Chapter 8

Conservation of Energy

8.1: Analysis Model : Nonisolated System (Energy)
8.2: Analysis Model: Isolated System (Energy)

8.3: Situations Involving Kinetic Friction

8.4: Changes in Mechanical Energy for
Nonconservative Forces

8.5: Power




Energy Review

»Associated with movement of members of a system

= Determined by the configuration of the system

»Gravitational and Elastic Potential Energies have been studied

*Related to the temperature of the system

Introduction



Types of Systems

Non-isolated systems

 Energy can cross the system boundary in a variety of
ways.

« Total energy of the system changes

Isolated systems
 Energy does not cross the boundary of the system
 Total energy of the system 1s constant

Conservation of energy

 (Can be used if no non-conservative forces act within the
1solated system

« Applies to biological organisms, technological systems,
engineering situations, etc

Introduction



Ways to Transfer Energy Into | s
or Out of A System

In non-isolated systems, energy crosses the boundary of the system
during some time interval due to an interaction with the
environment.

Work - transfers energy by applying a force and causing a
displacement of the point of application of the force.

Mechanical Wave — transfers energy by allowing a disturbance to
propagate through a medium.

Heat — the mechanism of energy transfer that is driven by a
temperature difference between two regions in space.

Matter Transfer — matter physically crosses the boundary of the
system, carrying energy with it.

Electrical Transmission — energy transfer into or out of a system
by electric current.

Electromagnetic Radiation — energy 1is transferred by
electromagnetic waves.

Section 8.1
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Examples of Ways to Transfer Energy oo
Energy transfers to o
Energy is transferred Energy leaves the radio the handle of the
to the block by work. from the speaker by spoon by heat.
Y mechanical waves.

: : Encrgy leaves the light- o E I O
ey ;l.ll( s the bulb by electromagnetsc {“."’F ﬂ":'“ A

E s gas tank oo : wer by

witomaobile gas ank bt nir dryer by

by matler transfer. decineal ransmisaon,
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Conservation of Energy Sess

Energy is conserved

®This means that energy cannot be created nor
destroyed.

=|f the total amount of energy in a system changes,
it can only be due to the fact that energy has
crossed the boundary of the system by some
method of energy transfer.

Section 7.1
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Conservation of Energy, cont.
Mathematically, AE g, = ZT t
Work Heat TR
i Svstem waves )
"E, sem IS the total energy of the system e Gl ' PR
1 Kinetic energy
=T is the energy transferred across the system e el SrtHire
. amount of energy in Internal energy
boundary by some mechanism e syscm s cqual to Ay
. energy that crosses the Matter Electrical  Electromagnetic
. Esta bI IShed Sym bOlS: T work = W and Theat -_ Q bnu:(.l;u')' :»l’lhc s)'.\:cm. ll':ll;’ft'l' lransl;ission m(li;tion

= QOthers just use subscripts The primarily
mathematical representation of the energy version of
the analysis model of the non-isolated system is given
by the full expansion of the above equation.
"AK+ AU+ AE,,, =W+Q+ Ty *Tyr + Ter + Ter
= Tyuw— transfer by mechanical waves
= Ty — by matter transfer
" T — by electrical transmission

Ter — by electromagnetic transmission
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Isolated System

For an isolated system, AE__ =0

"RememberE__, =K+U

= This is conservation of energy for an isolated
system with no non-conservative forces acting.

If non-conservative forces are acting, some energy
is transformed into internal energy.

Conservation of Energy becomes AE, ,.,= 0

"E, stemiS all kinetic, potential, and internal
energies

*This is the most general statement of the isolated

system model.

Section 8.2



Isolated System, cont.

The changes in energy can be written out and rearranged.
Ke + U = Ki+ U,

sRemember, this applies only to a system in which
conservative forces act.

Section 8.2



Problem Solving Strategy - Conservation of | 822
Mechanical Energy for an Isolated System
with No Non-conservative Forces

Conceptualize

* Form a mental representation

* |magine what types of energy are changing in the system

Categorize
* Define the system

» |t may consist of more than one object and may or may not include springs
or other sources of storing potential energy.

» Determine if any energy transfers occur across the boundary of your system.
= If there are transfers, use AE, g em = ZT
= If there are no transfers, use AEg ., = 0

» Determine if there are any non-conservative forces acting.
* If not, use the principle of conservation of mechanical energy.

