Chapter 7: Series

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
 - 5 Power Series
- 6 Power series representations of functions
 - 7 Taylor and Maclaurin series

Table of contents

D Convergent or Divergent Series

- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Definition 1.1 (Infinite Series)

Let $\{a_n\}$ be an infinite sequence. An expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

is called an infinite series or simply series.

Definition 1.2 (Partial sum)

1 The **nth partial sum** of the infinite series
$$\sum_{n=1}^{\infty} a_n$$
 is

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_n$$

2) The sequence of partial sums associated with the infinite series $\sum_{n=1}^{\infty} a_n$ is

$$S_1, S_2, S_3, \ldots, S_n, \ldots$$

Definition 1.3

An infinite series ∑_{n=1}[∞] a_n with sequence of partial sums {S_n} is convergent (or converges), if lim _{n→∞} S_n = S, for some real number S. The series is divergent (or diverges), if this limit does not exist.
If the series ∑_{n=1}[∞] a_n is a convergent infinite series and lim _{n→∞} S_n = S, then S is called the sum of the series and we write

$$S = \sum_{n=1}^{\infty} a_n$$

If the series diverges, it has no sum.

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} + \dots$$

converges and find its sum.

3 1 4 3 1

Solution

Let
$$a_n = \frac{1}{n(n+1)}$$

The partial fraction decomposition of a_n is

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

= $\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$
= $1 - \frac{1}{n+1} = \frac{n}{n+1}$
 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n}{n+1} = 1$,
the series converges and have the sum 1.

- (日)

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{3} + \frac{1}{15} + \dots + \frac{1}{4n^2 - 1} + \dots$$

converges and find its sum.

∃ ► < ∃ ►

Convergent or Divergent Series

Solution

0

Let
$$a_n = \frac{1}{4n^2 - 1} = \frac{1}{(2n - 1)(2n + 1)}$$

The partial fraction decomposition of a_n is

$$a_n = \frac{1}{n(n+1)} = \frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} + \frac{1}{4n-2} - \frac{1}{4n+2}$$

$$\begin{split} S_n &= a_1 + a_2 + a_3 + \dots + a_n \\ &= \left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{10} - \frac{1}{14}\right) + \dots + \frac{1}{4n - 2} - \frac{1}{4n + 2} \\ &= \frac{1}{2} - \frac{1}{4n + 2} = \frac{2n + 2}{4n + 2} \\ &\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{2n + 2}{4n + 2} = \frac{1}{2}, \end{split}$$

the series converges and have the sum $\frac{1}{2}$.

æ

イロト イヨト イヨト イヨト

Definition 1.4 (Harmonic series)

The Harmonic series is the series defined as follows

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots$$

Theorem 1.1

The Harmonic series diverge.

Definition 1.5 (Geometric series)

The Geometric series is the series defined as follows

$$\sum_{n=1}^{\infty} ar^n = ar + ar^2 + ar^3 + \dots + ar^n + \dots$$

where a and r are real numbers, and $a \neq 0$.

Theorem 1.2

Let
$$a \neq 0$$
. The geometric series $\sum_{n=1}^{\infty} ar^n$
• converges and has the sum $S = \frac{a}{1-r}$ if $|r| < 1$.
• diverges if $|r| > 1$.

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{6}{10^n} = 0.6 + 0.06 + 0.006 + \dots + \frac{6}{10^n} + \dots$$

converges and find its sum.

Solution

This is a Geometric series with a = 6 and $r = \frac{1}{10}$. By Theorem 3.1, the series converges and the sum $S = \frac{6}{1 - 0.1} = \frac{6}{0.9} = \frac{20}{3}$

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{2}{3^n} = \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^n} + \dots$$

converges and find its sum.

