
Chapter 23
Continuous Charge Distributions and Gauss’s Law



Gauss’ Law

Gauss’ Law can be used as an alternative procedure for calculating electric 
fields. 

It is convenient for calculating the electric field of highly symmetric charge 
distributions. 

Gauss’ Law is important in understanding and verifying the properties of 
conductors in electrostatic equilibrium.

Introduction



Electric Flux

Electric flux is the product of the 
magnitude of the electric field and the 
surface area, , perpendicular to the 
field. 

Units:  

A

ΦE = EA
N ⋅ m2/C
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Electric Flux, General Area

The electric flux is proportional to the 
number of electric field lines 
penetrating some surface. 

The field lines may make some angle  
with the perpendicular to the surface. 

Then 

θ

ΦE = EA cos θ
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Electric Flux, Interpreting the Equation

The flux is a maximum when the surface is perpendicular to the field. 

▪  

The flux is zero when the surface is parallel to the field. 

▪  

If the field varies over the surface,  is valid for only a small 
element of the area.

θ = 0∘

θ = 90∘

ΦE = EA cos θ
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Electric Flux, General

In the more general case, look at a 
small area element. 

 

In general, this becomes 

 

 

▪ The surface integral means the 
integral must be evaluated over the 
surface in question. 

In general, the value of the flux will 
depend both on the field pattern and on 
the surface.

ΦE,i = EiΔAi cos θi = E i ⋅ ΔAi

ΦE ≈ ∑ E i ⋅ ΔAi

ΦE ≡ ∫
surface

E ⋅ dA
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Electric Flux, Closed Surface

Assume a closed surface 

The vectors  point in different 
directions. 

▪ At each point, they are 
perpendicular to the surface. 

▪ By convention, they point outward.

ΔAi
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Flux Through Closed Surface, cont.

At (1), the field lines are crossing the surface from the inside to the outside; 
 is positive. 

At (2), the field lines graze surface;  

At (3), the field lines are crossing the surface from the outside to the inside;
 is negative.

θ < 90∘, Φ
θ = 90∘, Φ = 0

180∘ > θ > 90∘, Φ
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Flux Through Closed Surface, final

The net flux through the surface is proportional to the net number of lines leaving 
the surface. 

▪ This net number of lines is the number of lines leaving the surface minus the 
number entering the surface. 

If En is the component of the field perpendicular to the surface, then 

▪ The integral is over a closed surface. 

ΦE = ∮ E ⋅ dA = ∮ EndA
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Consider a uniform electric field  oriented in the  direction in empty space. A cube of edge length  is placed in the field, 
oriented as shown in the figure. Find the net electric flux through the surface of the cube.

E x ℓ

Example 23.04: Flux Through a Cube

The flux through four of the faces (3), (4), and the unnumbered 
faces) is zero because  is parallel to the four faces and therefore 
perpendicular to  on these faces.


E
dA

ΦE = ∫1
E ⋅ dA + ∫2

E ⋅ dA

∫1
E ⋅ dA = ∫1

E (cos 180∘) d A = − E∫1
d A = − EA = − Eℓ2

∫2
E ⋅ dA = ∫2

E (cos 0∘) d A = E∫2
d A = + EA = Eℓ2

ΦE = − Eℓ2 + Eℓ2 + 0 + 0 + 0 + 0 = 0

    23.3 Gauss’s Law 623

 Example 23.4    Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in 
empty space. A cube of edge length / is placed in the field, oriented as 
shown in Figure 23.9. Find the net electric flux through the surface of 
the cube.

S O L U T I O N

Conceptualize  Examine Figure 23.9 carefully. Notice that the electric field 
lines pass through two faces perpendicularly and are parallel to four other 
faces of the cube.

Categorize  We evaluate the flux from its definition, so we categorize this 
example as a substitution problem.

The flux through four of the faces (�, �, and the unnumbered faces) 
is zero because E

S
 is parallel to the four faces and therefore perpendicular 

to d A
S

 on these faces.

Write the integrals for the net flux through faces �  FE 5 #
1
E
S 

? d A
S

1 #
2
E
S 

? d A
S

 
and �:

For face �, E
S

 is constant and directed inward but d A
S

1  #
1
E
S

? d A
S

5 #
1
 E scos 1808d dA 5 2E #

1
 dA 5 2EA 5 2E /2 

is directed outward (� 5 1808). Find the flux through  
this face:

For face �, E
S

 is constant and outward and in the same  #
2
 E
S 

? dA
S

5 #
2
 E scos 08d dA 5 E #

2
 dA 5 1EA 5 E /2 

direction as d A
S

2 (� 5 08). Find the flux through this face:

Find the net flux by adding the flux over all six faces: FE 5 2E/2 1 E/2 1 0 1 0 1 0 1 0 5 0

In the next section, we generate a fundamental principle that explains this zero value.
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Figure 23.9  (Example 23.4) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side � is the bottom of 
the cube, and side � is opposite side �.

   23.3    Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Consider a positive point charge q located at the center of a sphere of radius r 
as shown in Figure 23.10. From Equation 22.9, we know that the magnitude of the 
electric field everywhere on the surface of the sphere is E 5 keq/r2. The field lines 
are directed radially outward and hence are perpendicular to the surface at every 
point on the surface. That is, at each surface point, E

S
 is parallel to the  vector DA

S
i 

representing a local element of area DAi surrounding the surface point. Therefore,

 E
S 

? DA
S

i 5 E DAi 

and, from Equation 23.5, we find that the net flux through the gaussian surface is

 FE 5 $ E
S 

? d A
S

5 $ E dA 5 E $ dA 

where we have moved E outside of the integral because, by symmetry, E is constant 
over the surface. The value of E is given by E 5 keq/r2. Furthermore, because the sur-
face is spherical, rdA 5 A 5 4�r2. Hence, the net flux through the gaussian surface is

 FE 5 ke 
q

r 2 s4�r 2d 5 4�keq 

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

!A i
S

r

q
"

Figure 23.10 A spherical gaussian 
surface of radius r surrounding a 
positive point charge q. 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Section  23.2



A vertical electric field of magnitude  exists above the Earth's surface on a day when a thunderstorm is 
brewing. A car with a rectangular size of  by  is traveling along a dry gravel roadway sloping downward at . 
Determine the electric flux through the bottom of the car.