Section 8.2



Ball in Free Fall LUl

A ball of mass m is dropped from a height & above the ground as shown in o —

Figure 8.4. ~¢b 5= h
(A) Neglecting air resistance, determine the speed of the ball when itis ata — O {Li—. = mgh
height y above the ground. Choose the system as the ball and the Earth. k=0

SOLUTION l{,)(:y

Conceptualize Figure 8.4 and our everyday experience with falling objects 7 Uer =lmg72
allow us to conceptualize the situation. Although we can readily solve this prob- h Y Ky =gmy
lem with the techniques of Chapter 2, let us practice an energy approach. Vs

y

Categorize As suggested in the problem, we identify the system as the ball and
the Earth. Because there is neither air resistance nor any other interaction
between the system and the environment, the system is isolated and we use y=0
the isolated system model. The only force between members of the system is the {U; =0

gravitational force, which is conservative.
...................................................................................... FigUfC 8.4 (Example 8.1) A ball is

Analyze Because the system is isolated and there are no nonconservative forces dropped from a height A above the
acting within the system, we apply the principle of conservation of mechanical ground. Initially, the total encrgy of
energy to the ball-Earth system. At the instant the ball is released, its kinetic ¢ ball-Earth system is gravitational

o e e . . otential energy, equal to relative to
energy is K; = 0 and the gravitational potential energy of the system is U,; = fhc ground. ‘Af) mquomio:f the total

mgh. When the ball is at a position y above the ground, its kinetic energy is energy is the sum of the kinetic and
K;= %mv,-"' and the potential energy relative to the ground is U,,= mgy. potential energices.
Write the appropriate reduction of Equation 8.2, noting AK+ AU, =0

that the only types of energy in the system that change
are kinetic energy and gravitational potential energy:

Substitute for the energies: ({;mvf — 0) + (mgy — mgh) =0
Solve for v vf"’ =2g¢(h—1y) ~— u = '\/2g(h - y)

The speed is always positive. If you had been asked to find the ball’s velocity, you would use the negative value of the
square root as the y component to indicate the downward motion.



(B) Find the speed of the ball again at height y by choosing the ball as the system.

SOLUTION

Categorize In this case, the only type of energy in the system that changes is kinetic energy. A single object that can be
modeled as a particle cannot possess potential energy. The effect of gravity is to do work on the ball across the bound-
ary of the system. We use the nonisolated system model.

.................................................................................................................................

Analyze Write the appropriate reduction of Equation 8.2: AK=W

Substitute for the initial and final kinetic energies and (3mv® — 0) = F-AT = —mgj- Ayj
the work: = —mgAy = —mg(y — k) = mg(h— %)

Solve for vy vi=2g(h—35) —* v= V(h-y)



The Spring-Loaded Popgun m

The launching mechanism of a popgun consists of a trigger-released spring (Fig. 8.6a). The spring is compressed to a : o

position yg, and the trigger is fired. The projectile of mass m rises to a position yg above the position at which it leaves | o
the spring, indicated in Figure 8.6b as position yg = 0. Consider a firing of the gun for which m = 35.0 g, yg = —0.120m, *

and yg = 20.0 m.

(A) Neglecting all resistive forces, determine the spring constant.

(1) AK+ AU, + AU, =0

(0 - 0) + (mgyp — mgyg) + (0 — 3kx®) = 0

§— 2mg(ye — ya)
- 2
x
0.0350 9.80 23[20.0m — (—0.1
. 2( kg)(9.80 m/s*)[20.0 m — (—0.120 m)] -

(0.120 m)?

Abeer Alghamdi Section 8.2
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(B) Find the speed of the projectile as it moves through the equilibrium position ® of the spring as shown in
Figure 8.6b.

P 8.3 continued
Write Equation (1) again for the system between points AK+ AU+ AU, =0
® and ®:
Substitute for the initial and final energies: (3mug — 0) + (0 — mgyg) + (0 — 3kx?) = 0
2
Solve for vg: vg = % + 2gya
958 N 0.120 m)* o
Substitute numerical values: vg = (958 N/m)(0.120 m)” 92(9.80 m/s?)(—0.120 m) = 19.8m/s
(0.035 0 kg)

Abeer Alghamdi Section 8.2



Kinetic Friction s

The entire friction force is
modeled to be applied at the
interface between two identical

Kinetic friction can be modeled as the teeth projecting from the book
interaction between identical teeth. s

The frictional force is spread out over S
the entire contact surface. Tt
The displacement of the point of B

application of the frictional force is not
calculable.

la— ( —»

Therefore, the work done by the
frictional force is not calculable.

The point of application of the
friction force moves through a
displacement of magnitude d/2.

Section 8.3
b



Work and Energy With Friction +

In general, if friction is acting in a system:

" AK= ZWother forces 'f kd

* This is a modified form of the work — kinetic energy theorem.
= Use this form when friction acts on an object.

= |f friction is zero, this equation becomes the same as Conservation of
Mechanical Energy.

A friction force transforms kinetic energy in a system to internal energy.

The increase in internal energy of the system is equal to its decrease in kinetic
energy.

* AEj = fy d
In general, this equation can be written as ZW ;o1 forces = W = AK + AE,

This represents the non-isolated system model for a system within which a non-
conservative force acts.