Solution

This is a Geometric series with a = 2 and $r = \frac{1}{3}$. By Theorem 3.2, the series converges and the sum $S = \frac{2}{1 - \frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3$

Exercise 1.1

Determine whether the following series converges. If so, give the sum.

$$\sum_{n=1}^{\infty} \frac{5}{(5n+2)(5n+7)}.$$

$$\sum_{n=1}^{\infty} \frac{325}{1000^n} = 0.325 + 0.000325 + \dots + \frac{325}{1000^n} + \dots$$

If
$$\lim_{n\to\infty} a_n \neq 0$$
, then infinite series $\sum_{n=1}^{\infty} a_n$ diverges.

æ

イロト イポト イヨト イヨト

Determine whether the following series converges or diverges

$$\sum_{n=1}^{\infty} \frac{n}{2n+1} = \frac{1}{3} + \frac{2}{5} + \frac{3}{7} \dots + \frac{n}{2n+1} + \dots$$

converges and find its sum.

Solution

Since

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2} \neq 0$$

By theorem 3.4 the series diverges.

Theorem 1.5

If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are series such that $a_j = b_j$ for every $j > k$, with k is a positive integer, then both series converges or both series diverges.

Theorem 1.6

For every positive integer $\boldsymbol{k},$ the series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots \text{ and } \sum_{n=k+1}^{\infty} a_n = a_{k+1} + a_{k+2} + \dots$$

either both converges or diverges.

Prove that the infinite series

$$\sum_{n=5}^{\infty} \frac{1}{n(n+1)} = \frac{1}{5 \times 6} + \frac{1}{6 \times 7} + \dots + \frac{1}{n(n+1)} + \dots$$

converges and find its sum.

Solution

In example 3.1, we proved that the series
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
, converges. So, by theorem 3.6, the series $\sum_{n=5}^{\infty} \frac{1}{n(n+1)}$ converges.

< □ > < 凸

-∢ ∃ ▶

Theorem 1.7 If $\sum a_n$ and $\sum b_n$ are convergent series with sums A ans B, respectively, $\overline{n=1}$ then • $\sum a_n + b_n$ converges and has sum A + B. n=1**2** $\sum a_n - b_n$ converges and has sum A - B. n=1• $\sum ca_n$ converges and has sum cA, for every real number c. n=1

Prove that the infinite series

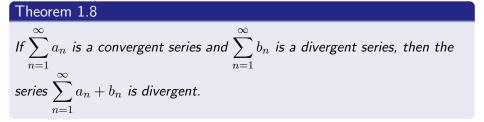
$$\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right)$$

converges and find its sum.

Convergent or Divergent Series

Solution

$$\begin{split} &\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right) = 7 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} + \sum_{n=1}^{\infty} \frac{2}{3^n} \\ &\text{From example 3.1, the series } \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \text{ converges and} \\ &\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1. \\ &\text{From example 3.4, the series } \sum_{n=1}^{\infty} \frac{2}{3^n} \text{ converges and } \sum_{n=1}^{\infty} \frac{2}{3^n} = 3. \\ &\text{So the series } \sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right) \text{ converges and} \\ &\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right) = 7 * 1 + 3 = 10 \end{split}$$



Determine the convergence or divergence of the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{5^n} + \frac{1}{n} \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution

The series
$$\sum_{n=1}^{\infty} \frac{1}{5^n}$$
 is a geometric series with $r = \frac{1}{5}$, so it's convergent.
 $\sum_{n=1}^{\infty} \frac{1}{n}$ is a the harmonis series, so it's divergent.
From theorem 3.8, the series $\sum_{n=1}^{\infty} \left(\frac{1}{5^n} + \frac{1}{n}\right)$ diverges.

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Table of contents

Convergent or Divergent Series

- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Definition 2.1 (positive-term series)

A positive-term series, is a series $\sum_{n=1}^{\infty} a_n$ such that $a_n > 0$ for every n.

Theorem 2.1

If $\sum_{n=1}^{\infty} a_n$ is a positive-term series and if there exists a number M such that

$$S_n = a_1 + a_2 + a_3 + \dots + a_n < M$$
, for every n

then the series converges and has a sum $S \leq M$. If no such M exists the series diverges.