2.00 × 104 N/C
6.00 m 3.00 m 10.0∘

Problem 23.10:

The electric flux through the bottom of the car is given by


ΦE = EA cos θ = (2.00 × 104 N/C)(3.00 m)(6.00 m)cos 10.0∘ = 355kN ⋅ m2 /C

Section  23.2



A flat surface of area  is rotated in a uniform electric field of magnitude . Determine the electric 
flux through this area (a) when the electric field is perpendicular to the surface and (b) when the electric field is parallel to the 
surface.

3.20 m2 E = 6.20 × 105 N/C

Problem 23.11:

For a uniform electric field passing through a plane surface, , where is the angle 
between the electric field and the normal to the surface.


(a) The electric field is perpendicular to the surface, so  :





(b) The electric field is parallel to the surface: , so , and the flux is zero.

ΦE = E ⋅ A = EA cos θ $θ$

θ = 0∘

ΦE = (6.20 × 105 N/C) (3.20 m2) cos 0∘

ΦE = 1.98 × 106 N ⋅ m2 /C

θ = 90∘ cos θ = 0

Section  23.2



Find the electric flux through the plane surface shown in the figure if , and . The 
electric field is uniform over the entire area of the surface.

θ = 60.0∘, E = 350 N/C d = 5.00 cm

Problem 23.37:

The electric field makes an angle of  with to the normal. The square 
has side .


60.0∘

d = 5.00 cm

ΦE = EA cos θ = (3.50 × 102 N/C) (5.00 × 10−2 m)2 cos 60.0∘

= 0.438 N ⋅ m2 /C
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you to see if he can extend the system as follows. Determine if 
it is possible to add transparent plastic tubes as extensions of 
the tunnel and have the small spheres be in equilibrium at a 
position for which r  .  a.

36. You are working for the summer at a research laboratory. 
Your research director has devised a scheme for holding 
small charged particles at fixed positions. The scheme is 
shown in Figure P23.36. An insulating cylinder of radius a 
and length L .. a is positively charged and carries a uni-
form volume charge density r. A very thin tunnel is drilled 
through a diameter of the cylinder and two small spheres 
with charge q are placed in the tunnel. These spheres are 
represented by the blue dots in the figure. They find equi-
librium positions at a distance of r on opposite sides of the 
axis of the cylinder. Your research director has had great 
success with this scheme. (a) Determine the specific value of 
r at which equilibrium exists. (b) Your research director asks 
you see if he can extend the system as follows. Determine if 
it is possible to add transparent plastic tubes as extensions of 
the tunnel and have the small spheres be in equilibrium at a 
position for which r  . a.

q

a
r

r

!

Figure P23.36

ADDITIONAL PROBLEMS

37. Find the electric flux through the plane surface shown in 
Figure P23.37 if � 5 60.08, E!5 350!N/C, and d 5 5.00!cm. 
The electric field is uniform over the entire area of the 
surface.

d

d

E
S

 
u

Figure P23.37

38. Three solid plastic cylinders all have radius 2.50 cm and 
length 6.00 cm. Find the charge of each cylinder given the 
following additional information about each one. Cylinder 
(a) carries charge with uniform density 15.0 nC/m2 every-
where on its surface. Cylinder (b) carries charge with uni-
form density 15.0 nC/m2 on its curved lateral surface only. 
Cylinder (c) carries charge with uniform density 500 nC/m3 
throughout the plastic.

39. A line of charge starts at x 5 1x0 and extends to positive 
infinity. The linear charge density is � 5 �0x 0/x, where �0 is 
a constant. Determine the electric field at the origin.

CR

40. Show that the maximum magnitude E max of the electric field 
along the axis of a uniformly charged ring occurs at x! 5 
a/Ï2 (see Fig. 23.3) and has the value Q ys6Ï3��0a

2d.

41. A line of positive charge is 
formed into a semicircle 
of radius R 5 60.0 cm as 
shown in Figure P23.41. The 
charge per unit length along 
the semicircle is given by the 
expression � 5 � 0 cos �. The 
total charge on the semicir-
cle is 12.0 �C. Calculate the 
total force on a charge of 
3.00!�C placed at the center 
of curvature P.

42. A very large conducting plate lying in the xy plane carries a 
charge per unit area of �. A second such plate located above 
the first plate at z 5 z 0 and oriented parallel to the xy plane 
carries a charge per unit area of 22�. Find the electric field 
for (a) z , 0, (b) 0 , z , z 0, and (c) z . z 0.

43. A sphere of radius R 5 1.00 m sur-
rounds a particle with charge Q!5 
50.0 �C located at its center as 
shown in Figure P23.43. Find the 
electric flux through a circular cap 
of half-angle � 5 45.08.

44. A sphere of radius R surrounds a 
particle with charge Q located at its 
center as shown in Figure P23.43. 
Find the electric flux through a 
circular cap of half-angle �.

CHALLENGE PROBLEMS

45. A slab of insulating material has a 
nonuniform positive charge density 
�! 5 Cx 2, where x is measured from 
the center of the slab as shown in Fig-
ure P23.45 and C is a constant. The 
slab is infinite in the y and z direc-
tions. Derive expressions for the elec-
tric field in (a) the exterior regions 
(ux u! . d/2) and (b) the interior 
region of the slab (2d/2 , x , d/2).

46. A sphere of radius 2a is made of 
a nonconducting material that 
has a uniform volume charge 
density �. Assume the material 
does not affect the electric field. 
A spherical cavity of radius a is 
now removed from the sphere 
as shown in Figure P23.46. Show 
that the electric field within 
the cavity is uniform and is 
given by Ex 5 0 and Ey 5 �a/3�0.

47. An infinitely long insulating cylinder of radius R has 
a volume charge density that varies with the radius as

� 5 �0Sa 2
r
bD

y

R

P
x

u

Figure P23.41

Q

R
u

Figure P23.43  
Problems 43 and 44.

x

y

O
d

Figure P23.45  
Problems 45 and 49.

y

x
2a

a

Figure P23.46
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Karl Friedrich Gauss

1777 – 1855 
Made contributions in 

▪ Electromagnetism 
▪ Number theory 
▪ Statistics 
▪ Non-Euclidean geometry 
▪ Cometary orbital mechanics 
▪ A founder of the German Magnetic 

Union 
▪ Studies the Earth’s magnetic 

field
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Gauss’s Law, Introduction

Gauss’s law is an expression of the general relationship between the net electric 
flux through a closed surface and the charge enclosed by the surface. 

▪ The closed surface is often called a gaussian surface. 

Gauss’s law is of fundamental importance in the study of electric fields.