Section 8.3



n
Example 8.4 A Block Pulled on a Rough Surface m Vj —
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface by a <?k_ ,_I'; °
constant horizontal force of 12 N. - | I )
(A) Find the speed of the block after it has moved 3.0 m if the surfaces in contact Ax |
have a coefficient of kinetic friction of 0.15. ""_8'
a
Conceptualize This example is similar to Example 3 . vy —
7.6 (page 190), but modified so that the surface is no §, f
longer frictionless. The rough surface applies a fric- Figure 8.8 (Example 8.4) - e e
tion force on the block opposite to the applied force. (2) A block pulled to the right - l B
As a result, we expect the speed to be lower than that on & m"g,h surince bya con- Ax
found in E le 7.6 stant horizontal force. (b) The ; [
ound in Lxampie .9 applied force is at an angle # g
to the horizontal. b

Categorize The block is pulled by a force and the
surface is rough, so the block and the surface are
modeled as a nonisolated system with a nonconservative force acting.

Analyze Figure 8.8a illustrates this situation. Neither the normal force nor the gravitational force does work on the
system because their points of application are displaced horizontally.

Find the work done on the system by the applied force E W oiter forces = Wr= FAx
just as in Example 7.6:

Apply the particle in equilibrium model to the block in the E FE=0 > n—mg=0 - n=mg
vertical direction:

Find the magnitude of the friction force: fi = pyn = pemg = (0.15)(6.0 kg)(9.80 m/s?) = 8.82 N



F o a mwrrmraie e

Substitute the energies into Equation 8.15 and solve for FAx= AK+ AE = (%muf - 0) + fid
the final speed of the block: >
=4 ’ =(—fid +
Uy m( fid + F Ax)
Substitute numerical values: v = \/6 2 kg[ (8.82N)(3.0m) + (12N)(3.0m)] = 1.8m/s

Finalize As expected, this value is less than the 3.5 m/s found in the case of the block sliding on a frictionless surface
(see Example 7.6). The difference in kinetic energies between the block in Example 7.6 and the block in this example
is equal to the increase in internal energy of the block-surface system in this example.

(B) Suppose the force Fis applied at an angle 6 as shown in Figure 8.8b. At what angle should the force be applied
to achieve the largest possible speed after the block has moved 3.0 m to the right?

SOLUTION

Conceptualize You might guess that 8 = 0 would give the largest speed because the force would have the largest com-
ponent possible in the direction parallel to the surface. Think about ¥ applied at an arbitrary nonzero angle, however.
Although the horizontal component of the force would be reduced, the vertical component of the force would reduce
the normal force, in turn reducing the force of friction, which suggests that the speed could be maximized by pulling
at an angle other than 6 = 0.

Categorize Asin part (A), we model the block and the surface as a nonisolated system with 2 nonconservative force acting.
Analyze Find the work done by the applied force, noting (1) D Wonertorces = Wi = FAxcos§ = Fdcos 8
that Ax = d because the path followed by the block is a

straight line:

Apply the particle in equilibrium model to the block in > F=n+Fsin6—mg=0

the vertical direction:

Solve for n: (2) n=mg— Fsin@

Use Equation 8.15 to find the final kinetic energy for Wr=AK+AE,=(K,—0) + fid > K= W;— fid

this situation:

Substitute the results in Equations (1) and (2): K;= Fdcos 6 — pynd = Fdcos 8 — p,(mg— Fsin 8)d
dK;

Maximizing the speed is equivalent to maximizing the il —Fdsin 6 — p, (0 — Fcos8)d=0

final kinetic energy. Consequently, differentiate K;with

respect to 8 and set the result equal to zero: —sinf + pgcosf =0

tan 6 = pu,

Evaluate 6 for u, = 0.15: 6 = tan"'(p,) = tan"'(0.15) = 8.5°




Conceptual Example 8.5 Useful Physics for Safer Driving

A car traveling at an initial speed v slides a distance d to a halt after its brakes lock. If the car’s initial speed is instead
2v at the moment the brakes lock, estimate the distance it slides.

SOLUTION

Let us assume the force of kinetic friction between the car and the road surface is constant and
speeds. According to Equation 8.13, the friction force multiplied by the distance d is equal to the in:
of the car (because K)r = 0 and there is no work done by other forces). If the speed is doubled, as it

the kinetic energy is quadrupled. For a given friction force, the distance traveled is four times as gre
speed is doubled, and so the estimated distance the car slides is 44d.

