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Introduction to Energy

A variety of problems can be solved with Newton’s Laws
and associated principles.

Some problems that could theoretically be solved with
Newton’s Laws are very difficult in practice.

® These problems can be made easier with other
techniques.

The concept of energy is one of the most important topics in
science and engineering.

Every physical process that occurs in the Universe involves
energy and energy transfers or transformations.

Energy is not easily defined.

Introduction




Analysis Model :

The new approach will involve changing from a
particle model to a system model.

These analysis models will be formally
introduced in the next chapter.

In this chapter, systems are introduced along
with three ways to store energy in a system.

Introduction



Systems

A system is a small portion of the Universe.

* We will ignore the details of the rest of the Universe.
A critical skill is to identify the system.

* The first step to take in solving a problem

A valid system:

* May be a single object or particle

* May be a collection of objects or particles
 May be a region of space

Section 7.1




Problem Solving Notes

The general problem solving approach may be used
with an addition to the categorize step.
Categorize step of general strategy

o Identify the need for a system approach
o Identify the particular system

o Also identify a system boundary

o The environment surrounds the system
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System Example

A force applied to an object in empty space

» System is the object

» Its surface is the system boundary
» The force is an influence on the system
» from its environment that acts across the

system boundary.
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Work

The work, W, done on a system by an agent exerting a constant
force on the system is the product of the magnitude F of the force,
the magnitude Ar of the displacement of the point of application of
the force, and cos 0, where 0 is the angle between the force and the
displacement vectors.

* The meaning of the term work is distinctly different in physics
than in everyday meaning.

 Work is done by some part of the environment that is interacting
directly with the system.

 Workis done on the system.

Section 7.2




Work, cont

W = F Ar cos 0

* Ar The displacement is that of the
point of application of the force.

(1) A force does no work on the object if
the force does not move through a
displacement.

(2) The work done by a force on a
moving object is zero when the force
applied is perpendicular to the
displacement of its point of

application.
Section 7.2




Displacement in the Work
Equation

The displacement is that of the point of application of
the force.

< If the force is applied to a rigid object that can be
modeled as a particle, the displacement is the same as
that of the particle.

< For a deformable system, the displacement of the
object generally is not the same as the displacement
associated with the forces applied.

Section 7.2




Work Example

The normal force and the gravitational
force do no work on the object.

e cos O =cos90°=0

The force F is the only force that does
work on the object.

Section 7.2

F is the only force
that does work on
the block in this

situation.




More About Work :

The sign of the work depends on the direction of the

force relative to the displacement.

 Work is positive when projection of Fonto Aris
in the same direction as the displacement.

 Work is negative when the projection is in the
opposite direction.

The work done by a force can be calculated, but that

force is not necessarily

the cause of the displacement.

Work is a scalar quantity.

The unit of work is a joule (])

e 1joule =1newton 1meter=Xkg-m?*/s*

* J=N-m

Section 7.2



Work Is An Energy Transfer

This is important for a system approach to solving a
problem.

If the work is done on a system and it is positive, energy
is transferred to the system.

If the work done on the system is negative, energy is
transferred from the system.

@ This will result in a change in the amount of energy
stored in the system.

Section 7.2




Scalar Product of Two Vectors

The scalar product of two
vectors is written as A‘B

[t is also called the dot product.

A-B=ABcos0 0

7 AB = ABcos 6
0 is the angle between Aand B
B cos 6

Applied to work, this means

g

W = FAr cos0 = F-Ar

Section 7.3



Scalar Product, cont

The scalar product is commutative.
- AAB=BA

The scalar product obeys the distributive law of
multiplication.

+ A-(B+C) = A-B+A-C
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Dot Products of Unit Vectors

i-i=jj=kk=1
ij=i-k=j-k=1

Using component form with vectors:
* A=A(i+AJF+AK

* B=B,i+Bj+Bk

* AB=AB,+AB +A B,

* In the special case where
« A=B
A-A=AAAHAA+AA,=ACHAS A=A

Section 7.3




Example 7.1 Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F= 50.0 N at an angle of 30.0° with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m
to the right.

’ 7.1 continued

SOLUTION

Conceptualize Figure 7.5 helps conceptualize the
situation. Think about an experience in your life in
which you pulled an object across the floor with a
rope or cord.

Figure 7.5 (Example 7.1) A
vacuum cleaner being pulled
at an angle of 30.0° from the
horizontal.

Categorize We are asked for the work done on
an object by a force and are given the force on
the object, the displacement of the object, and
the angle between the two vectors, so we categorize this example as a substitution problem. We identify the vacuum
cleaner as the system.