Theorem 2.2 (Integral test)

If $\sum a_n$ is a positive-term series, let $f(n) = a_n$ and let f be the function obtained by replacing n with x. If f is positive-valued, continuous and decreasing for every real number $x \ge 1$, then the series $\sum a_n$ • converges if $\int f(x) dx$ converges. 2 diverges if $\int f(x) dx$ diverges.

Example 2.1

Use the integral test to prove that the Harmonic series $\sum_{n=1}^\infty \frac{1}{n}$ diverges.

Solution

Since $a_n = \frac{1}{n}$, we let $f(n) = \frac{1}{n}$. Replacing n by x gives $f(x) = \frac{1}{x}$. For every $x \ge 1$, f is positive-valued, continuous and decreasing, we can apply then integral test.

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} [\ln x]_{1}^{t} = \lim_{t \to \infty} [\ln t - \ln 1] = \infty.$$

The series diverges by theorem 4.2.

Definition 2.2 (p-series)

A p-series, is a series of the form

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

where p is a positive real number.

Theorem 2.3 (p-series test)

The p-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

a converges if $p > 1$
b diverges if $n < 1$

< ロト < 同ト < ヨト < ヨト

Example 2.2

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \dots$$

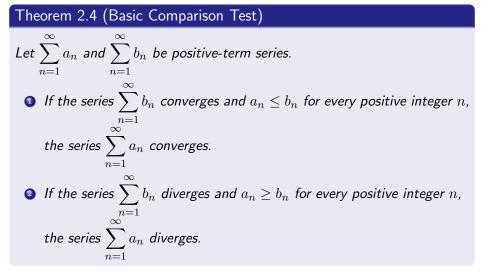
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} = 1 + \frac{1}{2^{\frac{3}{2}}} + \frac{1}{3^{\frac{3}{2}}} + \dots + \frac{1}{n^p} + \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = 1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[3]{n}} + \dots$$

< □ > < 凸

æ

Positive-term Series



Example 2.3

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{1}{2+5^n}.$$

$$\sum_{n=1}^{\infty} \frac{3}{\sqrt{n}-1}$$

3 1 4 3 1

Solution

• For every $n \ge 1$, $\frac{1}{2+5^n} < \frac{1}{5^n}$. Since the series $\sum_{n=1}^{\infty} \frac{1}{5^n}$ converges, then the series $\sum_{n=1}^{\infty} \frac{1}{2+5^n}$ converges. diverges.

Theorem 2.5 (Limit Comparison Test)

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be positive-term series. If there is a positive real number c such that $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$,

then either both series converges or both series diverges.

Example 2.4

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}.$$

$$\sum_{n=1}^{\infty} \frac{3n^2+5n}{2^n(n^2+1)}$$

4 3 4 3 4 3 4

Solution

• The
$$n^{th}$$
 term of the series is $a_n = rac{1}{\sqrt[3]{n^2+1}}$

If we delete the number 1 from the radicand, we obtain $b_n = \frac{1}{\sqrt[3]{n^2}}$.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}, \text{ which is a p-series with } p = \frac{2}{3}, \text{ then its divergent.}$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt[3]{n^2}}{\sqrt[3]{n^2 + 1}} = \lim_{n \to \infty} \sqrt[3]{\frac{n^2}{n^2 + 1}} = 1 > 0.$$
From theorem 4.5,
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 1}} \text{ diverges.}$$

æ

イロト イ団ト イヨト イヨト

Solution

• The n^{th} term of the series is $a_n = \frac{3n^2 + 5n}{2^n(n^2 + 1)}$ If we delete the least magnitude in the numerator and the denominator , we obtain $\frac{3n^2}{2^n n^2} = \frac{3}{2^n}$, we choose $b_n = \frac{3}{2^n}$ which is a geometric series with $r = \frac{1}{2}$, then its convergent. $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(3n^2 + 5n)2^n}{2^n(n^2 + 1)} = \lim_{n \to \infty} \frac{3n^2 + 5n}{n^2 + 1} = 3 > 0.$ From theorem 4.5, $\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n(n^2 + 1)}$ converges.