Section  23.3



Gauss’s Law – General 

A positive point charge, , is located at 
the center of a sphere of radius . 

The magnitude of the electric field 
everywhere on the surface of the 
sphere is  

q
r

E = keq/r2

Section  23.3



Gauss’s Law – General, cont.

The field lines are directed radially outward and are perpendicular to the surface 
at every point. 

 

This will be the net flux through the gaussian surface, the sphere of radius . 

We know  and , 

ΦE = ∮ E ⋅ dA = ∮ EdA = E∮ dA
r

E = keq/r2 Asphere = 4πr2

ΦE = ke
q
r2 (4πr2) = 4πkeq = q

ϵ0

Section  23.3



Gaussian Surface, Example

Closed surfaces of various shapes can 
surround the charge. 

▪ Only  is spherical 
Verifies the net flux through any closed 
surface surrounding a point charge q is 
given by  and is independent of the 
shape of the surface.

S1

q/εo
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Gaussian Surface, Example 2

The charge is outside the closed 
surface with an arbitrary shape. 

Any field line entering the surface 
leaves at another point. 

Verifies the electric flux through a 
closed surface that surrounds no 
charge is zero.

Section  23.3



Gauss’s Law – General, notes

The net flux through any closed surface surrounding a point charge, , is given 
by  and is independent of the shape of that surface. 

The net electric flux through a closed surface that surrounds no charge is zero. 

Since the electric field due to many charges is the vector sum of the electric 
fields produced by the individual charges, the flux through any closed surface 
can be expressed as 

q
q/εo

∮ E ⋅ dA = ∮ (E1 + E2 + ⋯) ⋅ dA

Section  23.3



Gauss’s Law – Final

The mathematical form of Gauss’s law states 

 

▪  is the net charge inside the surface. 

    represents the electric field at any point on the surface. 

▪  is the total electric field and may have contributions from charges 
both inside and outside of the surface. 

Although Gauss’s law can, in theory, be solved to find  for any charge 
configuration, in practice it is limited to symmetric situations.

ΦE = ∮ E ⋅ dA = qin

ϵ0

qin

E

E
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A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the 
surface if

Example 23.05: Flux Due to a Point Charge

(A) the charge is tripled, 

The flux through the surface is tripled because flux is proportional to the amount of charge inside the 
surface. 

(B) the radius of the sphere is doubled, 

The flux does not change because all electric field lines from the charge pass through the sphere, 
regardless of its radius. 

(C) the surface is changed to a cube, 

The flux does not change when the shape of the gaussian surface changes because all electric field 
lines from the charge pass through the surface, regardless of its shape. 

(D) the charge is moved to another location inside the surface. 

The flux does not change when the charge is moved to another location inside that surface because 
Gauss’s law refers to the total charge enclosed, regardless of where the charge is located inside the 
surface.

Section  23.3



An uncharged, nonconducting, hollow sphere of radius  surrounds a  charge located at the origin 
of a Cartesian coordinate system. A drill with a radius of  is aligned along the  axis, and a hole is drilled in 
the sphere. Calculate the electric flux through the hole.

10.0 cm 10.0 − μC
1.00 mm z

Problem 23.13:

Section  23.3

The electric flux through the hole is given by Gauss's Law as


ΦE,hole = E ⋅ Ahole = ( keQ
R2 ) (πr2)

= ( (8.99 × 109 N ⋅ m2 /C2) (10.0 × 10−6C)
(0.100 m)2 )

= 28.2 N ⋅ m2 /C



Find the net electric flux through the spherical closed surface shown in the Figure. The two charges on the 
right are inside the spherical surface.

Problem 23.14:

Section  23.3

The gaussian surface encloses the  and  
charges, but not the  charge. The electric flux is 
therefore


+1.00 − nC −3.00 − nC
+2.00 − nC

ΦE =
qin 
ϵ0

= (1.00 × 10−9C − 3.00 × 10−9C)
8.85 × 10−12C2 /N ⋅ m2

= − 226 N ⋅ m2 /C
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14. Find the net electric flux through the spherical closed sur-
face shown in Figure P23.14. The two charges on the right 
are inside the spherical surface.

!2.00 nC
!1.00 nC

"3.00 nC

Figure P23.14

15. Four closed surfaces, S1 through S4, together with the 
charges 22Q , Q , and 2Q are sketched in Figure P23.15. 
(The colored lines are the intersections of the surfaces with 
the page.) Find the electric flux through each surface.

S1

S3

S2

S4
!2Q

"Q

!Q

Figure P23.15

16. A charge of 170 �C is at the center of a cube of edge 80.0 cm. 
No other charges are nearby. (a) Find the flux through each 
face of the cube. (b) Find the flux through the whole surface 
of the cube. (c) What If? Would your answers to either part 
(a) or part (b) change if the charge were not at the center? 
Explain.

17. (a) Find the net electric flux through the cube shown in Fig-
ure P23.17.(b)!Can you use Gauss’s law to find the electric 
field on the surface of this cube? Explain.

!8.00 nC
"3.00 nC

Figure P23.17

18. A particle with charge of 12.0 �C is placed at the center of 
a spherical shell of radius 22.0 cm. What is the total electric 
flux through (a) the surface of the shell and (b)!any hemi-
spherical surface of the shell? (c) Do the results depend on 
the radius? Explain.

19. A particle with charge Q 5 5.00 �C is located at the center 
of a cube of edge L 5 0.100 m. In addition, six other iden-
tical charged particles having q 5 21.00!�C are positioned 

V

symmetrically around Q as shown in Figure P23.19. Deter-
mine the electric flux through one face of the cube.

L

L

q

q

q
q

Qq

q

L

Figure P23.19  
Problems 19 and 20.

20. A particle with charge Q is located at the center of a cube of 
edge L. In addition, six other identical charged particles q are 
positioned symmetrically around Q as shown in Figure P23.19. 
For each of these particles, q is a negative number. Determine 
the electric flux through one face of the cube.

21. (a) A particle with charge q is located a distance d from an 
infinite plane. Determine the electric flux through the plane 
due to the charged particle. (b) What If? A particle with 
charge q is located a very small distance from the center of a 
very large square on the line perpendicular to the square and 
going through its center. Determine the approximate electric 
flux through the square due to the charged particle. (c) How 
do the answers to parts (a) and (b) compare? Explain.