Use the definition of work (Eq. 7.1): W= FArcos 8 = (50.0 N}(3.00 m)(cos 30.0°)
= 130]

Notice in this situation that the normal force o and the gravitational i", = mg do no work on the vacuum cleaner
because these forces are perpendicular to the displacements of their points of application. Furthermore, there was
no mention of whether there was friction between the vacuum cleaner and the floor. The presence or absence of fric-
tion is not important when calculating the work done by the applied force. In addition, this work does not depend on
whether the vacuum moved at constant velocity or if it accelerated.



The Scalar Product

The vectors A and B aregivenbyx =2i+ 3j and B = —i + 2j.
(A) Determine the scalar product A-B.

SOLUTION

Conceptualize There is no physical system to imagine here. Rather, it is purely a mathematical exercise involving two
vectors.

Categorize Because we have a definition for the scalar product, we categorize this example as a substitution problem.
Substitute the specific vector expressions for AandB: A-B = (2i+3j)-(—i+2j)

= —2i-i+2i-2j— 3j-i+3)-2j

=-=2(1) +4(0) - 3(0) +6(1)=-2+6= 4
The same result is obtained when we use Equation 7.6 directly, where A, = 2, A =3,B,=—l,and B, = 2.

P 7.2 continued
(B) Find the angle 6 between A and B .

Evaluate the magnitudes of A and B using the Pythago- A=VA + AA=V(2)*+ (8)*= V13

rean theorem: B=VE+ B = VE1DE+ (22 = Vs

A-B 4 4
Use Equation 7.2 and the result from part (A) to find the cosf = = =
AB \13V5 Vs

angle:

4
f = cos ' = £0.3°
V65



Work Done by a Constant Force

A particle moving in the xy plane undergoes a displacement given by AY = (2.0i + 3.0j) m as a constant force
F = (5.0 + 2.0j) N acts on the particle. Calculate the work done by F on the particle.

SOLUTION

Conceptualize Although this example is a little more physical than the previous one in that it identifies a force and a
displacement, it is similar in terms of its mathematical structure.

Categorize Because we are given force and displacement vectors and asked to find the work done by this force on the
particle, we categorize this example as a substitution problem.

Substitute the expressions for F and AT into W= F -A7 = [(5.0i + 2.0j) N]-[(2.0i + 3.0j) m]

Equation 7.3 and use Equations 7.4 and 7.5: . 5 5 " ,_. , . >
= (5.0i-2.0i + 5.0i-3.0j + 2.0j-2.0i + 2.0j-3.0]) N-m

=[10+0+0+6]N-m= 16]



Work Done by a Varying Force

The total work done for the

Touse W=F Ar cos 6, the force displacement from x; to x;is
must be constant, so the equation approximately equal to the sum
cannot be used to calculate the work of the areas of all the rectangles.
done by a varying force. v

F, Area = AA=F, Ax
Assume that during a very small

displacement, Ax, Fis constant.
For that displacement, W~ FAx
For all of the intervals, Fy

Xf

X
weNEax vy
Ax
Xi
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Work Done by a Varying Force, cont| ::

Let the size of the small displacements

approach zero.

Since
xf xf
lim EAx = J E.dx
Ax—0 X
Xi l
Therefore
Xf
W = f E dx
Xi

 The work done is equal to the area

under the curve between x;and x;

Section 7.4

The work done by the component
I, of the varying force as the par-
ticle moves from x; to x;is exactly
equal to the area under the curve.

v
E

X

Work




Work Done By Multiple Forces

If more than one force acts on a system and the system
can be modeled as a particle, the total work done on the
system is the work done by the net force.

szwext =Ljf(ZFx)dx

In the general case of a net force whose magnitude and
direction may vary.

szwext =Ljf(ZF)dx

The subscript “ext” indicates the work is done by an
external agent on the system.

Section 7.4




Work Done by Multiple Forces, cont.

[f the system cannot be modeled as a particle, then
the total work is equal to the algebraic sum of the

work done by the individual forces.

Z W=W,,, = Z fF. dr (deformable system)

Force

e Remember work is a scalar, so this is the
algebraic sum.

Section 7.4



Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the
work done by the force on the particle as it moves from x = 0 to x = 6.0 m.

SOLUTION

Conceptualize Imagine a particle subject to the force in Figure 7.8. The force
remains constant as the particle moves through the first 4.0 m and then decreases
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could
be modeled as a particle under constant acceleration for the first 4.0 m because
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit
into one of our earlier analysis models because the acceleration of the particle is
changing. If the particle starts from rest, its speed increases throughout the motion,
and the particle is always moving in the positive x direction. These details about its
speed and direction are not necessary for the calculation of the work done, however.