Exercise 2.1

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{8n + \sqrt{n}}{5 + n^2 + n^{\frac{7}{2}}}$$

글▶ 글

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
 - 4 Alternating Series and Absolute convergence
 - 5 Power Series
 - 6 Power series representations of functions
 - 7 Taylor and Maclaurin series

Theorem 3.1 ∞

- Let $\sum_{n=1}^{\infty} a_n$ be positive-term series, and suppose that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$.
 - If L < 1, the series converges.
 - 2 If L > 1, the series diverges.
 - If L = 1, apply another test, the series may be convergent or divergent.

Example 3.1

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

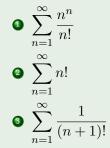
$$\sum_{n=1}^{\infty} \frac{3^n}{n^2}$$

Solution

Applying theorem 5.1 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}n!}{3^n(n+1)!} = \lim_{n \to \infty} \frac{3}{n+1} = 0 < 1,$ the the series converges.
Applying theorem 5.1 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}n^2}{3^n(n+1)^2} = \lim_{n \to \infty} \frac{3n^2}{n^2 + 2n + 1} = 3 > 1,$ the the series diverges.

Exercise 3.1

Decide whether the following series converges or diverges?



æ

· · · · · · · · ·

Theorem 3.2 ∞

- Let $\sum_{n=1}^{\infty} a_n$ be positive-term series, and suppose that $\lim_{n \to \infty} \sqrt[n]{a_n} = L$.
 - If L < 1, the series converges.
 - 2 If L > 1, the series diverges.
 - If L = 1, apply another test, the series may be convergent or divergent.

Example 3.2

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$$

Solution

Applying theorem 5.2 $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{\frac{2^{3n+1}}{n^n}} = \lim_{n\to\infty} \frac{2^{3+\frac{1}{n}}}{n} = 0 < 1,$ the the series converges.

Exercise 3.2

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{5^n}{n^n}$$

$$\sum_{n=1}^{\infty} \left(\frac{8n^2 - 7}{n+1}\right)^n$$

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
 - 5 Power Series
 - 6 Power series representations of functions
 - 7 Taylor and Maclaurin series

Definition 4.1 (Alternating Series)

The alternating series is the series defined by

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + \dots + (-1)^{n-1} a_n + \dots$$

Theorem 4.1 (Alternating Series Test (AST))

The alternating series $\sum_{n=1}^{\infty}(-1)^{n-1}a_n$ converges if the two following conditions are satisfied

$$a_k \ge a_{k+1} > 0, \text{ for every } k,$$

$$\lim_{n \to \infty} a_n = 0$$

Example 4.1

Determine whether the alternating series converges or diverges.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2 - 3}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n - 3}$$

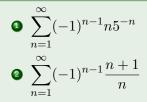
Alternating Series and Absolute convergence

Solution

•
$$a_n = \frac{2n}{4n^2 - 3}$$

• $a_k - a_{k+1} = \frac{2k}{4k^2 - 3} - \frac{2(k+1)}{4(k+1)^2 - 3} = \frac{8k^2 + 8k + 6}{(4k^2 - 3)(4k^2 + 8k + 1)} \ge 0$,
so $a_k \ge a_{k+1}$
• $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{4n^2 - 3} = 0$,
From Theorem 6.1, the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2 - 3}$ converges.
• $a_n = \frac{2n}{4n - 3}$
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{4n - 3} = \frac{1}{2}$, From Theorem 3.4, the series
 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2 - 3}$ diverges.

Exercise 4.1



æ

Definition 4.2 (Absolute convergence)

The series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + \dots + |a_n| + \dots$$

is convergent.

Example 4.2

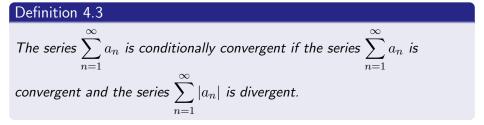
Prove that the following alternating series is absolutely convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + (-1)^{n-1} \frac{1}{n^2} + \dots$$

Solution

We have
$$a_n = (-1)^{n-1} \frac{1}{n^2}$$
, then

$$\sum_{n=1}^{\infty} |a_n| = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots$$
, which a p-series with $p = 2$, thus its convergent. Then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.