Abeer Alghamdi Section 8.3



Example 8.6 A Block-Spring System m (XX
L L X B
A block of mass 1.6 kg is attached to a horizontal spring that has a force constant g ®®o e
of 1 000 N/m as shown in Figure 8.9a. The spring is compressed 2.0 cm and is then Lﬁw AALAARAALL " L
released from rest as in Figure 8.9b. M‘“ MNH% l% IH’ : r g : ®
I
(A) Calculate the speed of the block as it passes through the equilibrium posi- :
tion x = 0 if the surface is frictionless. x=0
al l
= |
F, |
Conceptualize This situation has been discussed Figure 8.9 (Examplc 8.6) : » i
before, and it is easy to visualize the block being pushed (a) A block attached to a WF’ | I
to the right by the spring and moving with some speed spring is pushed inward ek
et el " from an initial position :
{ x = 0 by an external agent. |‘_ X —l
Categorize We identify the system as the block and (b) At pasition x, the block LIPS
model the block as a nonisolated system. is released from restand the
........................................................... speing pashes itto the right. b
Analyze In this situation, the block starts with v; = 0
at x; = —2.0 cm, and we want to find v;at x,= 0.
Use Equation 7.11 to find the work done by the spring W, = ka2,
on the system with x,_ . = x;:
Work is done on the block, and its speed changes. W, = é—mvf — imo?
The conservation of energy equation, Equation 8.2,
reduces to the work-kinetic energy theorem. Use that u = \/ = 2 W, = \/ o 2 ( jz_erzn 25
theorem to find the speed at x = (: m m
: : T ,
Substitute numerical values: v = \/ 0+ E [£(1000 N/m)}(0.020 m)*] = 0.50m/s

Finalize Although this problem could have been solved in Chapter 7, it is presented here to provide contrast with the
following part (B), which requires the techniques of this chapter.

Section 7.4



L L L B
(B) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force of 4.0 N : : : N
retards its motion from the moment it is released. o0

| o
Analyze Write Equation 8.15: W, =AK+ AE,_ = (%mvj‘f -0) + fid
Solve for u;: opmal= (W, — fd)
2
Substitute for the work done by the U= \/ = (3kx3a — £id)
spring:
2

Substitute numerical values: v = \/ 16 kg [(3(1 000 N/m}(0.020 m)* — (4.0 N)(0.020 m)] = 0.39 m/s

.................................................................................................................................

Finalize As expected, this value is less than the 0.50 m/s found in part (A).

What if the friction force were increased to 10.0 N? What is the block’s speed at x = 0?

Answer In this case, the value of f,d as the block moves kinetic energy has been transformed to internal energy

tox=0is by friction when the block arrives at x = 0, and its speed
fid = (10.0 N)(0.020 m) = 0.20] at this point is v = 0.

In this situation as well as that in part (B), the speed
which is equal in magnitude to the Kinetic energy at x = of the block reaches a maximum at some position other
0 for the frictionless case. (Verify it!). Therefore, all the than x = 0. Problem 53 asks you to locate these positions.

s |

Section 8.3



Adding Changes in Potential |3
Energy

If friction acts within an isolated system
AE eecn =AK+ AU =-f d

= AU is the change in all forms of potential energy

If non-conservative forces act within a non-isolated system and the external
influence on the system is by means of work.

AEmech = 'f k d+ Z:Wother forces

This equation represents the non-isolated system model for a system that

possesses potential energy and within which a non-conservative force acts and
can be rewritten as

SW =W = AK + AU + AE,,

other forces

Section 8.4



Example 8.7 Crate Sliding Down a Ramp m

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and
inclined at an angle of 30.0° as shown in Figure 8.10. The crate starts from
rest at the top, experiences a constant friction force of magnitude 5.00 N,
and continues to move a short distance on the horizontal floor after it
leaves the ramp.

(A) Use energy methods to determine the speed of the crate at the bot-
tom of the ramp.

SOLUTION

8 . . ) Figure 8.10 (Example 8.7) A crate slides
Conceptualize Imagine the crate sliding down the ramp in Figure 8.10. down a ramp under the influence of gravity.

The larger the friction force, the more slowly the crate will slide. The potential energy of the system decreases,
whereas the kinetic energy increases.

Categorize We identify the crate, the surface, and the Earth as an isolated
system with a nonconservative force acting.

.................................................................................................................................

Analyze Because v; = 0, the initial kinetic energy of the system when the crate is at the top of the ramp is zero. If the y
coordinate is measured from the bottom of the ramp (the final position of the crate, for which we choose the gravita-
tional potential energy of the system to be zero) with the upward direction being positive, then y, = 0.500 m.

Write the conservation of energy equation (Eq. 8.2) for AK+ AU+ AE,, =0
this system:

Substitute for the energies: (%mvf —0) + (0 — mgy) + fid=0

Solve for s

O =2 (mgs £

[(3.00 kg)(9.80 m/s*}(0.500 m) — (5.00 N)(1.00m}] = 2.54 m/s

Substitute numerical values: \/
vj =
3.00kg " gection 8.4



(B) How far does the crate slide on the horizontal floor if it continues to experience a friction force of magnitude
5.00 N?

