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Convergent or Divergent Series

Definition 1.1 (Infinite Series)

Let {an} be an infinite sequence. An expression of the form
∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + . . .

is called an infinite series or simply series.

Definition 1.2 (Partial sum)

1 The nth partial sum of the infinite series
∞∑
n=1

an is

Sn =

n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an

2 The sequence of partial sums associated with the infinite series
∞∑
n=1

an is
S1, S2, S3, . . . , Sn, . . .
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Convergent or Divergent Series

Definition 1.3

An infinite series
∞∑
n=1

an with sequence of partial sums {Sn} is

convergent (or converges), if lim
n→∞

Sn = S, for some real number

S. The series is divergent (or diverges), if this limit does not exist.

If the series
∞∑
n=1

an is a convergent infinite series and lim
n→∞

Sn = S,

then S is called the sum of the series and we write

S =

∞∑
n=1

an

If the series diverges, it has no sum.
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Convergent or Divergent Series

Example 1.1

Prove that the infinite series

∞∑
n=1

1

n(n+ 1)
=

1

1× 2
+

1

2× 3
+ · · ·+ 1

n(n+ 1)
+ . . .

converges and find its sum.
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Convergent or Divergent Series

Solution

Let an =
1

n(n+ 1)
The partial fraction decomposition of an is

an =
1

n(n+ 1)
=

1

n
− 1

n+ 1

Sn = a1 + a2 + a3 + · · ·+ an

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
=

n

n+ 1

lim
n→∞

Sn = lim
n→∞

n

n+ 1
= 1,

the series converges and have the sum 1.
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Convergent or Divergent Series

Example 1.2

Prove that the infinite series

∞∑
n=1

1

4n2 − 1
=

1

3
+

1

15
+ · · ·+ 1

4n2 − 1
+ . . .

converges and find its sum.
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Convergent or Divergent Series

Solution

Let an =
1

4n2 − 1
=

1

(2n− 1)(2n+ 1)
The partial fraction decomposition of an is

an =
1

n(n+ 1)
=

1

2(2n− 1)
− 1

2(2n+ 1)
+

1

4n− 2
− 1

4n+ 2

Sn = a1 + a2 + a3 + · · ·+ an

=

(
1

2
− 1

6

)
+

(
1

6
− 1

10

)
+

(
1

10
− 1

14

)
+ · · ·+ 1

4n− 2
− 1

4n+ 2

=
1

2
− 1

4n+ 2
=

2n+ 2

4n+ 2

lim
n→∞

Sn = lim
n→∞

2n+ 2

4n+ 2
=

1

2
,

the series converges and have the sum
1

2
.
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Convergent or Divergent Series

Definition 1.4 (Harmonic series)

The Harmonic series is the series defined as follows

∞∑
n=1

1

n
= 1 +

1

2
+ · · ·+ 1

n
+ . . .

Theorem 1.1

The Harmonic series diverge.
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Convergent or Divergent Series

Definition 1.5 (Geometric series)

The Geometric series is the series defined as follows

∞∑
n=1

arn = ar + ar2 + ar3 + · · ·+ arn + . . .

where a and r are real numbers, and a ̸= 0.

Theorem 1.2

Let a ̸= 0. The geometric series
∞∑
n=1

arn

1 converges and has the sum S =
a

1− r
if |r| < 1.

2 diverges if |r| > 1.
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Convergent or Divergent Series

Example 1.3

Prove that the infinite series

∞∑
n=1

6

10n
= 0.6 + 0.06 + 0.006 + · · ·+ 6

10n
+ . . .

converges and find its sum.

Solution

This is a Geometric series with a = 6 and r =
1

10
.

By Theorem 3.1, the series converges and the sum

S =
6

1− 0.1
=

6

0.9
=

20

3
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Convergent or Divergent Series

Example 1.4

Prove that the infinite series

∞∑
n=1

2

3n
=

2

3
+

2

9
+

2

27
+ · · ·+ 2

3n
+ . . .

converges and find its sum.

Solution

This is a Geometric series with a = 2 and r =
1

3
.

By Theorem 3.2, the series converges and the sum S =
2

1− 1
3

=
2
2
3

= 3
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Convergent or Divergent Series

Exercise 1.1

Determine whether the following series converges. If so, give the sum.

1

∞∑
n=1

5

(5n+ 2)(5n+ 7)
.