Theorem 4.2

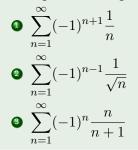
If the series
$$\sum_{n=1}^\infty a_n$$
 is absolutely convergent the the series $\sum_{n=1}^\infty a_n$ is convergent

Integral Calculus (Math 228)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise 4.2

Determine whether the series is absolute convergent, conditionally convergent or divergent



э

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem 4.3 (Absolute Ratio Test)

▲ □ ▶ ▲ 三 ▶ ▲ 三

Example 4.3

Determine whether the following series is absolutely convergent, conditionally convergent, or divergent:

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 4}{2^n}$$

Solution

$$\begin{split} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \frac{(n+1)^2 + 4}{2^{n+1}} \frac{2^n}{n^2 + 4} \right| \\ &= \lim_{n \to \infty} \frac{1}{2} \left(\frac{n^2 + 2n + 5}{n^2 + 4} \right) = \frac{1}{2} < 1, \end{split}$$
then, using theorem 6.3, the series is absolutely convergent.

Exercise 4.3

Determine whether the series is absolute convergent, conditionally convergent or divergent

•
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-10)^n}{n!}$$

•
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^4}{e^n}$$

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- **5** Power Series
 - 6 Power series representations of functions
 - 7 Taylor and Maclaurin series

Definition 5.1 (Power Series)

Let x be a variable. A power series in x is a series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

where each a_k is a real number.

Remark 5.1

To find other values of x that produce convergent series, we often use the ratio test for absolute convergence, Theorem 4.3, as illustrated in the following examples.

Example 5.1

Find all values of x for which the following power series is absolutely convergent:

$$\sum_{n=0}^{\infty} \frac{n}{5^n} x^n = \frac{1}{5}x + \frac{2}{5^2}x^2 + \dots + \frac{n}{5^n}x^n + \dots$$

▶ ∢ ∃ ▶

Solution

If we let
$$u_n = \frac{n}{5^n} x^n$$
.

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{5^{n+1}} \frac{5^n}{nx^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)x}{5n} \right| = \lim_{n \to \infty} \left(\frac{n+1}{5n} \right) |x| = \frac{1}{5} |x|.$$

By the ratio test (Theorem 4.3), with $L = \frac{1}{5}|x|$, the series is absolutely convergent if the following equivalent inequalities are true:

$$L = \frac{1}{5}|x| < 1 \Longrightarrow |x| < 5 \Longrightarrow -5 < x < 5$$

Example 5.2

Find all values of x for which the following power series is absolutely convergent:

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{1}{1!} x + \frac{1}{2!} x^2 + \dots + \frac{1}{n!} x^n + \dots$$

▶ ∢ ∃ ▶

Solution

If we let
$$u_n = \frac{1}{n!} x^n$$
.

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = \lim_{n \to \infty} \frac{1}{n+1} |x| = 0.$$

By the ratio test (Theorem 4.3), with L = 0 < 1, the power series is absolutely convergent for every real number x.

Example 5.3

Find all values of x for which the power series $\sum_{n=0}^{\infty} n! x^n$ is convergent.

æ

Solution

If we let
$$u_n = n!x^n$$
, if $x \neq 0$.

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right|$$

$$= \lim_{n \to \infty} |(n+1)x| = \lim_{n \to \infty} (n+1)|x| = \infty.$$
and, by the ratio test (Theorem 4.3), the series diverges. Hence, the power series is convergent only if $x = 0$.

æ

(日) (四) (日) (日) (日)

Theorem 5.1

If a power series ∑[∞]_{n=0} a_nxⁿ converges for a nonzero number c, then it is absolutely convergent whenever |x| < |c|.
If a power series ∑[∞]_{n=0} a_nxⁿ diverges for a nonzero number d, then it diverges whenever |x| > |d|.