22. Find the net electric flux through (a) the closed spherical 
surface in a uniform electric field shown in Figure P23.22a 
and (b) the closed cylindrical surface shown in Figure 
P23.22b. (c) What can you conclude about the charges, if 
any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P23.22

23. Figure P23.23 represe-
nts the top view of a 
cubic gaussian surface 
in a uniform electric 
field E

S
 oriented paral-

lel to the top and bot-
tom faces of the cube. 
The field makes an 
angle � with side �, 
and the area of each 
face is A. In symbolic 
form, find the electric 
flux through (a) face �,  

u E
S 

!

"

#

$

Figure P23.23
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Four closed surfaces,  through , together with the charges , and  are sketched in the figure. (The 
colored lines are the intersections of the surfaces with the page.) Find the electric flux through each surface.

S1 S4 −2Q, Q −Q

Problem 23.15:

Section  23.3

The electric flux through each of the surfaces is given by .


Flux through 


Flux through 


Flux through 


Flux through 

ΦE = qin

ϵ0

S1 : ΦE =
−2Q + Q

ϵ0
= −

Q
ϵ0

S2 : ΦE = +Q − Q
ϵ0

= 0

S3 : ΦE = −2Q + Q − Q
ϵ0

= − 2Q
ϵ0

S4 : ΦE = 0
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14. Find the net electric flux through the spherical closed sur-
face shown in Figure P23.14. The two charges on the right 
are inside the spherical surface.

!2.00 nC
!1.00 nC

"3.00 nC

Figure P23.14

15. Four closed surfaces, S1 through S4, together with the 
charges 22Q , Q , and 2Q are sketched in Figure P23.15. 
(The colored lines are the intersections of the surfaces with 
the page.) Find the electric flux through each surface.

S1

S3

S2

S4
!2Q

"Q

!Q

Figure P23.15

16. A charge of 170 �C is at the center of a cube of edge 80.0 cm. 
No other charges are nearby. (a) Find the flux through each 
face of the cube. (b) Find the flux through the whole surface 
of the cube. (c) What If? Would your answers to either part 
(a) or part (b) change if the charge were not at the center? 
Explain.

17. (a) Find the net electric flux through the cube shown in Fig-
ure P23.17.(b)!Can you use Gauss’s law to find the electric 
field on the surface of this cube? Explain.

!8.00 nC
"3.00 nC

Figure P23.17

18. A particle with charge of 12.0 �C is placed at the center of 
a spherical shell of radius 22.0 cm. What is the total electric 
flux through (a) the surface of the shell and (b)!any hemi-
spherical surface of the shell? (c) Do the results depend on 
the radius? Explain.

19. A particle with charge Q 5 5.00 �C is located at the center 
of a cube of edge L 5 0.100 m. In addition, six other iden-
tical charged particles having q 5 21.00!�C are positioned 

V

symmetrically around Q as shown in Figure P23.19. Deter-
mine the electric flux through one face of the cube.

L

L

q

q

q
q

Qq

q

L

Figure P23.19  
Problems 19 and 20.

20. A particle with charge Q is located at the center of a cube of 
edge L. In addition, six other identical charged particles q are 
positioned symmetrically around Q as shown in Figure P23.19. 
For each of these particles, q is a negative number. Determine 
the electric flux through one face of the cube.

21. (a) A particle with charge q is located a distance d from an 
infinite plane. Determine the electric flux through the plane 
due to the charged particle. (b) What If? A particle with 
charge q is located a very small distance from the center of a 
very large square on the line perpendicular to the square and 
going through its center. Determine the approximate electric 
flux through the square due to the charged particle. (c) How 
do the answers to parts (a) and (b) compare? Explain.

22. Find the net electric flux through (a) the closed spherical 
surface in a uniform electric field shown in Figure P23.22a 
and (b) the closed cylindrical surface shown in Figure 
P23.22b. (c) What can you conclude about the charges, if 
any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P23.22

23. Figure P23.23 represe-
nts the top view of a 
cubic gaussian surface 
in a uniform electric 
field E

S
 oriented paral-

lel to the top and bot-
tom faces of the cube. 
The field makes an 
angle � with side �, 
and the area of each 
face is A. In symbolic 
form, find the electric 
flux through (a) face �,  

u E
S 

!

"

#

$

Figure P23.23
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A charge of  is at the center of a cube of edge  . No other charges are nearby. (a) Find the flux 
through each face of the cube. (b) Find the flux through the whole surface of the cube. (c) What If? Would your 
answers to either part (a) or part (b) change if the charge were not at the center? Explain.

170μC 80.0 cm

Problem 23.16:

Section  23.3

The total flux through the surface of the cube is





(a) By symmetry, the flux through each face of the cube is the same.





(b) 


(c) The answer to part (a) would change because the charge could now be at different distances from each face of 
the cube. The answer to part (b) would be unchanged because the flux through the entire closed surface depends 
only on the total charge inside the surface.

ΦE =
qin 
ϵ0

=
170 × 10−6C

8.85 × 10−12C2 /N ⋅ m2
= 1.92 × 107 N ⋅ m2 /C

(ΦE)one face  =
1
6

ΦE =
1
6

qin 
ϵ0

(ΦE)one face  =
1
6 ( 170 × 10−6C

8.85 × 10−12C2 /N ⋅ m2 )
= 3.20 × 106 N ⋅ m2 /C

ΦE =
qin 
ϵ0

= ( 170 × 10−6C
8.85 × 10−12C2 / N ⋅ m2 ) = 1.92 × 107 N ⋅ m2 /C



A particle with charge of  is placed at the center of a spherical shell of radius  . What is the total 
electric flux through (a) the surface of the shell and (b) any hemispherical surface of the shell? (c) Do the results 
depend on the radius? Explain.

12.0μC 22.0 cm

Problem 23.18:

Section  23.3

(a) The total electric flux through the surface of the shell is





(b) Through any hemispherical surface of the shell, by symmetry,





(c) No , the same number of field lines will pass through each surface, no matter how the radius changes.

ΦE, shell  =
qin 
ϵ0

=
12.0 × 10−6

8.85 × 10−12
= 1.36 × 106 N ⋅ m2 /C

= 1.36MN ⋅ m2 /C

ΦE, half shell  =
1
2 (1.36 × 106 N ⋅ m2 /C) = 6.78 × 105 N ⋅ m2 /C

= 678kN ⋅ m2 /C



A particle with charge  is located at the center of a cube of edge . In addition, six other 
identical charged particles having  are positioned symmetrically around  as shown in the figure. 
Determine the electric flux through one face of the cube.

