Chapter (11) Chapter (11) Chapter (11) Chapter (11)

Contingency Tables

- Useful in situations comparing multiple population proportions
- Used to classify sample observations according to two or more characteristics
- Also called a cross-classification table.

Textbook: P410: Section 11.1 Paragraph 1&2 / Table 11.1

The properties of the chi square distribution.

- Is continuous distribution.
- Positive skewed curve (skewed to the right curve).
- It is not symmetric curve.

Type of χ^2 tests:

- 1. Chi-Square Test for the difference between two proportions.
- 2. Chi-Square Test for the difference among more than two proportions.
- 3. Chi-Square Test of independence.

Chi-Square Test for the difference between two proportions.

Step (1): State the null and alternate hypotheses:

H₀: The two proportions should be the same

H₁: The two proportions should not be the same

Step (2): Select the level of significance (α)

Step (3): The test statistic

$$\chi_{STAT}^2 = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

fo: observed frequency in a particular cell.

f_e: expected frequency in a particular cell if H₀ is true

(Assumed: each cell in the contingency table has expected frequency of at least 5) "Slide 7"

$$f_e = \frac{row \, total \times column \, total}{n}$$

 \overline{P} * Observed frequency in a particular cell.

$$\overline{P}$$
: the overall $Porportion = \frac{X_1 + X_2}{n_1 + n_2}$

(Slide 9)

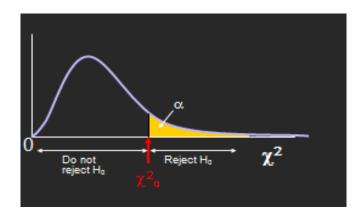
Step (4): The critical value (Textbook : P547 : χ^2 table)

$$df = (r-1)(c-1) = (2-1)(2-1) = 1$$

 $\chi^2_{(\alpha,1)}$ (Slide 7)

Step (5): The χ^2_{Stat} test statistic approximately follows a chi-squared distribution

Reject H_0 If $\chi^2_{Stat} > \chi^2_{(\alpha,1)}$ otherwise, do not reject H_0



(Slide 8)

Example (1):

Suppose we examine a sample of 300 children Left-Handed vs. Gender. Sample results organized in a contingency table: "Slide 4-9"

Gender	Hand Preference					
Gender	Left Right Total					
Female	12	108	120			
Male	24	156	180			
Total	36	264	300			

Test where the Proportion of females who are left handed is equal to the proportion of males who are left handed (α =0.05).

Solution:

Step (1):

 H_0 : $\pi_1 = \pi_2$ (Proportion of females who are left handed is equal to the proportion of males who are left handed)

 H_1 : $\pi_1 \neq \pi_2$ (The two proportions are not the same)

Step (2): The level of significance (α =0.05).

Step (3): The test statistic

	Hand Pr		
Gender	Left	Right	
Female	12	108	120
Male	24 21.6	156	180
	36	264	300

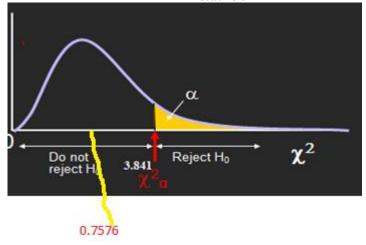
$$f_e = \frac{row \, total \times column \, total}{n}$$

For example: $f_{11} = \frac{120 \times 36}{300} = 14.4$, and so on.....

$$\chi_{STAT}^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(12 - 14.4)^{2}}{14.4} + \frac{(108 - 105.6)^{2}}{105.6} + \frac{(24 - 21.6)^{2}}{21.6} + \frac{(156 - 158.4)^{2}}{158.4} = 0.7576$$

Step (4): $\chi^2_{(2-1)(2-1),0.05} = \chi^2_{1\times 1,0.05} = \chi^2_{1,0.05} = 3.841$ Step (5): Decision Rule: If $\chi^2_{stat>3.841}$ Reject H₀, otherwise, do not reject H₀



So we do not reject H₀ and conclude that there is not sufficient evidence that the two proportions are different at $\alpha = 0.05$

Example (2): (Textbook : P411-415 / Example11.1)

The following table is the contingency table for the hotel guest satisfaction study. The contingency table has two rows, indicating whether the guest would return to the hotel or would not return to the hotel, and two columns, one for each hotel. The cells in the table indicate the frequency of each row-and-column combination. The row totals indicate the number of quests who would return to the hotel and the number of guests who would not return to the hotel. The column totals are the sample sizes for each hotel location.