Theorem 5.2

 ∞

- If $\sum_{n=0}^{\infty} a_n x^n$ a Power series, then exactly one of the following is true:
 - The series converges only if x = 0.
 - **2** The series is absolutely convergent for every x.
 - There is a number r > 0 such that the series is absolutely convergent if x is in the open interval (-r, r) (|x| < r) and divergent if x < -r or x > r (|x| > r).

Remark 5.2

- The number r is called the **radius of convergence** of the series. Either convergence or divergence may occur at -r or r, depending on the nature of the series.
- The totality of numbers for which a power series converges is called its **interval of convergence**. If the radius of convergence r is positive, then the interval of convergence is one of the following

$$(-r,r), (-r,r], [-r,r), [-r,r]$$

Example 5.4

Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n$$

Solution

Note that the coefficient of x^0 is 0 and the summation begin with 1. If we let $u_n = \frac{1}{\sqrt{n}} x^n$. $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{x^n} \right|$ $= \lim_{n \to \infty} \left| \frac{\sqrt{n}}{\sqrt{n+1}} x \right| = \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} |x| = |x|.$

イロト イヨト イヨト

By the ratio test (Theorem 4.3), with L = |x|, the series is absolutely convergent if the following equivalent inequalities are true:

 $L = |x| < 1 \implies -1 < x < 1$, then the radius of convergence is r = 1. The case when x = 1, the power series will be a p-series with $p = \frac{1}{2}$, which is divergent.

The case when x = -1, the power series will be an alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ which is convergent. Thus the interval of convergence is [-1, 1).

Definition 5.2

Let c be a real number and x be a variable. A **power series in** x - c is a series of the form

$$\sum_{n=1}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \dots + a_n (x-c)^n + \dots$$

where each a_k is a real number.

Theorem 5.3

 ∞

- If $\sum a_n(x-c)^n$ a Power series, then exactly one of the following is true: n=0
 - The series converges only if x c = 0, that is x = c.
 - The series is absolutely convergent for every x. 2
 - Solution There is a number r > 0 such that the series is absolutely convergent if x is in the open interval (c-r, c+r) (|x-c| < r) and divergent if x < c - r or x > c + r (|x - c| > r).

Example 5.5

Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1} (x-3)^n$$

Solution

If we let
$$u_n = (-1)^n \frac{1}{n+1} (x-3)^n$$
.

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+2} \frac{n+1}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n+1}{n+2} (x-3) \right| = \lim_{n \to \infty} \frac{n+1}{n+2} |x-3| = |x-3|.$$

By the ratio test (Theorem 4.3), with L = |x - 3|, the series is absolutely convergent if the following equivalent inequalities are true: $L = |x - 3| < 1 \Longrightarrow -1 < x - 3 < 1 \Longrightarrow 2 < x < 4.$ The case when x = 4, the power series will be an alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1}$ which is convergent. The case when x = 2, the power series will be an harmonic series $\sum_{n=1}^{\infty} \frac{1}{n+1}$ which is divergent. Thus the interval of convergence is (2, 4].

- 4 個 ト 4 ヨ ト 4 ヨ ト -

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
 - 7 Taylor and Maclaurin series

Definition 6.1

A power series $\sum a_n x^n$ determines a function f whose domain is the interval of convergence of the series. Specifically, for each x in this interval, we let f(x) equal the sum of the series, that is,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

If a function f is defined in this way, we say that $\sum a_n x^n$ is a power series representation for f(x) (or of f(x)). We also use the phrase f is represented by the power series.

Find a function f that is represented by the power series % f(x)=f(x)

$$1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$

Solution

If |x| < 1, then the series is a geometric series which is convergent and has the sum $\frac{a}{1-r} = \frac{1}{1-(-x)} = \frac{1}{1+x}$

Hence we may write

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$

This result is a power series representation for $f(x) = \frac{1}{1+x}$ on the interval (-1,1).