SOLUTION

Analyze This part of the problem is handled in exactly the same way as part (A), but in this case we can consider the
mechanical energy of the system to consist only of kinetic energy because the potential energy of the system remains
fixed.

Write the conservation of energy equation for this AK+ AE,, =0
situation:
Substitute for the energies: (0 — dmv”) + fid =10

, , , mv?  (3.00 kg)(2.54 m/s)*
Solve for the distance d and substitute numerical values: d= = - - = 194m
2, 2(5.00N)

Finalize For comparison, you may want to calculate the speed of the crate at the bottom of the ramp in the case in
which the ramp is frictionless. Also notice that the increase in internal energy of the system as the crate slides down
the ramp is f,d = (5.00 N)(1.00 m) = 5.00 J. This energy is shared between the crate and the surface, each of which is
a bit warmer than before.

Also notice that the distance d the object slides on the horizontal surface is infinite if the surface is frictionless. Is
that consistent with your conceptualization of the situation?

LLLARLES A cautious worker decides that the speed of the crate when it arrives at the bottom of the ramp may
be so large that its contents may be damaged. Therefore, he replaces the ramp with a longer one such that the new

s o 0500m _0500m
Find the length 4 of the new ramp: sin 25.0° = 7 d= Sn95.0° .18 m
Find v from Equation (1) in v = \/ 2 [(3.00 kg)(9.80 m/s*)(0.500 m) — (5.00 N}(1.18 m)] = 2.42 m/s
3.00 kg
part (A):
The final speed is indeed lower than in the higher-angle case.



Example 8.8 Block-Spring Collision m

A block having a mass of 0.80 kg is given an initial velocity vg = 1.2 m/s to the right and collides with a spring whost
mass is negligible and whose force constant is £ = 50 N/m as shown in Figure 8.11.

(A) Assuming the surface to be frictionless, calculate the maximum compression of the spring after the collision.

SOLUTION x= 0
Figure 8.11 (Example v, !

Conceptualize The various parts 8.8) A block sliding on a _Q> Pa—
of Figure 8.11 help us imagine what frictionless, horizontal 3 Q ~WWAWWWWA- e
the block will do in this situation. surface collides with a
All motion takes place in a hori-  lightspring. (a) Initially, V.

1ol e d d the mechanical encergy is | -Qb ‘
zont? prane, 5o “e- o nOt.ne? to all kinetic energy. (b) The b : m E= %mu§+ %kx@,s
consider changes in gravitational mechanical energy is the I | - -
potential energy. sum of the kinetic energy I"‘@‘l

of the block and the elas-

Categorize We identify the system tic potential energy in the I V=0
to be the block and the spring and spring. (c) The energy is : O E= ik
model it as an isolated systemwith no ~ entircly potential energy. o L= | o
nonconservative forces acting. (d) The encrgy is trans- ——]
............................... .g. "SR EEE formCd baCR to thc kinCch — —
Analyze Before the collision, when  S"78Y of the block. —°

. , L. I'he total energy of the : 1 °o 1
the block is at @, it has kinetic system remains constant n © E= ymug'= mug

energy and the spring is uncom- throughout the motion.
pressed, so the elastic potential

energy stored in the system is zero. Therefore, the total mechanical energy of the system before the collision is just 3mvg*
After the collision, when the block is at ©, the spring is fully compressed; now the block is at rest and so has zero kinetis
energy. The elastic potential energy stored in the system, however, has its maximum value tkx* = 1kx?_, where the origir
of coordinates x = () is chosen to be the equilibrium position of the spring and x_,, is the maximum compression of the
spring, which in this case happens to be xg. The total mechanical energy of the system is conserved because no noncon

servative forces act on objects within the isolated system.
Write the conservation of energy equation for this situation: AK+ AU=0

Substitute for the energies: (0 = tmug) + (3kx2, —0) =0

80 ki
Solve for x_ . and evaluate: Xy = \/% vg = ﬁ(l.? m/s) = 0.15m




(B) Suppose a constant force of kinetic friction acts between the block and the surface, with u, = 0.50. If the speed of
the block at the moment it collides with the spring is vz = 1.2 m/s, what is the maximum compression xg in the spring?

SOLUTION

Conceptualize Because of the friction force, we expect the compression of the spring to be smaller than in part (A)
because some of the block's kinetic energy is transformed to internal energy in the block and the surface.

Categorize We identify the system as the block, the surface, and the spring. This is an isolated system but now involves a
nonconservative force.

Analyze In this case, the mechanical energy E__, = K+ U, of the system is not conserved because a friction force acts
on the block. From the particle in equilibrium model in the vertical direction, we see that n = mg.