The net work done by this force
is the arca under the curve.

/ o

©

5 6 *{m)

0 L1 1
1 2 3

-

Figure 7.8 (Example 7.4) The
force acting on a particle is constant
for the first 4.0 m of motion and then
decreases linearly with xfrom xg =
4.0m to xg = 6.0 m.

Categorize Because the force varies during the motion of the particle, we must
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used
to evaluate the work done.

Analyze The work done by the force is equal to the area under the curve from xz = 0 to xg = 6.0 m. This area is equal
to the area of the rectangular section from @ to ® plus the area of the triangular section from ® to ©.

Evaluate the area of the rectangle: Wz e = (5.0N)(4.0m) = 20 ]

Evaluate the area of the triangle: Wagwe = %(5.0 N)(2.0m) = 5.0]

Find the total work done by the force on the particle:

Finalize Because the graph of the force consists of straight lines, we can use rules for finding the areas of simple geo-
metric models to evaluate the total work done in this example. If a force does not vary linearly as in Figure 7.7, such
rules cannot be used and the force function must be integrated as in Equation 7.7 or 7.8.



Work Done By A Spring

x= 0 F Wwh ) N
s 7 2 St
| — €n x1s positive

—

A model of a common
physical system for which AW ingioei v

to the left.

the force varies with -

When zé

X 1S Z€ro
pOSlthl’l. AW ————{ sping. e prng.
(D ] X force is zero.
|
|
The block is on a horizontal, By

I . .
—— When xis negative

I = <adien

: — (compressed spring),

|

T

AN
SUACASG ~‘4|

frictionless surface. @ , - e

Observe the motion of the

__— spring force on the

ki // block as it moves from

block with various values of = .
the spring constant.

xl\lax
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eoo
o4
° ! >4
Spring Force (Hooke's Law) x
T ! < i% _— When xis positive
T : ﬁ“‘“\\\* (stretched spring), the
- ‘9‘ W"*\“ “ V “ ‘ \‘ v ‘ ‘) %k/}‘/ ‘f ‘ spring force is directed
a ; X to the left.
|
|

LI ":"{

The force exerted by the spring is F, = - kx

* X is the position of the block with respect to the
equilibrium position (x = 0).

* Kkis called the spring constant or force constant
* Kk measures the stiffness of the spring.
This is called Hooke’s Law.
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Hooke's Law, cont.

—>
) F, : :
| l _ When xis positive

| ¢ (stretched spring), the

AAAAN/ \A/
YVVVV ‘/‘ ‘ % ‘ V W ‘ ‘ ‘ \‘ V ‘ spring force is directed
' X to the left.

|<_x4>‘

The vector form of Hooke’s Law is

When x is positive (spring is stretched), F is negative
When x is 0 (at the equilibrium position), Fis 0
When x is negative (spring is compressed), F is positive

F.=F i=-kxi

Section 7.4



Hooke's Law, final

The force exerted by the spring is always
directed opposite to the displacement from
equilibrium.

The spring force is sometimes called the
restoring force.

If the block is released it will oscillate back and
forth between —x and x.

Section 7.4
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so0000®

Work Done by a Spring

The work done by the
spring force on the
block as it moves from
— Xnax t0 0 is the area
of the shaded triangle,

1.2
Ekxma)v

[dentify the block as the system.
Calculate the work as the block moves from x, =-x__. to x,= 0.
Xf
W, = JFS dr = j (—kxi)(dxi)

0 1
f (—kx)dx = Ek X% x

—Xmax

The net work done as the block moves from -x_.. tox . is zero
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Work Done by a Spring, cont.

Assume the block undergoes an arbitrary
displacement from x = x; to x = X

The work done(spring is stretched) by the
spring on the block is

Xf 1 1
W, = j (—kx)dxzzkxzi—ikxzf
X

e If the motion ends where it begins, W = 0

Section 7.4



Spring with an Applied Force

stretches the

Suppose an external agent, F,, ,

spring.
The applied force is equal and opposite to
the spring force.

F,pp=Fappi=-F=-(-kxi)=kxi
Work done by F, as the block moves from -
X . tox=0isequal to-%2 kx?

For any displacement, the work done (spring
is compressed )by the applied force is

Xf

If the process of moving the
block is carried out very slowly,
% . . .
then F,,, is equal in magmtu_(}e
and opposite in direction to F

at all times.