Q = 5.00μC L = 0.100 m
q = − 1.00μC Q

Problem 23.19:

Section  23.3

The total charge is . The total outward flux from the cube is , of 
which one-sixth goes through each face:


Q − 6 |q | Q − 6 |q |
ϵ0

(ΦE)one face  =
Q − 6 |q |

6ϵ0

(ΦE)one face  =
Q − 6 |q |

6ϵ0
=

(5.00 − 6.00) × 10−6C ⋅ N ⋅ m2

6 × 8.85 × 10−12C2

= − 18.8kN ⋅ m2 /C
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14. Find the net electric flux through the spherical closed sur-
face shown in Figure P23.14. The two charges on the right 
are inside the spherical surface.

!2.00 nC
!1.00 nC

"3.00 nC

Figure P23.14

15. Four closed surfaces, S1 through S4, together with the 
charges 22Q , Q , and 2Q are sketched in Figure P23.15. 
(The colored lines are the intersections of the surfaces with 
the page.) Find the electric flux through each surface.

S1

S3

S2

S4
!2Q

"Q

!Q

Figure P23.15

16. A charge of 170 �C is at the center of a cube of edge 80.0 cm. 
No other charges are nearby. (a) Find the flux through each 
face of the cube. (b) Find the flux through the whole surface 
of the cube. (c) What If? Would your answers to either part 
(a) or part (b) change if the charge were not at the center? 
Explain.

17. (a) Find the net electric flux through the cube shown in Fig-
ure P23.17.(b)!Can you use Gauss’s law to find the electric 
field on the surface of this cube? Explain.

!8.00 nC
"3.00 nC

Figure P23.17

18. A particle with charge of 12.0 �C is placed at the center of 
a spherical shell of radius 22.0 cm. What is the total electric 
flux through (a) the surface of the shell and (b)!any hemi-
spherical surface of the shell? (c) Do the results depend on 
the radius? Explain.

19. A particle with charge Q 5 5.00 �C is located at the center 
of a cube of edge L 5 0.100 m. In addition, six other iden-
tical charged particles having q 5 21.00!�C are positioned 

V

symmetrically around Q as shown in Figure P23.19. Deter-
mine the electric flux through one face of the cube.

L

L

q

q

q
q

Qq

q

L

Figure P23.19  
Problems 19 and 20.

20. A particle with charge Q is located at the center of a cube of 
edge L. In addition, six other identical charged particles q are 
positioned symmetrically around Q as shown in Figure P23.19. 
For each of these particles, q is a negative number. Determine 
the electric flux through one face of the cube.

21. (a) A particle with charge q is located a distance d from an 
infinite plane. Determine the electric flux through the plane 
due to the charged particle. (b) What If? A particle with 
charge q is located a very small distance from the center of a 
very large square on the line perpendicular to the square and 
going through its center. Determine the approximate electric 
flux through the square due to the charged particle. (c) How 
do the answers to parts (a) and (b) compare? Explain.

22. Find the net electric flux through (a) the closed spherical 
surface in a uniform electric field shown in Figure P23.22a 
and (b) the closed cylindrical surface shown in Figure 
P23.22b. (c) What can you conclude about the charges, if 
any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P23.22

23. Figure P23.23 represe-
nts the top view of a 
cubic gaussian surface 
in a uniform electric 
field E

S
 oriented paral-

lel to the top and bot-
tom faces of the cube. 
The field makes an 
angle � with side �, 
and the area of each 
face is A. In symbolic 
form, find the electric 
flux through (a) face �,  

u E
S 

!

"

#

$

Figure P23.23
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Applying Gauss’s Law

To use Gauss’s law, you want to choose a gaussian surface over which the 
surface integral can be simplified and the electric field determined. 
Take advantage of symmetry. 
Remember, the gaussian surface is a surface you choose, it does not have to 
coincide with a real surface.

Section  23.4



Conditions for a Gaussian Surface

Try to choose a surface that satisfies one or more of these conditions: 

▪ 1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface. 

▪ 2. The dot product  can be expressed as a simple algebraic product 
 because  and  are parallel. 

▪ 3. The dot product is zero because  and  are perpendicular. 

▪ 4. The electric field is zero over the portion of the surface. 

If the charge distribution does not have sufficient symmetry such that a 
gaussian surface that satisfies these conditions can be found, Gauss’ law is 
not useful for determining the electric field for that charge distribution.

E ⋅ dA
EdA E dA

E dA

Section  23.4



An insulating solid sphere of radius  has a uniform volume charge density  and carries a total positive charge . 

(A) Calculate the magnitude of the electric field at a point outside the sphere.

a ρ Q

Example 23.06: A Spherically Symmetric Charge Distribution




(1) 

ΦE = ∮ E ⋅ dA = ∮ Ed A =
Q
ϵ0

∮ Ed A = E∮ d A = E (4πr2) =
Q
ϵ0

E =
Q

4πϵ0r2
= ke

Q
r2

(for r > a)
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Equation 23.7 can be simplified and the electric field determined. In choosing the 
surface, always take advantage of the symmetry of the charge distribution so that E 
can be removed from the integral. The goal in this type of calculation is to deter-
mine a surface for which each portion of the surface satisfies one or more of the 
following conditions:

1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

2. The dot product in Equation 23.7 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

3. The dot product in Equation 23.7 is zero because E
S

 and d A
S

 are 
perpendicular.

4. The electric field is zero over the portion of the surface.

Different portions of the gaussian surface can satisfy different conditions as long 
as every portion satisfies at least one condition. All four conditions are used in exam-
ples throughout the remainder of this chapter and the next, and will be identified 
by number. If the charge distribution does not have sufficient symmetry such that a 
gaussian surface that satisfies these conditions can be found, Gauss’s law is still true, 
but is not useful for determining the electric field for that charge distribution.

 Example 23.6    A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform vol-
ume charge density � and carries a total positive charge 
Q (Fig. 23.14).

(A)  Calculate the magnitude of the electric field at a 
point outside the sphere.

S O L U T I O N

Conceptualize The electric field due to point charges 
was discussed in Section 22.4. Now we are considering 
the electric field due to a distribution of charge. We 
found the field for various distributions of charge in 
Section 23.1 by integrating over the distribution. This 
example demonstrates a difference from our discussions 
in Section 23.1. In this section, we find the electric field 
using Gauss’s law.