Evaluate the magnitude of the friction force: fi=un= p,mg

Write the conservation of energy equation for this AK+ AU+ AE_ =0

situation:

Substitute the initial and final energies: (0 — imug’) + (Ghxg® — 0) + pymgxe =0
Rearrange the terms into a qaudratic equation: kxg + 2uimgxg — mug = 0

Substitute numerical values: 50x¢ + 2(0.50)(0.80)(9.80)x¢ — (0.80)(1.2)° =0

50xg? + 7.84xg — 1.15 =0

Solving the quadratic equation for xg gives xg = 0.092 m and xg = —0.25 m. The physically meaningful root is
xg = 0.092 m.

Finalize The negative root does not apply to this situation because the block must be to the right of the origin (positive
value of x) when it comes to rest. Notice that the value of 0.092 m is less than the distance obtained in the frictionless

_____ Lo FAN\ s e A
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Connected Blocks in Motion m

Two blocks are connected by a light string that passes over a frictionless pulley
as shown in Figure 8.12. The block of mass m, lies on a horizontal surface and is
connected to a spring of force constant k. The system is released from rest when
the spring is unstretched. If the hanging block of mass m, falls a distance & before
coming to rest, calculate the coefficient of kinetic friction between the block of
mass m, and the surface.

SOLUTION

Conceptualize The key word rest appears twice in the problem statement. This
word suggests that the configurations of the system associated with rest are good
candidates for the initial and final configurations because the kinetic energy of
the system is zero for these configurations.

Categorize In this situation, the system consists of the two blocks, the spring, the
surface, and the Earth. This is an isolated system with a nonconservative force act-
ing. We also model the sliding block as a particle in equilibrium in the vertical direc-
tion, leading to n = mg.

Figure 8.12 (Example 8.9) As the
hanging block moves from its high-
est elevation to its lowest, the system
loses gravitational potential energy
but gains elastic potential energy in
the spring. Some mechanical energy
is transformed to internal energy
because of friction between the slid-
ing block and the surface.

Analyze We need to consider two forms of potential energy for the system, gravitational and elastic: AU, = U, — U, is
the change in the system’s gravitational potential energy, and AU, = U, — U is the change in the system’s elastic poten-
tial energy. The change in the gravitational potential energy of the system is associated with only the falling block

Section 8.4



because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies
of the system are zero, so AK = (.

Write the appropriate reduction of Equation 8.2: () AU, + AU, +AE,, =0
Substitute for the energies, noting that as the hanging block fallsa (0 — mygh) + (3kH* — 0) + fih=0
distance A, the horizontally moving block moves the same distance A
to the right, and the spring stretches by a distance &:
Substitute for the friction force: —mogh + Sk + pomigh = 0
1

_ mgg — 3kh

Solve for p;: i = _m;g

Finalize This setup represents a method of measuring the coefficient of kinetic friction between an object and some
surface. Notice how we have solved the examples in this chapter using the energy approach. We begin with Equation
8.2 and then tailor it to the physical situation. This process may include deleting terms, such as the kinetic energy term
and all terms on the right-hand side of Equation 8.2 in this example. It can also include expanding terms, such as
rewriting AU due to two types of potential energy in this example.

Abeer Alghamdi Section 8.4



Conceptual Example 8.10 Interpreting the Energy Bars

The energy bar charts in Figure 8.13 show three instants in 100% .
the motion of the system in Figure 8.12 and described in 50 l [
Example 8.9. For each bar chart, identify the configuration 0
Of d-le system that corresponds to me chart‘ Kinetic Elastic Grav. Internal Total
energy  pot pot.  cnergy  Cnergy

SOLUTION 2]
In Figure 8.13a, there is no kinetic energy in the system. %
Therefore, nothing in the system is moving. The bar chart 100 Isolated
shows that the system contains only gravitational potential 50 ] [ system:
energy and no internal energy yet, which corresponds to the 0 = = total

BY . . TgY Yeb . ) PO Kinetic FElastic Grav. Internal Total energy
configuration with the darker blocks in Figure 8.12 and rep- energy pot.  pot.  energy energy | constant
resents the instant just after the system is released. CNCrgy Cnergy

In Figure 8.13b, the system contains four types of energy. b
The height of the gravitational potential energy bar is at %
50%, which tells us that the hanging block has moved half- 1‘_)3 [
. ) . . 5

way bet.wfeen its position corresponding to.Flgu.re 8.13a and 0 . —
the position defined as y = 0. Therefore, in this configura- Kinetic FElastic Grav. Internal Total
tion, the hanging block is between the dark and light images cnergy  pot.  pot.  cnergy encrgy
of the hanging block in Figure 8.12. The system has gained a CTCTgY cnergy ‘
kinetic energy because the blocks are moving, elastic poten- )
tial energy because the spring is stretching, and internal Figure 8.13 (Conceptual Example 8.10) Three energy bar

energy because of friction between the block of mass m, and charts are shown for the spstem in Figure 3,12,

the surface.