Choose Hotel Again	Hotel			
Choose Hotel Again	Beachcomber	Windsurfer	Total	
Yes	163	154	317	
No	64	108	172	
Total	227	262	489	

Test where the Proportion of guests who would return Beachcomber, π_1 , is equal to the population proportion of guests who would return to the Windsurfer, π_2 , you can use the Chi-Square test for the difference between two proportion.(α =0.05)

Solution

Step (1):

 H_0 : $\pi_1 = \pi_2$ (There is no difference between the two population Proportion)

 H_1 : $\pi_1 \neq \pi_2$ (The population Proportion are not the same)

If H_0 is true, there is no difference between the proportions of guests who are likely to choose either of these hotels again

Step (2): level of significance (α =0.05)

Step (3): The test statistic

Change Hatal Again	Hotel				
Choose Hotel Again	Beachcomber	Windsurfer	Total		
Yes	163 147.16	154 169.84	317		
No	<u>64</u> <u>79.84</u>	108 92.16	172		
Total	227	262	489		

$$f_e = \frac{row \, total \times column \, total}{n}$$

For example: $E_{11} = \frac{317 \times 227}{489} = 147.16$, and so on......

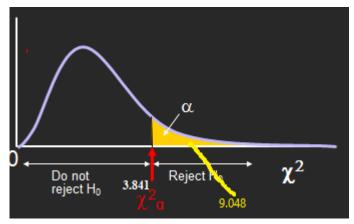
$$\chi_{STAT}^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(163 - 147.16)^{2}}{147.16} + \frac{(154 - 169.84)^{2}}{169.84} + \frac{(64 - 79.84)^{2}}{79.84} + \frac{(108 - 92.16)^{2}}{92.16} = 9.048$$

Step (4):

$$\chi^2_{(r-1)(c-1),\alpha} = \chi^2_{(2-1)(2-1),0.05} = \chi^2_{1\times 1,0.05} = \chi^2_{1,0.05=3.841}$$

Step (5): Decision Rule: If $\chi^2_{\text{stat}>3.841}$ Reject H₀,



We reject H₀ and conclude that proportion of guests who would return to Beachcomber is different from the proportion of guests who would return to the Windsurfer

Chi-Square Test for the difference among more than two proportions.

Step (1): State the null and alternate hypotheses :

H₀: The proportions should be the same

H₁: The proportions should not be the same

Step (2): Select the level of significance (α)

Step (3): The test statistic

$$\chi_{STAT}^2 = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

 f_o = observed frequency in a particular cell of the 2*c table.

 f_e = expected frequency in a particular cell if H_0 is true

(Assumed: each cell in the contingency table has expected frequency of at least 1) "Slide 15"

$$f_e = \frac{row \, total \times column \, total}{n}$$

Or

$$\overline{\mathbb{P}}$$
 * Observed frequency in a particular cell . $\overline{\mathbb{P}}$: the overall $Porportion = \frac{X_1 + X_2 + \cdots + X_c}{n_1 + n_2 + \cdots + n_c} = \frac{X}{n}$

Step (4): The critical value: df = (r-1)(c-1) = (2-1)(c-1) = (c-1)

 $\chi^2_{(\alpha,(c-1))}$

Step (5): The χ^2_{Stat} test statistic approximately follows a chi-squared distribution Reject H_o If $\chi^2_{\text{Stat}} > \chi^2_{(\alpha,(c-1))}$ otherwise, do not reject H₀

Example (3):

Most companies consider big data analytics critical to success .However, is there a difference among small (<100 employees), mid-size (100-999 employees), and large (1000+ employees) companies in the proportion of companies that have already deployed big data project? A study showed the results for the different company size. (Data extracted from 2014 big data outlook:big data is transformative –where is your company?)