・ロット (雪) (日) (日)

Theorem 6.1

Suppose that a power series $\sum a_n x^n$ has a radius of convergence r > 0, and let f be defined by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

for every x in the interval of convergence. If -r < x < r. then

•
$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + \dots = \sum_{n=1}^{\infty} na_nx^{n-1}$$

$$\int_0^x f(x) \, dx = a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \dots + a_n \frac{x^{n+1}}{n+1} + \dots = \sum_{n=0}^\infty a_n \frac{x^{n+1}}{n+1}$$

The series obtained by differentiation or integration has the same radius of convergence as $\sum a_n x^n$.

イロト イヨト イヨト -

Use a power series representation for $\frac{1}{1+x}$ to obtain a power series representation for $\frac{1}{(1+x)^2}, \text{ if } |x| < 1$

Solution

We have

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$

If we differentiate each term of this series, then

$$\frac{-1}{(1+x)^2} = -1 + 2x - 3x^2 + \dots + (-1)^n nx^{n-1} + \dots$$

we may multiply both sides by -1, obtaining

$$\frac{1}{(1+x)^2} = 1 - 2x + 3x^2 + \dots + (-1)^{n+1}nx^{n-1} + \dots, \text{ if } |x| < 1$$

Find a power series representation for

 $\ln(1+x)$, if |x| < 1

Solution

If
$$|x| < 1$$
, then $\ln(1+x) = \int_0^x \frac{1}{1+t} dt$ We have

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$
then $\ln(1+x) = \int_0^x \left[1 - t + t^2 - t^3 + \dots + (-1)^n t^n + \dots\right] dt$ we may integrate each term of the series as follows:
 $\ln(1+x) = \int_0^x 1 dt - \int_0^x t dt + \int_0^x t^2 dt + \dots + (-1)^n \int_0^x t^n dt + \dots$
 $= x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots$ if $|x| < 1$

æ

4 3 4 3 4 3 4

Use the results of Example 1.3 to calculate $\ln(1.1)$ to five decimal places.

Solution

In Example 1.3, we found a series representation for $\ln(1+x)$ if |x| < 1. Substituting 0.1 for x in that series gives us the alternating series $\ln(1.1) = 0.1 - \frac{(0.1)^2}{2} + \frac{(0.1)^3}{3} + \frac{(0.1)^4}{4} + \frac{(0.1)^5}{5} + \dots \\ \approx 0.1 - 0.005 + 0.000333 - 0.000025 + 0.000002 + \dots$ If we sum the first four terms on the right and round off to five decimal places, we obtain $\ln(1.1) \approx 0.09531$.

Find a power series representation for $\tan^{-1} x$.

Solution

We first observe that

$$\tan^{-1}x = \int_0^x \frac{1}{1+t^2} dt$$

We have $\frac{1}{1+t^2} = \frac{1}{1-(-t^2)}$, if $|t| < 1$, then $\frac{1}{1+t^2}$ is the sum of a geometric series with $a = 1$ and $r = -t^2$, thus

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \dots + (-1)^n t^{2n} + \dots$$

we may integrate each term of the series from $0 \mbox{ to } x$ to obtain

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots,$$

when |x| < 1. It can be proved that this series representation is also valid when |x| = 1.

Theorem 6.2

If x is any real number,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Remark 6.1

To obtain a power series representation for e^{-x} , we need only substitute -x for x:

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = 1 + (-x) + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \dots + \frac{(-x)^n}{n!} + \dots$$

or

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots$$

Image: Image:

Find the power series representations of the functions:

$$f(x) = \cosh(x)$$

$$f(x) = \sinh(x)$$

∃ ► < ∃ ►

Solution

• We have
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
.
Since $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$ and
 $e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots$,
we find $e^x + e^{-x} = 2 + 2\frac{x^2}{2!} + 2\frac{x^4}{4!} + \dots + 2\frac{x^{2n}}{2n!} + \dots$, thus
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{2n!} + \dots$

∃ ► < ∃ ►

We have
$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
.
we find $e^x - e^{-x} = 2x + 2\frac{x^3}{3!} + 2\frac{x^5}{5!} + \dots + 2\frac{x^{2n+1}}{(2n+1)!} + \dots$, thus
 $\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$

Integral Calculus (Math 228)

Find a power series representation for
$$f(x) = xe^{-2x}$$
.