In Figure 8.13c, the height of the gravitational potential energy bar is zero, telling us that the hanging block isat y =
0. In addition, the height of the kinetic energy bar is zero, indicating that the blocks have stopped moving momentarily.
Therefore, the configuration of the system is that shown by the light images of the blocks in Figure 8.12. The height of
the elastic potential energy bar is high because the spring is stretched its maximum amount. The height of the internal
energy bar is higher than in Figure 8.13b because the block of mass m, has continued to slide over the surface after the
configuration shown in Figure 8.13b.



o000
o000
e 0
o0
Power
Power is the time rate of energy transfer.
The instantaneous power is defined as
p_dE
dt
Using work as the energy transfer method, this can also be written as
w

P, =—
WAt
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Instantaneous Power and
Average Power

The instantaneous power is the limiting value of the average power as At

approaches zero.
_m W _dW . dF

=F.v
TS0 AL T gt at

This expression for power is valid for any means of energy transfer.
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Units of Power 3

The Sl unit of power is called the watt.
= 1 watt =1 joule / second =1 kg-m?/s3

A unit of power in the US Customary system is horsepower.
“1hp=746 W

Units of power can also be used to express units of work or energy.
= 1 kWh = (1000 W)(3600 s) = 3.6 x106 J

Section 8.5



L L X B
’ L X B
Problem Solving Summary -
o0
Non-isolated Syst '
The most general statement describing t t o i
the behavior of a non-isolated system is Shotim sl Hleat
the conservation of energy equation. ""“““‘“‘f\/_' \ =
Kinetic energy
- The change in the total Potential energy
AEsystem 3 ZT ail‘nount O?Fncr},ry']in @ / Internal energy
5 ¢ the S}'SlL‘l‘ﬂ 15 (.‘qllil ?0
Thls equatlon can be expanded or have ?;t:gd:];‘::'::::::lmt kl‘tter F.lecm:cnl Eleclr(m‘m}:eti(
terms deleted depending upon the boun(‘lzu)' of the system. trm:fer tranm;ission ra(li;tion

specific situation.

Summary



Problem Solving Summary - | :::
Isolated System

The total energy of an isolated system Svstem

is conserved boundary,
Kinetic energy
AEsystem =0 Potential energy

Internal energy
If no non-conservative forces act within

the isolated system, the mechanical -

energy of the system is conserved. The total amount of energy

AE =0 in the system is constant.
mech ~ Energy transforms among
the three possible types.

Summary



Power Delivered by an Elevator Motor m

An elevator car (Fig. 8.14a) has a mass of 1 600 kg and is carrying passengers having

a combined mass of 200 kg. A constant friction force of 4 000 N retards its motion. e

4.I$‘.I
'3
2RE

(A) How much power must a motor deliver to lift the elevator car and its passengers

at a constant speed of 3.00 m/s? 1 At
Figure 8.14 (Example +

Conceptualize The motor must supply the force of mag-  8-11) (a) The motor exerts

nitude T that pulls the elevator car upward. an upward force T on the ‘

clevator car. The magnitude

Categorize The friction force increases the power neces-  of this force is the total ten-

sary to lift the elevator. The problem states that the speed ::f“t;::::::t;?;‘:“l"::‘ ¢

of the elevator is constant, which tells us that a = 0. We dog“nwar d forces acting on

model the elevator as a particle in equilibrium. the car are a friction force £ Mg

and the gravitational force

Analyze The free-body diagram in Figure 8.14b spec1ﬁes fr = Mg. (b) The free-body
the upward direction as positive. The total mass M of the  diagram for the clevator car. 3 b
system (car plus passengers) is equal to 1 800 kg.

Using the particle in equilibrium model, 2 FE=T—-f-Mg=0
apply Newton's second law to the car:

Solve for T Ir=Mg+f

Use Equation 8.19 and that T is in the same P=T:-V="Tuv= (Mg + flv

direction as ¥ to find the power:

Substitute numerical values: P= [(1 800 kg)(9.80 m/s*) + (4 000 N)](3.00 m/s) = 6.49 X 10'W



(B) What power must the motor deliver at the instant the speed of the elevator is vif the motor is designed to provide
the elevator car with an upward acceleration of 1.00 m /s

SOLUTION

Conceptualize In this case, the motor must supply the force of magnitude 7 that pulls the elevator car upward with an
increasing speed. We expect that more power will be required to do that than in part (A) because the motor must now
perform the additional task of accelerating the car.

Categorize In this case, we model the elevator car as a particle under a net force because it is accelerating.

Analyze Using the particle under a net force model, 2 F=T-f-Mg=Ma

apply Newton's second law to the car:

Solve for T: T=M@a+g +f

Use Equation 8.19 to obtain the required power: P=Tv=[M@a+g + flv

Substitute numerical values: P = [(1 800 kg)(1.00 m/s* + 9.80 m/s*) + 4 000 N]v
= (2.34 X 10Yv

where v is the instantaneous speed of the car in meters per second and Pis in watts.