1 1
W, = (kx)dx=§kx2f—§kx2i

Xi

Section 7.4



Example 7.5 Measuring k for a Spring m

A common technique used to measure the force constant of a spring is demon-

strated by the setup in Figure 7.11. The spring is hung vertically (Fig. 7.11a), and !
an object of mass m is attached to its lower end. Under the action of the “load” mg,
_________ - F,
I

the spring stretches a distance d from its equilibrium position (Fig. 7.11b).
(A) If aspring is stretched 2.0 cm by a suspended object having a mass of
0.55 kg, what is the force constant of the spring?

SOLUTION

The elongation dis e

Conceptualize Figure 7.11b shows what happens to the spring when the object is ol .
s . i A . ) of the attached object.
attached to it. Simulate this situation by hanging an object on a rubber band.
Categorize The object in Figure 7.11b is at rest and not accelerating, so it is mod- 8 b a
eled as a particle in equilibrium. Figure 7.11 (Example 7.5) Deter-
e : mining the force constant kof a
Analyze Because the object is in equilibrium, the net force on it is zero and the spring.
upward spring force balances the downward gravitational force mg (Fig. 7.11c).
Apply the particle in equilibrium model to the object: f-", +mg=0 > F-mg=0 — F=mg
0.55 kg)(9.80 m/s*
Apply Hooke's law to give F, = kd and solve for k: k= % = ( 5 Og>)((10'2 /%) = 27 X 10°N/m
. m

(B) How much work is done by the spring on the object as it stretches through this distance?

SOLUTION

Use Equation 7.12 to find the work done by the spring
on the object:

=
I

0 — tkd® = —3(2.7 X 10*N/m)(2.0 X 10 m)?
—-5.4 %X 10°2]

Finalize This work is negative because the spring force acts upward on the object, but its point of application (where
the spring attaches to the object) moves downward. As the object moves through the 2.0-cm distance, the gravitational
force also does work on it. This work is positive because the gravitational force is downward and so is the displacement



P 7.5 continued

of the point of application of this force. Would we expect the work done by the gravitational force, as the applied force
in a direction opposite to the spring force, to be the negative of the answer above? Let’s find out.

Evaluate the work done by the gravitational force on the W= F AT = (mg)(d) cos 0 = mgd
Ohject: = (0.55 kgg) (9.80 m/s?)(2.0 X 102 m) = 1.1 X 10-]

If you expected the work done by gravity simply to be that done by the spring with a positive sign, you may be surprised
by this result! To understand why that is not the case, we need to explore further, as we do in the next section.



Kinetic Energy

One possible result of work acting as an influence on a system
is that the system changes its speed.

The system could possess kinetic energy.

Kinetic Energy is the energy of a particle due to its motion.
K= % mv2

 Kisthe kinetic energy

* m is the mass of the particle

* visthe speed of the particle

A change in kinetic energy is one possible result of doing work
to transfer energy into a system. X\W=AK=Kk-k.
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Kinetic Energy, cont

Calculating the work: h Bl ﬂ

SF
»

?

Vi

Xf
Wextsz.dx=f ma dx
Xi

;4 . At l
1 5 1 ,
Wext = Emvf — Emvi

Wexe = Kf — K; = AK

Section 7.5



Work-Kinetic Energy Theorem

The Work-Kinetic Energy Theorem states W_, = K; - K, = AK

When work is done on a system and the only change in the system is in its

speed, the net work done on the system equals the change in kinetic energy

of the system.

* The speed of the system increases if the work done on it is positive.

* The speed of the system decreases if the net work is negative.

« Also valid for changes in rotational speed

The work-kinetic energy theorem is not valid if other changes (besides its speed)
occur in the system or if there are other interactions with the environment
besides work.

The work-kinetic energy theorem applies to the speed of the system, not its velocity.

Section 7.5



Work-Kinetic Energy Theorem

- Example

The block is the system and three
external forces act on it.

The normal and gravitational forces do
no work since they are perpendicular to
the direction of the displacement.

W,.,.=AK=%mv# -0
The answer could be checked by

modeling the block as a particle and
using the kinematic equations.

Section 7.5
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Example 7.6 A Block Pulled on a Frictionless Surface m

A 6.0-kg block initially at rest is pulled to the right along a frictionless, horizontal A" v

v
surface by a constant horizontal force of magnitude 12 N. Find the block’s speed —_—
after it has moved through a horizontal distance of 3.0 m. -

! —L .