Categorize Because the charge is distributed uniformly 
throughout the sphere, the charge distribution has spheri-
cal symmetry and we can apply Gauss’s law to find the elec-
tric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the sphere, as 
shown in Figure 23.14a. For this choice, condition (2) is satisfied everywhere on the surface and E

S 
? dA

S
5 E dA.

Replace E
S 

? d A
S

 in Gauss’s law with E dA: FE 5 $ E
S 

? d A
S

5 $ E dA 5
Q
�0

By symmetry, E has the same value everywhere on the  $ E dA 5 E $ dA 5 E s4�r 2d 5
Q
�0

 
surface, which satisfies condition (1), so we can remove  
E from the integral:

Solve for E: (1) E 5
Q

4��0r
2 5 ke 

Q
r 2    sfor r .  ad

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 23.14  (Example 23.6) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

PITFALL PREVENTION 23.2
Gaussian Surfaces Are Not Real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.
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An insulating solid sphere of radius  has a uniform volume charge density  and carries a total positive charge . 

(B) Find the magnitude of the electric field at a point inside the sphere.

a ρ Q

Example 23.06: A Spherically Symmetric Charge Distribution







(2) 

qin = ρV′￼= ρ ( 4
3

πr3)
∮ Ed A = E∮ d A = E (4πr2) =

qin

ϵ0

E =
qin

4πϵ0r2
=

ρ ( 4
3 πr3)

4πϵ0r2
=

ρ
3ϵ0

r

E =
Q / 4

3 πa3

3 (1/4πke)
r = ke

Q
a3

r (for r < a)
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Equation 23.7 can be simplified and the electric field determined. In choosing the 
surface, always take advantage of the symmetry of the charge distribution so that E 
can be removed from the integral. The goal in this type of calculation is to deter-
mine a surface for which each portion of the surface satisfies one or more of the 
following conditions:

1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

2. The dot product in Equation 23.7 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

3. The dot product in Equation 23.7 is zero because E
S

 and d A
S

 are 
perpendicular.

4. The electric field is zero over the portion of the surface.

Different portions of the gaussian surface can satisfy different conditions as long 
as every portion satisfies at least one condition. All four conditions are used in exam-
ples throughout the remainder of this chapter and the next, and will be identified 
by number. If the charge distribution does not have sufficient symmetry such that a 
gaussian surface that satisfies these conditions can be found, Gauss’s law is still true, 
but is not useful for determining the electric field for that charge distribution.

 Example 23.6    A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform vol-
ume charge density � and carries a total positive charge 
Q (Fig. 23.14).

(A)  Calculate the magnitude of the electric field at a 
point outside the sphere.

S O L U T I O N

Conceptualize The electric field due to point charges 
was discussed in Section 22.4. Now we are considering 
the electric field due to a distribution of charge. We 
found the field for various distributions of charge in 
Section 23.1 by integrating over the distribution. This 
example demonstrates a difference from our discussions 
in Section 23.1. In this section, we find the electric field 
using Gauss’s law.

Categorize Because the charge is distributed uniformly 
throughout the sphere, the charge distribution has spheri-
cal symmetry and we can apply Gauss’s law to find the elec-
tric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the sphere, as 
shown in Figure 23.14a. For this choice, condition (2) is satisfied everywhere on the surface and E

S 
? dA

S
5 E dA.

Replace E
S 

? d A
S

 in Gauss’s law with E dA: FE 5 $ E
S 

? d A
S

5 $ E dA 5
Q
�0

By symmetry, E has the same value everywhere on the  $ E dA 5 E $ dA 5 E s4�r 2d 5
Q
�0

 
surface, which satisfies condition (1), so we can remove  
E from the integral:

Solve for E: (1) E 5
Q

4��0r
2 5 ke 

Q
r 2    sfor r .  ad

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 23.14  (Example 23.6) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

PITFALL PREVENTION 23.2
Gaussian Surfaces Are Not Real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.
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An insulating solid sphere of radius  has a uniform volume charge density  and carries a total positive charge . a ρ Q

Example 23.06: A Spherically Symmetric Charge Distribution

    23.4 Application of Gauss’s Law to Various Charge Distributions  627

Finalize This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged sphere in 
the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B)  Find the magnitude of the electric field at a point inside the sphere.

S O L U T I O N

Analyze In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating sphere 
(Fig. 23.14b). Let V9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that the charge qin 
within the gaussian surface of volume V9 is less than Q.

Calculate qin by using qin5 �V9: q in 5 �V 9 5 � s4
3 �r 3d

Notice that conditions (1) and (2) are satisfied everywhere  $ E dA 5 E $ dA 5 E s4�r 2d 5
q in

�0

 
on the gaussian surface in Figure 23.14b. Apply  
Gauss’s law in the region r , a:

Solve for E and substitute for qin: E 5
q in

4��0r
2 5

� s4
3 �r 3d

4��0r
2 5

�

3�0

 r

Substitute � 5 Q y4
3�a3 and �0 5 1/4�ke: (2) E 5

Q y4
3 �a 3

3s1y4�ked
 r 5 ke 

Q
a 3 r sfor r ,  ad

Finalize  This result for E differs from the one obtained in part (A). It shows that E!S 0 as 
r S 0. Therefore, the result eliminates the problem that would exist at r!5 0 if E varied as 
1/r2 inside the sphere as it does outside the sphere. That is, if E ~ 1/r2 for r , a, the field 
would be infinite at r 5 0, which is physically impossible.

W H A T  I F ? Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from both 
directions?

Answer Equation (1) shows that the electric field approaches a value from the outside 
given by

E 5 lim
r S a

 1ke 

Q
r 

22 5 ke 

Q
a 

2

From the inside, Equation (2) gives

E 5 lim
r S a  1ke 

Q
a3 r2 5 ke 

Q
a3 a 5 ke 

Q
a2

Therefore, the value of the field is the same as the surface is approached from both direc-
tions. A plot of E versus r is shown in Figure 23.15. Notice that the magnitude of the field 
is continuous.

a

E

a r

E 
keQ
r2

E !

!

keQ
a3 r

Figure 23.15  (Example 23.6)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere 
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

 Example 23.7    A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive charge of infinite length and constant charge per unit length � 
(Fig. 23.16a, page 628).

S O L U T I O N

Conceptualize The line of charge is infinitely long. Therefore, the field is the same at all points equidistant from the line, 
regardless of the vertical position of the point in Figure 23.16a. We expect the field to become weaker as we move farther away 
radially from the line of charge.

continued

23.6 c o n t i n u e d
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Inside the sphere,  varies linearly with  

 as  

The field outside the sphere is equivalent to 

that of a point charge located at the center 

of the sphere. 

