vertical electric field of magnitude 2.00 X 10* N/C exists above the Earth's surface on a day when a thunderstorm is

brewing. A car with a rectangular size of 6.00 m by 3.00 m is traveling along a dry gravel roadway sloping downward at 10.0°.
Determine the electric flux through the bottom of the car.

The electric flux through the bottom of the car is given by

@, = EAcos® = (2.00 X 10* N/C)(3.00 m)(6.00 m)cos 10.0° = 355kN - m?2/C
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Problem 23.11:
e —————————————

A flat surface of area 3.20 m?2 is rotated in a uniform electric field of magnitude E = 6.20 X 10°> N/C. Determine the electric
flux through this area (a) when the electric field is perpendicular to the surface and (b) when the electric field is parallel to the
surface.

- -
For a uniform electric field passing through a plane surface, ®; = E - A = EA cos 6, where $60 $is the angle
between the electric field and the normal to the surface.

o

(a) The electric field is perpendicular to the surface, so @ = 0°:

@ = (6.20 X 10° N/C) (3.20 m2) cos 0"
@, =1.98 x 10° N- m2/C

(b) The electric field is parallel to the surface: @ = 90°, so cos & = 0, and the flux is zero.
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Problem 23.37:

Find the electric flux through the plane surface shown in the figure if @ = 60.0°, E = 350 N/C, and d = 5.00 cm. The
electric field is uniform over the entire area of the surface.

The electric field makes an angle of 60.0° with to the normal. The square
has side d = 5.00 cm.

=1l

N
®, = EA cos 0 = (3.50 x 10% N/C) (5.00 x 1072 m)” cos 60.0° d

=0.438 N m2/C
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Karl Friedrich Gauss

1777 — 1855
Made contributions in
= Electromagnetism
= Number theory
= Statistics
= Non-Euclidean geometry
= Cometary orbital mechanics

= Afounder of the German Magnetic
Union

= Studies the Earth’s magnetic
field
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Gauss’s Law, Introduction

Gauss’s law is an expression of the general relationship between the net electric
flux through a closed surface and the charge enclosed by the surface.

= The closed surface is often called a gaussian surface.

Gauss'’s law is of fundamental importance in the study of electric fields.
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Gauss’s Law — General

A positive point charge, g, is located at

the center of a sphere of radius . PReatIcIcar st cleeTi oy
of the sphere, the electric field is
everywhere normal to the surface
and constant in magnitude.

The magnitude of the electric field
everywhere on the surface of the

sphere is
— 2
L= keq/r Spherical
gaussian
surface
\ )
/
r /
/
/
3/
q
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Gauss’s Law — General, cont.

The field lines are directed radially outward and are perpendicular to the surface
at every point.

®; = $E - dA = §EdA = E§dA

This will be the net flux through the gaussian surface, the sphere of radius r.

We know E = k,q/r* and Agphere
_ 1 4 2\ _ _ 4

D, = keﬁ (47rr ) = 4nk,q = .

= 47zr2,
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Gaussian Surface, Example

Closed surfaces of various shapes can

surround the charge. . .
The net electric flux is the

= Only §, is spherical same through all surfaces.

Verifies the net flux through any closed
surface surrounding a point charge q is \
given by g/¢, and is independent of the ’*
shape of the surface.
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Gaussian Surface, Example 2

The charge is outside the closed

surface with an arbitrary shape. The number of field lines
_ _ _ entering the surface equals the
Any field line entering the surface number leaving the surface.

leaves at another point.

Verifies the electric flux through a
closed surface that surrounds no
charge is zero.
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Gauss’s Law — General, notes

The net flux through any closed surface surrounding a point charge, g, is given
by g/€, and is independent of the shape of that surface.

The net electric flux through a closed surface that surrounds no charge is zero.

Since the electric field due to many charges is the vector sum of the electric
fields produced by the individual charges, the flux through any closed surface
can be expressed as

—

- - - -
§E -d& = $(E, + By + ) - d&

Section 23.3
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Gauss’s Law — Final

The mathematical form of Gauss’s law states

O, =¢E - dA =

€o

= ¢, is the net charge inside the surface.
represents the electric field at any point on the surface.