. .
Conceptualize Figure 7.13 illustrates this situation. Imagine pulling a toy car Y- ax |
across a table with a horizontal rubber band attached to the front of the car. The g
force is maintained constant by ensuring that the stretched rubber band always has Figure 7.13 (Example 7.6) A
the same length. block pulled to the right on a fric-

tionless surface by a constant hori-
Categorize We could apply the equations of kinematics to determine the answer, zontal force.

but let us practice the energy approach. The block is the system, and three exter-
nal forces act on the system. The normal force balances the gravitational force on the block, and neither of these verti-
cally acting forces does work on the block because their points of application are horizontally displaced.

Analyze The net external force acting on the block is the horizontal 12-N force.

Use the work-kinetic energy theorem for the block, not- W,=AK=K, - K, = "gmvf -0= .{;mvf
ing that its initial kinetic energy is zero:

2W,, 2FA
Solve for v and use Equation 7.1 for the work done on U= \/ - - = \/ - z
the block by F:

2(12 N}(3.0
Substitute numerical values: v = \/ ( J3.0m) = 35m/s

6.0 kg

Finalize You should solve this problem again by modeling the block as a particle under a net force to find its acceleration
and then as a particle under constant acceleration to find its final velocity. In Chapter 8, we will see that the energy proce-
dure followed above is an example of the analysis model of the nonisolated system.

Suppose the magnitude of the force in this example is doubled to F* = 2F. The 6.0-kg block accelerates to
3.5 m/s due to this applied force while moving through a displacement Ax". How does the displacement Ax’ compare
with the original displacement Ax?



Conceptual Example 7.7 Does the Ramp Lessen the Work Required?

A man wishes to load a refrigerator onto a truck using
a ramp at angle # as shown in Figure 7.14. He claims
that less work would be required to load the truck if the
length L of the ramp were increased. Is his claim valid?

SOLUTION

No. Suppose the refrigerator is wheeled on a hand
truck up the ramp at constant speed. In this case, for
the system of the refrigerator and the hand truck, AK =

0. The normal force exerted by the ramp on the system Figure 7.14 (Conceptual Example 7.7) A refrigerator attached to
is directed at 90° to the displacement of its point of a frictionless, wheeled hand truck is moved up a ramp at constant
application and so does no work on the system. Because speed.
AK = 0, the work-kinetic energy theorem gives

cht = Wby man + My Fravity =0

The work done by the gravitational force equals the product of the weight mg of the system, the distance L through
which the refrigerator is displaced, and cos (8 + 90°). Therefore,

Wbymzn = _wbygr:wity = _(mg)(L)[COS (9 + goo)]
= mgl sin 8 = mgh

where h = Lsin @ is the height of the ramp. Therefore, the man must do the same amount of work mgh on the system
regardless of the length of the ramp. The work depends only on the height of the ramp. Although less force is required
with a longer ramp, the point of application of that force moves through a greater displacement.



Potential Energy

Potential energy is energy determined by the
configuration of a system in which the
components of the system interact by forces.

* The forces are internal to the system.

* Can be associated with only specific types of
forces acting between members of a system

Section 7.6



Gravitational Potential Energy | ::

The system is the Earth and the
book.

Do work on the book by lifting it
slowly through a vertical
displacement.

Ar=(y¢yy)]

The work done on the system must
appear as an increase in the energy
of the system.

The energy storage mechanism is
called potential energy.

Section 7.6

The work done by
the agent on the
book-Earth system is




Gravitational Potential Energy, cont

Assume the book in fig. 7.15 is allowed to
fall.

There is no change in Kinetic energy since
the book starts and ends at rest.

Gravitational potential energy is the energy
associated with an object at a given location
above the surface of the Earth.

Wext = (F app) Ar
Were = (mg)j. (vr — v1)J
ext — (mgyf mgyl)

Section 7.6



Gravitational Potential Energy,
final

The quantity mgy is identified as the gravitational potential
energy, U,.

* U,=mgy
« Units are joules (J)
 [sascalar

Work may change the gravitational potential energy of the
system.

* Wext = AUg
Potential energy is always associated with a system of two or
more interacting objects.

Section 7.6



Gravitational Potential Energy,
Problem Solving

 The gravitational potential energy depends
only on the vertical height of the object above
Earth’s surface.

* In solving problems, you must choose a
reference configuration for which the
gravitational potential energy is set equal to
some reference value, normally zero.