Have already deployed big	Company Size			
data projects	Small	Mid-sized	large	Total
Ye	18	74	52	144
No	182	126	148	456
Total	200	200	200	600

Assume that 200 decision makers involved in big data purchases within each company size were surveyed. At the 0.05 level of significance, is there evidence of a difference among companies of different sizes with respect to the proportion of companies that have already deployed big data projects?

Solution

Step (1):

$$H_0$$
: $\pi_1 = \pi_2 = \pi_3$

 H_1 :At least one proportion differs where $\pi_1 = \text{small}, \pi_2 = \text{medium}, \pi_3 = \text{large}$ If H_0 is true, there is no difference between the three proportions.

Step (2): The level of significance (α =0.05)

Step (3):

Have already deployed big	Company Size			
data projects	Small	Mid-sized	large	Total
Ye	18 48	74 48	52 48	144
No	182	126 152	148 152	456
Total	200	200	200	600

where:

 f_o = observed frequency in a particular cell

 f_e = expected frequency in a particular cell if H_0 is true

$$f_e = \frac{row \, total \times column \, total}{n}$$

For example: $E_{11} = \frac{144 \times 200}{600} = 48$, and so on.....

$$\chi_{STAT}^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(18 - 48)^{2}}{48} + \frac{(74 - 48)^{2}}{48} + \frac{(52 - 48)^{2}}{48} + \frac{(182 - 152)^{2}}{152} + \frac{(126 - 152)^{2}}{152} + \frac{(148 - 152)^{2}}{152} = 43.64035$$

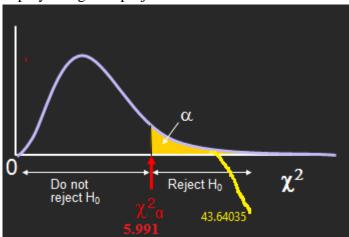
Step (4):

 $\chi^2_{(r-1)(c-1),\alpha} = \chi^2_{(2-1)(3-1),0.05} = \chi^2_{1\times 2,0.05} = \chi^2_{2,0.05=5.991}$

Decision Rule: If $\chi^2_{\text{stat}>5.991}$ Reject H₀, otherwise, do not reject H₀

Step (5):

Since $\chi^2_{stat} = 43.64035$ is greater than the upper critical value of 5.991, reject H0. There is evidence among the groups with respect to the proportion of companies that have already deployed big data projects



(Textbook: P418-420 / Example)

Chi-Square Test of independent.

Similar to the χ^2 test for equality of more than two proportions, but extends the concept to contingency tables with r rows and c columns (Slide 17)

The test is applied when you have two categorical variables from a single population, and it is used to determine whether there is a significant association between the two variables.

Step (1): State the null and alternate hypotheses :

H₀: The two categorical variables are independent

(i.e., there is no relationship between them)

H₁: The two categorical variables are dependent

(i.e., there is a relationship between them)

Step (2): Select the level of significance (α)

Step (3): The test statistic

$$\chi_{STAT}^2 = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

 f_o = observed frequency in a particular cell of th r*c table

 f_e = expected frequency in a particular cell if H_0 is true

(Assumed: each cell in the contingency table has expected frequency of at least 1) "Slide 18"

$$f_e = \frac{row \, total \times column \, total}{n}$$

Step (4): The critical value:

df = (r-1)(c-1)
$$\chi^2_{(\alpha,((r-1)(c-1))}$$

Step (5): The χ^2_{Stat} test statistic approximately follows a chi-squared distribution Reject H_o If $\chi^2_{Stat} > \chi^2_{(\alpha,((r-1)(c-1)))}$

Example (4): Slide(21-25)

The meal plan selected by 200 students is shown below:

-	<u> </u>			
Class	Nun	nber of meals per	week	Total
Standing	20/week	10/week	none	1 Otal
Fresh.	24	32	14	70
Soph.	22	26	12	60
Junior	10	14	6	30
Senior	14	16	10	40
Total	70	88	42	200

At the 0.05 level of significance, is there evidence that meal plan and class standing are independent(i.e., there is no relationship between them)

Solution

Step (1):

H₀: Meal plan and class standing are independent

(i.e., there is no relationship between them)

H₁: Meal plan and class standing are dependent

(i.e., there is a relationship between them)

Step (2): The level of significance ($\alpha = 0.05$)