E r

E → 0 r → 0
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Find the electric field a distance  from a line of positive charge of infinite length and constant charge per unit 
length .

r
λ

Example 23.07: A Cylindrically Symmetric Charge Distribution


ΦE = ∮ E ⋅ dA = E∮ d A = EA =
qin 
ϵ0

=
λℓ
ϵ0

E(2πrℓ) =
λℓ
ϵ0

E =
λ

2πϵ0r
= 2ke

λ
r
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Categorize Because the charge is distributed uniformly 
along the line, the charge distribution has cylindrical 
symmetry and we can apply Gauss’s law to find the electric 
field.

Analyze The symmetry of the charge distribution 
requires that E

S
 be perpendicular to the line charge and  

directed outward as shown in Figure 23.16b. To reflect the 
symmetry of the charge distribution, let’s choose a cylindri-
cal gaussian surface of radius r and length / that is coaxial 
with the line charge. For the curved part of this surface, E

S
 is 

constant in magnitude and perpendicular to the surface at 
each point, satisfying conditions (1) and (2). Furthermore, 
the flux through the ends of the gaussian cylinder is zero 
because E

S
 is parallel to these surfaces. That is the first appli-

cation we have seen of condition!(3).
We must take the surface integral in Gauss’s law over the 

entire gaussian surface. Because E
S 

? d A
S

 is zero for the flat 
ends of the cylinder, however, we restrict our attention to 
only the curved surface of the cylinder.

Apply Gauss’s law and conditions (1) and (2) for the  FE 5 $ E
S 

? d A
S

5 E $ dA 5 EA 5
q in

�0

5
�/
�0

 
curved surface, noting that the total charge inside  
our gaussian surface is �/:

Substitute the area A 5 2�r/ of the curved surface: E s2�r /d 5
�/
�0

Solve for the magnitude of the electric field: E 5
�

2��0r
5 2ke 

�

r
 (23.8)

Finalize This result shows that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, whereas the 
field external to a spherically symmetric charge distribution varies as 1/r2. Equation 23.8 can also be derived by direct integra-
tion over the charge distribution. (See Problem 8.)

W H A T  I F ? What if the line segment in this example were not infinitely long?

Answer If the line charge in this example were of finite length, the electric field would not be given by Equation 23.8. A 
finite line charge does not possess sufficient symmetry to make use of Gauss’s law because the magnitude of the electric field 
is no longer constant over the surface of the gaussian cylinder: the field near the ends of the line would be different from that 
far from the ends. Therefore, condition (1) would not be satisfied in this situation. Furthermore, E

S
 is not perpendicular to 

the cylindrical surface at all points: the field vectors near the ends would have a component parallel to the line. Therefore, 
condition (2) would not be satisfied. For points close to a finite line charge and far from the ends, Equation 23.8 gives a good 
approximation of the value of the field.

It is left for you to show (see Problem 31) that the electric field inside a uniformly charged rod of finite radius and infinite 
length is proportional to r.

23.7 c o n t i n u e d

!
!
!

Gaussian
surface

!

r

E
S

 
E
S

 

dA
S

!

!

!

!

a b

!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Figure 23.16  (Example 23.7) (a) An infinite line of charge sur-
rounded by a cylindrical gaussian surface concentric with the line. 
(b) An end view shows that the electric field at the cylindrical sur-
face is constant in magnitude and perpendicular to the surface.

 Example 23.8    A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform surface charge density �.

S O L U T I O N

Conceptualize  Notice that the plane of charge is infinitely large. Therefore, the electric field should be the same at all points 
equidistant from the plane. How would you expect the electric field to depend on the distance from the plane?
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Find the electric field due to an infinite plane of positive charge with uniform surface charge density .σ

Example 23.08: A Plane of Charge


ΦE = 2EA =
qin 
ϵ0

=
σA
ϵ0

E =
σ

2ϵ0

    23.4 Application of Gauss’s Law to Various Charge Distributions  629

Categorize  Because the charge is distributed uniformly on the plane, the charge distri-
bution is symmetric; hence, we can use Gauss’s law to find the electric field.

Analyze  By symmetry, E
S

 must be perpendicular to the plane at all points. The direc-
tion of E

S
 is away from positive charges, indicating that the direction of E

S
 on one side 

of the plane must be opposite its direction on the other side as shown in Figure 23.17. 
A gaussian surface that reflects the symmetry is a small cylinder whose axis is perpen-
dicular to the plane and whose ends each have an area A and are equidistant from the 
plane. Because E

S
 is parallel to the curved  surface of the cylinder—and therefore per-

pendicular to d A
S

 at all points on this surface— condition (3) is satisfied and there is 
no contribution to the surface integral from this surface. For the flat ends of the cyl-
inder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder 
is EA; hence, the total flux through the entire gaussian surface is just that through the 
ends, FE 5 2EA.

Write Gauss’s law for this surface, noting that  FE 5 2EA 5
q in

�0

5
�A
�0

 
the enclosed charge is qin 5 �A:

Solve for E: E 5
�

2�0

 (23.9)

Finalize Because the distance from each flat end of the cylinder 
to the plane does not appear in Equation 23.9, we conclude that 
E 5 �/2�0 at any distance from the plane. That is, the field is uni-
form everywhere. Notice that this is the same result as that obtained 
in Example 23.3, where we let the radius of a disk of charge become 
infinite. Figure 23.18 shows this uniform field due to an infinite 
plane of charge, seen edge-on.

W H A T  I F ? Suppose two infinite planes of charge are parallel 
to each other, one positively charged and the other negatively 
charged. The surface charge densities of both planes are of the 
same magnitude. What does the electric field look like in this 
situation?

Answer We first addressed this configuration in the What If? 
section of Example 23.3. The electric fields due to the two planes 
add in the region between the planes, resulting in a uniform field 
of magnitude �/�0, and cancel elsewhere to give a field of zero. 
Figure 23.19 shows the field lines for such a configuration. This 
method is a practical way to achieve uniform electric fields with 
finite-sized planes placed close to each other.