Section 7.6




The Proud Athlete and the Sore Toe

A trophy being shown off by a careless athlete slips from the athlete’s hands and drops on his foot. Choosing floor
level as the y = 0 point of your coordinate system, estimate the change in gravitational potential energy of the
trophy-Earth system as the trophy falls. Repeat the calculation, using the top of the athlete’s head as the origin of
coordinates.

SOLUTION

Conceptualize The trophy changes its vertical position with respect to the surface of the Earth. Associated with this
change in position is a change in the gravitational potential energy of the trophy-Earth system.

Categorize We evaluate a change in gravitational potential energy defined in this section, so we categorize this exam-
ple as a substitution problem. Because there are no numbers provided in the problem statement, it is also an estima-
tion problem.

The problem statement tells us that the reference configuration of the trophy-Earth system corresponding to zero
potential energy is when the bottom of the trophy is at the floor. To find the change in potential energy for the system,
we need to estimate a few values. Let's say the trophy has a mass of approximately 2 kg, and the top of a person’s foot is
about 0.05 m above the floor. Also, let's assume the trophy falls from a height of 1.4 m.

Calculate the gravitational potential energy of the U, = mgy, = (2kg)(9.80 m/s*)(1.4 m) = 27.4]
trophy-Earth system just before the trophy is released:

Calculate the gravitational potential energy of the U= mgy, = (2kg)(9.80 m/s*)(0.05 m) = 0.98 ]
trophy-Earth system when the trophy reaches the ath-

lete's foot:

Evaluate the change in gravitational potential energy of AU, = 098] —274] = —26.4]

the trophy-Earth system:



P 7.8 continued

We should probably keep only two digits because of the roughness of our estimates; therefore, we estimate that the
change in gravitational potential energyis —26] . The system had about 27 ] of gravitational potential energy before
the trophy began its fall and approximately 1 | of potential energy as the trophy reaches the top of the foot.

The second case presented indicates that the reference configuration of the system for zero potential energy is cho-
sen to be when the trophy is on the athlete’s head (even though the trophy is never at this position in its motion). We
estimate this position to be 2.0 m above the floor).

Calculate the gravitational potential energy of the U = mgy,= (2kg)(9.80 m/s*)(—0.6 m) = —11.8]
trophy-Earth system just before the trophy is released
from its position 0.6 m below the athlete’s head:

Calculate the gravitational potential energy of the U= mgy;= (2kg)(9.80 m/s°)(—1.95m) = —38.2]
trophy-Earth system when the trophy reaches the ath-

lete's foot located 1.95 m below its initial position:

Evaluate the change in gravitational potential energy of AU, = —382] — (-118]) = —26.4] = —26]
the trophy-Earth system:

This value is the same as before, as it must be. The change in potential energy is independent of the choice of configu-
ration of the system representing the zero of potential energy. If we wanted to keep only one digit in our estimates, we
could write the final resultas 3 X 10* J.



Elastic Potential Energy

Elastic Potential Energy is associated with a spring.
The force the spring exerts (on a block, for example)
is F, = - kx

The work done by an external applied force on a
spring-block system is

« W=1kx,- Y2 kx,

 The work is equal to the difference between the
initial and final values of an expression related to
the configuration of the system.

Section 7.6




Elastic Potential Energy, cont.
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This expression is the elastic potential energy:

U, = % kx?

The elastic potential energy can be thought of as the energy stored in the deformed spring.

The stored potential energy can be converted into kinetic energy.

Observe the effects of different amounts of compression of the spring.
Section 7.6



Elastic Potential Energy, final

The elastic potential energy stored in a spring is

zero whenever the spring is not deformed (U =
0 when x = 0).

* The energy is stored in the spring only when
the spring is stretched or compressed.

The elastic potential energy is a maximum when
the spring has reached its maximum extension
Oor compression.

The elastic potential energy is always positive.
« x?will always be positive.

Section 7.6



Energy Bar Chart Example ::

o

x=10
| 7
: Before the spring is 100
AMANMAANA - p compressed, there is no ) 50
BRAAAARAAL -“ i energy in the spring-block 0

Kinetic Potential Total
system. « T |

energy  energy energy

a

An energy bar chart is an important graphical representation of information
related to the energy of a system.

* The vertical axis represents the amount of energy of a given type in the
system.

* The horizontal axis shows the types of energy in the system.
In a, there is no energy.

* The spring is relaxed, the block is not moving.
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Energy Bar Chart Example cont.

: ' When the spring is partially 1”0
A AR RS 4 compressed, the total energy | 50 . .:
Vv | il | of the system is elastic [ 0 —
: Kinetic tial Total
('l](‘];\
D |

potential energy.