_>
= K is the total electric field and may have contributions from charges

both inside and outside of the surface.
_)
Although Gauss’s law can, in theory, be solved to find E for any charge

configuration, in practice it is limited to symmetric situations.
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D ECEEOEBECEBERERERERDORSS



Example 23.05: Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the
surface if

(A) the charge is tripled,

(B) the radius of the sphere is doubled,

(C) the surface is changed to a cube,

(D) the charge is moved to another location inside the surface.
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D ECEEOEBECEBERERERERDORSS



Problem 23.13:
e —————————————

An uncharged, nonconducting, hollow sphere of radius 10.0 cm surrounds a 10.0 — xC charge located at the origin
of a Cartesian coordinate system. A drill with a radius of 1.00 mm is aligned along the z axis, and a hole is drilled in
the sphere. Calculate the electric flux through the hole.

The electric flux through the hole is given by Gauss's Law as

- - k,Q
CDE,hole E- Ahole = < ) (]Z'}"z)

( (8.99 x 10° N'- m2/C?) (10.0><10—6C)>
= 28.

(0.100 m)?
- m2/C
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Problem 23.14:

Find the net electric flux through the spherical closed surface shown in the Figure. The two charges on the
right are inside the spherical surface.

The gaussian surface encloses the +1.00 — nC and —3.00 — nC
charges, but not the +2.00 — nC charge. The electric flux is

therefore
Q
Q +1.00 nC
+2.00 nC
Jin (1.00 x 107°C = 3.00 x 10_9C) —3.00 nC
€ 8.85 x 10-12C2/N - m?2
Section 23.3



Problem 23.15;:
e —————————————

Four closed surfaces, S; through S, together with the charges —20, O, and —Q are sketched in the figure. (The
colored lines are the intersections of the surfaces with the page.) Find the electric flux through each surface.

The electric flux through each of the surfaces is given by @ = %.
0
// \\
-20 + / —
Flux through S| : @Ezﬁ = —2 r 7 ‘:\y,_—~\51
60 €0 II / */ \\ \
I ll // : \\\ /
— 1 —
Flux through S, : @y = 00— Ser | [ 2Q (\\\
0 oy oy ! S S
[ RN N
) - 2 | o | +
Flux through S5 :  ®p = —ere-e 20 \ ‘\ %\J Q 5’
€0 €0 \\ \ // S————-z
\-\'(/ -Q 7
Flux through S, : ®, =0 ARGR _7
S
Section 23.3



Problem 23.16:
e —————————————

A charge of 170uC is at the center of a cube of edge 80.0 cm . No other charges are nearby. (a) Find the flux
through each face of the cube. (b) Find the flux through the whole surface of the cube. (c) What If? Would your
answers to either part (a) or part (b) change if the charge were not at the center? Explain.

The total flux through the surface of the cube is

din 170 x 107°C
e 8.85x 10-12C2/N - m2

D, = =1.92x 10’ N- m2/C

(@) By symmetry, the flux through each face of the cube is the same.

1 1 gin
<(I)E)one face ~ ¢ £ ge—o

® 1 170 x 107°C
(®)one face "6\ 8.85% 10-12C2/N - m2

=320x 10° N- m2/C

_ 9n _ 170 x 107°C . TN . 2
) By = = (X0 ) = 192107 N+ m2/C

(c) The answer to part (a) would change because the charge could now be at different distances from each face of
the cube. The answer to part (b) would be unchanged because the flux through the entire closed surface depends
only on the total charge inside the surface.
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Problem 23.18:
e —————————————

A particle with charge of 12.0uC is placed at the center of a spherical shell of radius 22.0 cm . What is the total
electric flux through (a) the surface of the shell and (b) any hemispherical surface of the shell? (c) Do the results
depend on the radius? Explain.

(@) The total electric flux through the surface of the shell is

gin _ 120x107°
e, 8.85x 10712
= 1.36MN - m2/C

=136 x 10° N- m2/C

Dp shell =

(b) Through any hemispherical surface of the shell, by symmetry,

1
@y half shell = 5 (1.36x 10° N+ m2/C) = 6.78 x 10> N- m2/C
= 678kN - m2/C

(c) No , the same number of field lines will pass through each surface, no matter how the radius changes.
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Problem 23.19:

A particle with charge Q = 5.00uC is located at the center of a cube of edge L = 0.100 m. In addition, six other

identical charged particles having ¢ = — 1.00uC are positioned symmetrically around Q as shown in the figure.
Determine the electric flux through one face of the cube.