Step (3):

Class	Number of meals per week		Total	
Standing	20/week	10/week	none	10(41
Fresh.	24 24.5	32 30.8	14 14.8	70
Soph.	22 21	26 26.4	12 12.6	60
Junior	10 10.5	14 13.2	6 6.3	30
Senior	14 14	16 17.6	10 8.4	40
Total	70	88	42	200

where:

 f_0 = observed frequency in a particular cell

 f_e = expected frequency in a particular cell if H_0 is true

$$f_e = \frac{row total \times column total}{row total}$$

For example: $E_{11} = \frac{70 \times 70}{200} = 24.5$, and so on.

$$\begin{split} \chi_{\textit{STAT}}^2 &= \sum_{\textit{all cells}} \frac{\left(f_o - f_e\right)^2}{f_e} \\ &= \frac{(24 - 24,5)^2}{24.5} + \frac{(32 - 30.8)^2}{30.8} + \frac{(14 - 14.8)^2}{14.8} + \frac{(22 - 21)^2}{21} + \frac{\left(26 - 26.4\right)^2}{26.4} + \frac{\left(12 - 12.6\right)^2}{12.6} \\ &+ \frac{\left(10 - 10.5\right)^2}{10.5} + \frac{\left(14 - 13.2\right)^2}{13.2} + \frac{\left(6 - 6.3\right)^2}{6.3} + \frac{\left(14 - 14\right)^2}{14} + \frac{\left(16 - 17.6\right)^2}{17.6} + \frac{\left(10 - 8.4\right)^2}{8.4} = 0.709 \end{split}$$

Step (4):

$$\chi^2_{(r-1)(c-1),\alpha} = \chi^2_{(4-1)(3-1),0.05} = \chi^2_{3\times 2,0.05} = \chi^2_{6,0.05} = 12.592$$

Degree of freedom= (4-1)(3-1)=6

Decision Rule: If $\chi^2_{\text{stat}>12.592}$ Reject H₀, otherwise, do not reject H₀

Step (5): Here, $\chi^2_{\text{stat}=0.709 < \chi^2_{0.05}=12.592}$,

so do not reject H₀

Conclusion: there is not sufficient evidence that meal plan and class standing are related at $\alpha = 0.05$

Example (5):

Suppose you conducted a drug trial on a group of animals and you hypothesized that the animals receiving the drug would show increased heart rates compared to those that did not receive the drug. You conduct the study and collect the following data(α =0.05):

	Heart Rate Increased	No Heart Rate Increase	Total
Treated	36	14	50
Not treated	30	25	55
Total	66	39	105

Solution:

Step (1):

H₀: The proportion of animals whose heart rate increased is independent of drug treatment.

H₁: The proportion of animals whose heart rate increased is associated with drug treatment.

Step (2): The level of significance ($\alpha = 0.05$)

Step (3):

	Heart Rate Increased	No Heart Rate Increase	Total
Treated	36	14 18.6	50
Not treated	30 35.6	25 20.4	55
Total	66	39	105

 $f_{o} = \text{observed frequency in a particular cell}$ $f_{e} = \text{expected frequency in a particular cell if H0 is true}$ $f_{e} = \frac{row \, total \times column \, total}{}$

$$f = row total \times column total$$

 $J_e = \frac{n}{n}$ For example: $E_{11} = \frac{50 \times 66}{105} = 31,4$, and so on.

$$\chi_{STAT}^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(36 - 31.4)^{2}}{31.4} + \frac{(14 - 18.6)^{2}}{18.6} + \frac{(30 - 35.6)^{2}}{35.6} + \frac{(25 - 20.4)^{2}}{20.4} = 3.42$$

$$\chi^{2}_{(r-1)(c-1),\alpha} = \chi^{2}_{(2-1)(2-1),0.05} = \chi^{2}_{1\times 1,0.05} = \chi^{2}_{1,0.05} = 3.841$$

Decision Rule: If $\chi^2_{\text{stat}>3.841}$ Reject H0, otherwise, do not reject H0

Step (5):

Our calculated value (3.42) is less than the tabular value so we cannot reject the null hypothesis and we conclude that; the proportion of animals whose heart rate increased is independent of drug treatment.