The spring is compressed by a

ax
I %
: maximum amount, m(l the 100
T 4 block is held steady; there is » 50 I E
winey n elastic potential energy in the 0

system and no kinetic energy. Kinetic Potential Total

Between b and ¢, the hand has done work on the system.

]

* The spring is compressed.
* There is elastic potential energy in the system.

]

 There is no Kkinetic energy since the block is held
steady.
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Energy Bar Chart Example, final | 3:e

o7
(4

v 4 After the block is released, 100
YYYyyym the elastic potential energy in 50 . E
AAAAAAA 7 | the system decreases and the 0

Kinetic Potential Tortal

kinetic energy increases.

energy energy energy
x=10 <
| _> ((
: v After the block loses contact 100
ARAARERESL | ¢ with the spring, the total > 50
m ) T 0
FVVVVIVVYY | energy of the system is kinetic AR :
energy. Kinetic Potential Total
‘ energy energy  energy

In d, the block has been released and is moving to the right
while still in contact with the spring.

* The elastic potential energy of the system decreases while the
Kinetic energy increases.

In e, the spring has returned to its relaxed length and the system
contains only Kinetic energy associated with the moving block.
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Internal Energy

The energy associated with an object’s
temperature is called its internal

energy, E; ..

In this example, the surface is the
system.

The friction does work and increases
the internal energy of the surface.

When the book stops, all of its kinetic
energy has been transformed to
internal energy.

The total energy remains the same.

Section 7.7
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Conservative Forces

The work done by a conservative force on a particle moving
between any two points is independent of the path taken by
the particle.

The work done by a conservative force on a particle moving
through any closed path is zero.

* A closed path is one in which the beginning and ending
points are the same.

Examples of conservative forces:

* Gravity(W, is zero when the object moves over any closed
path (where yi=yf))

* Spring force(W, depends only on the initial and final x
coordinates of the object and is zero for any closed path)

Section 7.7



Conservative Forces

We can associate a potential energy for a system with any
conservative force acting between members of the system.

This can be done only for conservative forces.
In general: W= - AU

W. . is used as a reminder that the work is done by one member
of the system on another member and is internal to the system.

Positive work done by an outside agent on a system causes an
increase in the potential energy of the system.

Work done on a component of a system by a conservative force
internal to an isolated system causes a decrease in the potential

energy of the system.

Section 7.7



Non-conservative Forces

A non-conservative force does not satisfy the
conditions of conservative forces.

Non-conservative forces acting in a system cause a
change in the mechanical energy of the system.

E =K+U

mech —

K includes the Kkinetic energy of all moving
members of the system.

U includes all types of potential energy in the
system.

Section 7.7




Non-conservative Forces, conﬂ

The work done in moving the
book is greater along the brown
path than along the blue path.

Non-conservative Forces,
cont.

The work done against
friction is greater along the
brown path than along the
blue path.

Because the work done
depends on the path, friction
is a non-conservative force.

Section 7.7



Conservative Forces and 3t
Potential Energy

Define a potential energy function, U, such that the
work done by a conservative force equals the
decrease in the potential energy of the system.

The work done by such a force, F, is

Xf
W, = f E, dx = —AU
Xi

AU is negative when F and x are in the same
direction
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Conservative Forces and
Potential Energy

The conservative force is related to the potential
energy function through.
dU
T

The x component of a conservative force acting on
an object within a system equals the negative of the
potential energy of the system with respect to x.

e (Can be extended to three dimensions

Section 7.8



Conservative Forces and
Potential Energy - Check

Look at the case of a deformed spring:

dUS d (1
F,=— (kx) —kx

dx  dx

. This is Hooke’s Law and confirms the
equation for U

U is an important function because a
conservative force can be derived from it.

Section 7.8



Homework

Section 7.2 Work Done by a Constant Force

1- If the net work done by external forces on a particle is zero, which of the following
statements about the particle must be true? (a) Its velocity is zero. (b) Its velocity is decreased.
(c) Its velocity is unchanged. (d) Its speed is unchanged. (e) There is no displacement for the
object.

2- . If the speed of a particle is doubled, what happens to its kinetic energy? (a) It becomes four
times larger. (b) It becomes two times larger. (c) It becomes |2 times larger. (d) It is unchanged.
(e) It becomes half as large.

3- Can a normal force do work? If not, why not? If so, give an example.
4- Explain why the total energy of a system can be either positive or negative, whereas the
kinetic energy is always positive.