_ L
The total charge is Q — 6| g | . The total outward flux from the cube is 0 €6Iq| , of :
which one-sixth goes through each face: ’ q '
¢ Q7

_Q-6l¢gl == G R T

(@) = 907,20 ¢
one face 6€, L s
(@) _0-6lgl _ (5.00-6.00)x107°C- N- m> 1
Honeface ~  6g, 6 x 8.85 x 10-12C2
= — 18.8kN - m2/C L
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Applying Gauss’s Law

To use Gauss’s law, you want to choose a gaussian surface over which the
surface integral can be simplified and the electric field determined.

Take advantage of symmetry.

Remember, the gaussian surface is a surface you choose, it does not have to
coincide with a real surface.
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Conditions for a Gaussian Surface

Try to choose a surface that satisfies one or more of these conditions:

= 1. The value of the electric field can be argued by symmetry to be constant
over the portion of the surface.

- -
= 2. The dot prodgct E - CiA can be expressed as a simple algebraic product
EdA because E and dA are parallel.

— —
= 3. The dot product is zero because E and dA are perpendicular.

= 4. The electric field is zero over the portion of the surface.

If the charge distribution does not have sufficient symmetry such that a
gaussian surface that satisfies these conditions can be found, Gauss’ law is
not useful for determining the electric field for that charge distribution.

Section 23.4
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Example 23.06: A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume charge density p and carries a total positive charge Q.

(A) Calculate the magnitude of the electric field at a point outside the sphere.

- - 0]
@E:ﬂgE-dAzﬂgEdA:—

For points outside the sphere,
€o

a large, spherical gaussian

(J;EdA = EﬁE dA = E (471'}’2) — g surface is drawn concentric
€0 with the sphere.
) 0
)E = =k— ((forr>a
W dregr? 12 ( )

Gaussian
sphere
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Example 23.06: A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume charge density p and carries a total positive charge Q.

(B) Find the magnitude of the electric field at a point inside the sphere.

’ 4 3
Gn=pV =p 37

<J;EdA = E(ﬁdA —FE (4,”,2) _ 4n For points inside the sphere,
€0 a spherical gaussian surface

smaller than the sphere is
drawn.

(57)
e 4 _"\3 P
Aregr? Aregr? 3¢

Gaussian
sphere

4 3
0/ S 7a

QF=——r= kegr (for r < a)
3 (1/4xk,) a3
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Example 23.06: A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume charge density p and carries a total positive charge Q.

Inside the sphere, E varies linearly with r

E—-0Qasr—>0 /
The field outside the sphere is equivalent to

that of a point charge located at the center

of the sphere.
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Example 23.07: A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive charge of infinite length and constant charge per unit
length A.

=

= 7 din AC
O, =QE -dA=E(QpdA=FEA=—=—
€0 €0

AC
EQrrt)=—
€0

A A

E = = 2k,—

2meyr r

+
Gaussian +
surface tL$
\ .
‘-u\z
¢ dA

k|
+

Section 23.4




Example 23.08: A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform surface charge density o.

i A
®, =264 = Jin _ 22
€o €0
9
E=—
2¢ E A

=il

Gaussian
surface
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Example 23.09: Don’t Use Gauss’s Law Here!

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a triangle

with a point charge at each corner.

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law
practical.

We cannot find a closed surface surrounding any of these distributions for which all portions of the surface satisfy one or
more of conditions (1) through (4) listed at the beginning of this section.

Section 23.4



Problem 23.24:

Determine the magnitude of the electric field at the surface of a lead-208 nucleus, which contains 82 protons and 126 neutrons.
Assume the lead nucleus has a volume 208 times that of one proton and consider a proton to be a sphere of radius 1.20 X 107> m

The cltlarge distributed through the nucleus creates a field at the surface equal to that of a point charge at its center:
ed
E =

r2.

(8.99 x 10° N- m2/C?) (82 % 1.60 x 107°C)

|208)13(1.20 x 10712 m)]2

E = 2.33 x 10%! N/C away from the nucleus
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Problem 23.27:

A large, flat, horizontal sheet of charge has a charge per unit area of 9.004C/m?. Find the electric field just
above the middle of the sheet.