Solution

First we substitute $-2x\ {\rm for}\ x\ {\rm in}\ e^x$ representation and we have

$$e^{-2x} = 1 + (-2x) + \frac{(-2x)^2}{2!} + \frac{(-2x)^3}{3!} + \dots + \frac{(-2x)^n}{n!} + \dots$$
$$e^{-2x} = 1 - 2x + 4\frac{x^2}{2!} - 8\frac{x^3}{3!} + \dots + \frac{(-2)^n x^n}{n!} + \dots$$

Multiplying both sides by x gives us

$$xe^{-2x}x - 2x^{2} + 4\frac{x^{3}}{2!} - 8\frac{x^{4}}{3!} + \dots + \frac{(-2)^{n}x^{n+1}}{n!} + \dots$$
$$f(x) = xe^{-2x} = \sum_{n=0}^{\infty} \frac{(-2)^{n}x^{n+1}}{n!}$$

Find a power series representation for \int_{0}^{∞}

$$\int_0^x \frac{e^t - 1}{t} \, dt.$$

Solution

Using the power series representation of $e^{\boldsymbol{x}}$ we have

$$e^{t} - 1 = t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots + \frac{t^{n}}{n!} + \dots$$

then

 $\frac{e^t - 1}{t} = 1 + \frac{t}{2!} + \frac{t^2}{3!} + \dots + \frac{t^{n-1}}{n!} + \dots$

we may integrate each term of the series from $0 \mbox{ to } x$ to obtain

$$\int_0^x \frac{e^t - 1}{t} dt = x + \frac{x^2}{2 \times 2!} + \frac{x^3}{3 \times 3!} + \dots + \frac{x^n}{n \times n!} + \dots$$

Exercise 6.1

Find a power series representation for f(x), f'(c) and $\int_{0}^{x} f(t) dt$. • $f(x) = \frac{1}{3 - 2x}$. **2** $f(x) = \frac{x^3}{4 - x^3}$. 3 $f(x) = \frac{x^2 + 1}{x - 1}$. $\bullet f(x) = x \ln(1-x).$ **5** $f(x) = x^2 e^{x^2}$

Exercise 6.2

Approximate the following integrals to four decimal places.

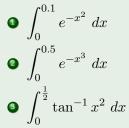


Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
 - 7 Taylor and Maclaurin series

Taylor and Maclaurin series

In the preceding section, we considered power series representations for several special functions, including those where f(x) has the form

$$\frac{1}{1+x}$$
, $\ln(1+x)$, $\tan^{-1}(x)$, e^x , or , $\cosh(x)$

provided x is suitably restricted.

We now wish to consider the following two general questions.

Questions

() If a function f(x) has a power series representation

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 or $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$

what is the form of a_n ?

What conditions are sufficient for a function f to have a power series representation?

Theorem 7.1 (Maclaurin series for f(x))

If a function f has a power series representation

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

with radius of convergence r > 0, then $f^{(k)}(0)$ exist for every positive integer k and $a_n = \frac{f^{(n)}(0)}{n!}$. Thus

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

or

Theorem 7.2 (Taylor series for f(x))

If a function f has a power series representation

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

with radius of convergence r > 0, then $f^{(k)}(c)$ exist for every positive integer k and $a_n = \frac{f^{(n)}(c)}{n!}$. Thus

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + \dots$$

or
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Exercise 7.1

Find Maclaurin series of

æ

▶ ∢ ∃ ▶

Exercise 7.2

Find Taylor series of

•
$$\sin x, x = \frac{\pi}{6}$$

• $\ln x, x = c, c > 0$

102 / 103

æ

(日) (四) (日) (日) (日)

Exercise 7.3

Approximate the improper integral to four decimal places.

$$\begin{array}{c}
\bullet \quad \int_{0}^{1} \sin x^{2} \\
\bullet \quad \int_{0}^{1} \frac{1 - \cos x}{x^{2}} \\
\end{array}$$