Finalize To compare with part (A), let v = 3.00 m/s, giving a power of
P= (2.34 X 10" N)(3.00 m/s) = 7.02 X 10'W

which is larger than the power found in part (A), as expected.



Isolated System

Non-Isolated System

Forces conservative Forces Non-conservative Forces

conservation of AE¢ gem=0 AE gem=2T

energy

Conservation of AE_ ..,=0 AE ;=W

Mechanical Energy | AK+AU=0 AK+AU=2W=XW-F d
AU =mgh AU,=mgh
AU =1/2kx? AU =1/2kx?

Cases 1- AK+AU,=0 Or AK=3W 1- AK+AU =2W-F.d

PV e Blas ookl b 15

2- AK+AU =0

sl o &y 2l Glas g

Y

3- AK+AU,+AU,,=0

PV e Bl il el &3, 613
4-AU =0

fad o2l L al B glae 28 A Bl 0SS
Blall 0,55 e (X000 X i) a0
S b el aulsl

bl we aal i sles 2SI Bl 0,5
L2l s (x=0)ol 5V

PV e Bl k) ms 15

2- AK+AU =32W-F d

Uil e S my sy shas

Y

3- AK+AU,+AU,,=3W-F d
PV e Bl il e 15, 13
4-AU =3>W-F d

e 2Bl s aa) gl 1S A U 0,55
Bl 0555 o (X2 O X )i DU
oS L et LSl
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Homework

Section 7.2 Work Done by a Constant Force

1- A 2.00-kg block is attached to a spring of force constant 500 N/m. The block is pulled 5.00
cm to the right of equilibrium and released from rest. Find the speed of the block as it passes
through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction
between block and surface is 0.350.

2- . Explain why the total energy of a system can be either positive or negative, whereas the
kinetic energy is always positive.3- Can a normal force do work? If not, why not? If so, give an
example.

3-A ball is thrown straight up into the air. At what position is its kinetic energy a maximum? At
what position is the gravitational potential energy of the ball-Earth system a maximum?.

4- A pile driver is a device used to drive objects into the Earth by repeatedly dropping a heavy
weight on them. By how much does the energy of the pile driver—Earth system increase when
the weight it drops is doubled? Assume the weight is dropped from the same height each time.
5- A ball is thrown straight up into the air. At what position is its kinetic energy a maximum? At
what position is the gravitational potential energy of the ball-Earth system a maximum?

5- A 1 000-kg roller coaster train is initially at the top of a rise, at point A. It then moves 135 ft,
at an angle of 40.0° below the horizontal, to a lower point B. (a) Choose point B to be the zero
level for gravitational potential energy. Find the potential energy of the roller coaster—Earth
system at points A and B, and the change in potential energy as the coaster moves. (b) Repeat
part (a), setting the zero reference level at point A.

6- A glider of mass 0.150 kg moves on a horizontal frictionless air track. It is permanently
attached to one end of a massless horizontal spring, which has a force constant of 10.0 N/m
both for extension and for compression. The other end of the spring is fixed. The glider is
moved to compress the spring by 0.180 m and then released from rest. Calculate the speed of
the glider (a) at the point where it has moved 0.180 m from its starting point, so that the spring
is momentarily exerting no force and (b) at the point where it has moved 0.250 m from its
starting point.




7- A particle of mass m = 5.00 kg is released from point A and slides on the frictionless track shown in Figure
P8.24. Determine (a) the particle’s speed at points B and C and (b) the net work done by the gravitational force
in moving the particle from A to C.

@ m
4
|
y\‘
5.00 m — I{ @?
i ‘ 3.90m ?
| zur)m
11 e
Fiaure P8.24

8-A block of mass 0.250 kg is placed on top of a light vertical spring of force constant 5 000 N/m and pushed
downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward
and then leaves the spring. To what maximum height above the point of release does it rise?

9-A 5.00-kg block is set into motion up an inclined plane with an initial speed of 8.00 m/s (Fig. P8.33). The block

comes to rest after traveling 3.00 m along the plane, which is inclined at an angle of 30.0° to the horizontal. For
this motion determine

(a) the change in the block’s kinetic energy, (b) the change in the potential energy of the block—Earth system,
and (c) the friction force exerted on the block (assumed to

be constant). (d) What is the coefficient of kinetic friction?

9- A 700-N Marine in basic training climbs a 10.0-m vertical rope at a constant speed in 8.00 s. What is his
power output?

10-The electric motor of a model train accelerates the train from rest to 0.620 m/s in 21.0 m/s. The total mass
of the train is 875 g. Find the average power delivered to the train during the acceleration.