For a large uniformly charged sheet, fwill be perpendicular to the sheet, and will have a magnitude of

o
E=— =2rk,0
260

= (27)(8.99 X 10° N - m2/C?) (9.00 x 107°C/m?)
- A
so E =5.08x10"N/Cj

Section 23.4
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Problem 23.29:

A uniformly charged, straight filament 7.00 m in length has a total positive charge of 2.00uC. An uncharged cardboard cylinder 2.00 cm in length
and 10.0 cm in radius surrounds the filament at its center, with the filament as the axis of the cylinder. Using reasonable approximations, find (a)
the electric field at the surface of the cylinder and (b) the total electric flux through the cylinder.

The approximation in this case is that the filament length is so large when compared to the cylinder length that the "infinite line" of charge can be
assumed.
(@) We have

2k,
E =

r

where the linear charge density is

_2.00%107°C
~ 7.00 m

=2.86 x 107'C/m

SO

. (2)(8.99 x 10° N+ m2/C) (2.86 x 10~’C/m)

0.100 m
= 51.4kN/C radially outward

(b) We can find the flux by multiplying the field and the lateral surface area of the cylinder:

2k, A
®p =2nrLE =2nrL = 4nk, AL
r

SO

@, = 47 (8.99 x 10° N m2/C?) (2.86 X 1077C/m)(0.0200 m)
=6.46 X 10 N- m2/C
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Problem 23.33:;
e —————————————

A solid sphere of radius 40.0 cm has a total positive charge of 26.0C uniformly distributed throughout its volume.
Calculate the magnitude of the electric field (a) O cm , (b) 10cm , (c) 40 cm , and (d) 60 cm from the center of the sphere.

(a) At the center of the sphere, the total charge is zero, so

k
E = eQr:

a3

0

(b) At a distance of 10.0 cm = 0.100 m from the center,

kOr  (899%10° N- m2/C) (26.0x 107°C)(0.100 m)
E=—5= (0.400 m)3
= 365kN/C
(c) At a distance of 40.0 cm = 0.400 m from the center, all of the charge is enclosed, so
kO  (8.99x10° N- m2/C) (26.0 x 107°C)
2 (0.400 m)2
= 1.46MN/C

(d) At a distance of 60.0 cm = 0.600 m from the center,
kO  (8.99x10° N- m2/C) (26.0 x 107°C)

r? (0.600 m)?
= 649kN/C

E =

The direction for each electric field is radially outward
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Problem 23.34:

A cylindrical shell of radius 7.00 cm and length 2.40 m has its charge uniformly distributed on its curved surface. The magnitude of the electric
field at a point 19.0 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0kIN/C. Find (a) the net charge on the shell
and (b) the electric field at a point 4.00 cm from the axis, measured radially outward from the midpoint of the shell.

(@) The electric field is given by
2k, A 2k(Q/C
o 2kA _ 2k(Q10)

r r

Solving for the charge Q gives

Er¢  (3.60x 10* N/C)(0.190 m)(2.40 m)

O T 2Ewx 10N miC)

Q =+9.13x1077C = +913nC

(b) Since the charge is uniformly distributed on the surfage of the cylindrical shell, a gaussian surface in the shape of a
cylinder of 4.00 cm in radius encloses no charge, and E = 0.
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Problem 23.38:

Three solid plastic cylinders all have radius 2.50 cm and length 6.00 cm. Find the charge of each cylinder given the following additional information
about each one. Cylinder (a) carries charge with uniform density 15.0nC/m? everywhere on its surface. Cylinder (b) carries charge with uniform
density 15.0nC/m? on its curved lateral surface only. Cylinder (c) carries charge with uniform density 500nC/m? throughout the plastic.

(a) The whole surface area of the cylinder is A = 271> + 2zrL = 2zr(r + L).

0O =0A
= (15.0 x 107°C/m?) 27(0.0250 m)[0.0250 m + 0.0600 m]
=2.00 x 10~1°C

(b) For the curved lateral surface only, A = 2z rL.

0 = 6A = (15.0 X 107°C/m?)[27(0.0250 m)(0.0600 m)]
=1.41x1071°C

(©)

Q =pV = prr’L = (500 X 10°C/m?) [7(0.0250 m)*(0.0600 m)|
=5.89x 107!''C
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