5- A block of mass m =2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal
table by a constant applied force of magnitude F =16.0 N directed at an angle 8 = 25.0 below
the horizontal as shown in Figure P7.5. Determine the work done on the block by (a) the
applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the
net force on the block.

6- A shopper in a supermarket pushes a cart with a force of 35.0 N directed at an angle of 25.0°
downward from the horizontal. Find the work done by the shopper on the cart as he moves
down an aisle 50.0 m long.

Section 7.3 The Scalar Product of Two Vectors

7- Vector A has a magnitude of 5.00 units, and B has a magnitude of 9.00 units. The two
vectors make an angle of 50.0° with each other. Find A.B

8- A force F = (6i — 2j) N acts on a particle that undergoes a displacement Ar =(3i + j) m. Find (a)
the work done by the force on the particle and (b) the angle between F and Ar.

9- Find the scalar product of the vectors in Figure P7.10

11?-

32.8 N _J 39°

17.3 cm

Figure P7.10

X



10-For any two vectors Aand B, show that A.B=AB, + A B +AB,

11- .ForA=3i+j-k,B=-i+2j+5k,and C = 2j - 3k,find C.(A - B)

Section 7.4 Work Done by a Varying Force

12- The force acting on a particle varies as shown in Figure P7.14. Find the work done by the
force on the particle as it moves (a) from x =0 to x = 8.00 m, (b) from x =8.00 m to x=10.0 m,
and (c) from x=0to x=10.0 m

13-A particle is subject to a force F, that varies with position as shown in Figure P7.15. Find
the work done by the force on the particle as it moves (a) from x =0 to x 5.00 m, (b) from x 5
5.00 mto x5 10.0 m, and (c) from x 5 10.0 m to x 5 15.0 m. (d) What is the total work done
by the force over the distance x =0 to x = 15.0 m?

14- A force F =(4xi +3yj) N acts on an object as the object moves in the x direction from the
origin to x = 5.00 m. Find theW=F.dr work done on the object by the force.

15-An archer pulls her bowstring back 0.400 m by exerting a force that increases uniformly
from zero to 230 N. (a) What is the equivalent spring constant of the bow? (b) How much
work does the archer do in pulling the bow?

Section 7.5 Kinetic Energy and the Work—Kinetic Energy Theorem

16- If it takes 4.00 J of work to stretch a Hooke’s-law spring 10.0 cm from its unstressed
length, determine the extra work required to stretch it an additional 10.0 cm.

17- Express the units of the force constant of a spring in Sl base units.

18- A 0.600-kg particle has a speed of 2.00 m/s at point A and kinetic energy of 7.50 J at point
B . What is (a) its kinetic energy at A? (b) its speed at B? (c) the total work done on the
particle as it moves from A to B?

19. A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its kinetic energy? (b) What If? If its
speed were doubled, what would be its kinetic energy?

20. A 3.00-kg object has a velocity (6.00i - 2.00j) m/s. (a) What is its kinetic energy at this

time? (b) Find the total work done on the object if its velocity changes to (8.00i +4.00j) m/s.
(Note: From the definition of the dot product, v2 =v . v

F,(N)

N e

. - x (m)

L1
2.4 .6 8\10
2

Figure P7.14

F.(N)

3
2
1
L N v (m)

0 2 4 6 8 10 12 14 16

Figure P7.15 Problems 15 and 34.



Section 7.7 Conservative and Nonconservative Forces

21- A 4.00-kg particle moves from the origin to position C, having coordinates x " 5.00
m and y " 5.00 m. One force on the particle is the gravitational force acting in the
negative y direction (Fig. P8.21). Using Equation 7.3, calculate the work done by the
gravitational force in going from O to C along (a) OAC. (b) OBC. (c) OC. Your results
should all be identical. Why?

Section 7.8 Relationship Between Conservative Forces and Potential Energy

22-. A single conservative force acting on a particle varies as F=(-Ax+Bx? )i , where A
and B are constants and x is in meters. (a) Calculate the potential-energy function U(x)
associated with this force, taking U =0 at x = 0. (b) Find the change in potential energy
and the change in kinetic energy as the particle moves from x =2.00 m to x = 3.00 m.

23- A single conservative force acts on a 5.00-kg particle. The equation F, = (2x +4) N
describes the force, where x is in meters. As the particle moves along the x axis from x
= 1.00 m to x = 5.00 m, calculate (a) the work done by this force, (b) the change in the
potential energy of the system, and (c) the kinetic energy of the particle at x = 5.00 m
if its speed is 3.00 m/s at x = 1.00 m.

(5.00, 5.00)

0

Y
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