23.8 c o n t i n u e d
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Figure 23.17  (Example 23.8) A 
cylindrical gaussian surface pene-
trating an infinite plane of charge. 
The flux is EA through each end 
of the gaussian surface and zero 
through its curved surface.
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Figure 23.18  (Exam-
ple 23.8) The electric 
field lines due to an 
infinite plane of posi-
tive charge.
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Figure 23.19 (Example 
23.8) The electric field lines 
between two infinite planes 
of charge, one positive and 
one negative. In practice, the 
field lines near the edges of 
finite-sized sheets of charge 
will curve outward.

 Conceptual Example 23.9    Don’t Use Gauss’s Law Here!

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a triangle 
with a point charge at each corner.

S O L U T I O N

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law practical. 
We cannot find a closed surface surrounding any of these distributions for which all portions of the surface satisfy one or 
more of conditions (1) through (4) listed at the beginning of this section.
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Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a triangle 

with a point charge at each corner.

Example 23.09: Don’t Use Gauss’s Law Here!

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law 
practical.

We cannot find a closed surface surrounding any of these distributions for which all portions of the surface satisfy one or 
more of conditions (1) through (4) listed at the beginning of this section.
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Determine the magnitude of the electric field at the surface of a lead-  nucleus, which contains  protons and  neutrons. 
Assume the lead nucleus has a volume  times that of one proton and consider a proton to be a sphere of radius .

208 82 126
208 1.20 × 10−15 m

Problem 23.24:

The charge distributed through the nucleus creates a field at the surface equal to that of a point charge at its center: 
.
E =

keq

r2

E = (8.99 × 109 N ⋅ m2 /C2) (82 × 1.60 × 10−19C)

[(208)1/3(1.20 × 10−15 m)]
2

E = 2.33 × 1021 N/C away from the nucleus 
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A large, flat, horizontal sheet of charge has a charge per unit area of . Find the electric field just 
above the middle of the sheet.

9.00μC/m2

Problem 23.27:

For a large uniformly charged sheet,  will be perpendicular to the sheet, and will have a magnitude of
⃗E

E =
σ

2ϵ0
= 2πkeσ

= (2π)(8.99 × 109 N ⋅ m2 /C2) (9.00 × 10−6C/m2)
 so  E = 5.08 × 105 N/C ̂j
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A uniformly charged, straight filament  in length has a total positive charge of . An uncharged cardboard cylinder  in length 
and  in radius surrounds the filament at its center, with the filament as the axis of the cylinder. Using reasonable approximations, find (a) 
the electric field at the surface of the cylinder and (b) the total electric flux through the cylinder.

7.00 m 2.00μC 2.00 cm
10.0 cm

Problem 23.29:

The approximation in this case is that the filament length is so large when compared to the cylinder length that the "infinite line" of charge can be 
assumed.

(a) We have





where the linear charge density is





so





(b) We can find the flux by multiplying the field and the lateral surface area of the cylinder:





so


E =
2keλ

r

λ =
2.00 × 10−6C

7.00 m
= 2.86 × 10−7C/m

E =
(2)(8.99 × 109 N ⋅ m2 /C) (2.86 × 10−7C/m)

0.100 m
= 51.4kN/C radially outward 

ΦE = 2π rL E = 2π rL ( 2keλ
r ) = 4πkeλL

ΦE = 4π (8.99 × 109 N ⋅ m2 /C2) (2.86 × 10−7C/m)(0.0200 m)

= 6.46 × 102 N ⋅ m2 /C
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A solid sphere of radius 40.0 cm has a total positive charge of  uniformly distributed throughout its volume. 
Calculate the magnitude of the electric field (a)  , (b)  , (c)  , and (d)  from the center of the sphere.

26.0μC
0 cm 10 cm 40 cm 60 cm

Problem 23.33:

(a) At the center of the sphere, the total charge is zero, so





(b) At a distance of  from the center,





(c) At a distance of  from the center, all of the charge is enclosed, so





(d) At a distance of  from the center,





The direction for each electric field is radially outward

E =
keQr
a3

= 0

10.0 cm = 0.100 m

E =
keQr
a3

= (8.99 × 109 N ⋅ m2 /C) (26.0 × 10−6C)(0.100 m)
(0.400 m)3

= 365kN/C
40.0 cm = 0.400 m

E =
keQ
r2

= (8.99 × 109 N ⋅ m2 /C) (26.0 × 10−6C)
(0.400 m)2

= 1.46MN/C
60.0 cm = 0.600 m

E =
keQ
r2

= (8.99 × 109 N ⋅ m2 /C) (26.0 × 10−6C)
(0.600 m)2

= 649kN/C
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A cylindrical shell of radius  and length  has its charge uniformly distributed on its curved surface. The magnitude of the electric 
field at a point  radially outward from its axis (measured from the midpoint of the shell) is . Find (a) the net charge on the shell 
and (b) the electric field at a point  from the axis, measured radially outward from the midpoint of the shell.

7.00 cm 2.40 m
19.0 cm 36.0kN/C

4.00 cm

Problem 23.34:

(a) The electric field is given by





Solving for the charge  gives





(b) Since the charge is uniformly distributed on the surface of the cylindrical shell, a gaussian surface in the shape of a 
cylinder of  in radius encloses no charge, and .

E =
2keλ

r
=

2ke(Q /ℓ)
r

Q

Q =
Erℓ
2ke

= (3.60 × 104 N/C)(0.190 m)(2.40 m)

2 (8.99 × 109 N ⋅ m2 /C)
=

Q = + 9.13 × 10−7C = + 913nC

4.00 cm E = 0
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Three solid plastic cylinders all have radius  and length . Find the charge of each cylinder given the following additional information 
about each one. Cylinder (a) carries charge with uniform density  everywhere on its surface. Cylinder (b) carries charge with uniform 
density  on its curved lateral surface only. Cylinder (c) carries charge with uniform density  throughout the plastic.

2.50 cm 6.00 cm
15.0nC/m2

15.0nC/m2 500nC/m3

Problem 23.38:

(a) The whole surface area of the cylinder is .





(b) For the curved lateral surface only, .





(c)


A = 2πr2 + 2πrL = 2πr(r + L)

Q = σA
= (15.0 × 10−9C/m2) 2π(0.0250 m)[0.0250 m + 0.0600 m]

= 2.00 × 10−10C

A = 2πrL

Q = σA = (15.0 × 10−9C/m2)[2π(0.0250 m)(0.0600 m)]

= 1.41 × 10−10C

Q = ρV = ρπr2L = (500 × 10−9C/m3) [π(0.0250 m)2(0.0600 m)]
= 5.89 × 10−11C

Section  23.4