2

∞∑
n=1

325

1000n
= 0.325 + 0.000325 + · · ·+ 325

1000n
+ . . .
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Convergent or Divergent Series

Theorem 1.3

If an infinite series
∞∑
n=1

an converges, then lim
n→∞

an = 0

Theorem 1.4

If lim
n→∞

an ̸= 0, then infinite series
∞∑
n=1

an diverges.
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Convergent or Divergent Series

Example 1.5

Determine whether the following series converges or diverges

∞∑
n=1

n

2n+ 1
=

1

3
+

2

5
+

3

7
· · ·+ n

2n+ 1
+ . . .

converges and find its sum.

Solution

Since

lim
n→∞

an = lim
n→∞

n

2n+ 1
=

1

2
̸= 0

By theorem 3.4 the series diverges.
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Convergent or Divergent Series

Theorem 1.5

If
∞∑
n=1

an and
∞∑
n=1

bn are series such that aj = bj for every j > k, with k is

a positive integer, then both series converges or both series diverges.

Theorem 1.6

For every positive integer k, the series

∞∑
n=1

an = a1 + a2 + a3 + . . . and
∞∑

n=k+1

an = ak+1 + ak+2 + . . .

either both converges or diverges.
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Convergent or Divergent Series

Example 1.6

Prove that the infinite series

∞∑
n=5

1

n(n+ 1)
=

1

5× 6
+

1

6× 7
+ · · ·+ 1

n(n+ 1)
+ . . .

converges and find its sum.

Solution

In example 3.1, we proved that the series
∞∑
n=1

1

n(n+ 1)
, converges. So, by

theorem 3.6, the series
∞∑
n=5

1

n(n+ 1)
converges.
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Convergent or Divergent Series

Theorem 1.7

If
∞∑
n=1

an and
∞∑
n=1

bn are convergent series with sums A ans B, respectively,

then

1

∞∑
n=1

an + bn converges and has sum A+B.

2

∞∑
n=1

an − bn converges and has sum A−B.

3

∞∑
n=1

can converges and has sum cA, for every real number c.
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Convergent or Divergent Series

Example 1.7

Prove that the infinite series

∞∑
n=1

(
7

n(n+ 1)
+

2

3n

)
converges and find its sum.
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Convergent or Divergent Series

Solution
∞∑
n=1

(
7

n(n+ 1)
+

2

3n

)
= 7

∞∑
n=1

1

n(n+ 1)
+

∞∑
n=1

2

3n

From example 3.1, the series
∞∑
n=1

1

n(n+ 1)
converges and

∞∑
n=1

1

n(n+ 1)
= 1.

From example 3.4, the series
∞∑
n=1

2

3n
converges and

∞∑
n=1

2

3n
= 3.

So the series
∞∑
n=1

(
7

n(n+ 1)
+

2

3n

)
converges and

∞∑
n=1

(
7

n(n+ 1)
+

2

3n

)
= 7 ∗ 1 + 3 = 10
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Convergent or Divergent Series

Theorem 1.8

If
∞∑
n=1

an is a convergent series and
∞∑
n=1

bn is a divergent series, then the

series
∞∑
n=1

an + bn is divergent.

Example 1.8

Determine the convergence or divergence of the series

∞∑
n=1

(
1

5n
+

1

n

)
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Convergent or Divergent Series

Solution

The series
∞∑
n=1

1

5n
is a geometric series with r =

1

5
, so it’s convergent.

∞∑
n=1

1

n
is a the harmonis series, so it’s divergent.

From theorem 3.8, the series
∞∑
n=1

(
1

5n
+

1

n

)
diverges.
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Positive-term Series

Definition 2.1 (positive-term series)

A positive-term series, is a series
∞∑
n=1

an such that an > 0 for every n.

Theorem 2.1

If
∞∑
n=1

an is a positive-term series and if there exists a number M such that

Sn = a1 + a2 + a3 + · · ·+ an < M, for every n

then the series converges and has a sum S ≤ M . If no such M exists the
series diverges.
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Positive-term Series

Theorem 2.2 (Integral test)

If
∞∑
n=1

an is a positive-term series, let f(n) = an and let f be the function

obtained by replacing n with x. If f is positive-valued, continuous and

decreasing for every real number x ≥ 1, then the series
∞∑
n=1

an

1 converges if

∞∫
1

f(x) dx converges.

2 diverges if

∞∫
1

f(x) dx diverges.
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Positive-term Series

Example 2.1

Use the integral test to prove that the Harmonic series
∞∑
n=1

1

n
diverges.

Solution

Since an =
1

n
, we let f(n) =

1

n
. Replacing n by x gives f(x) =

1

x
. For

every x ≥ 1, f is positive-valued, continuous and decreasing, we can apply
then integral test.
∞∫
1

1

x
dx = lim

t→∞

t∫
1

1

x
dx = lim

t→∞
[lnx]t1 = lim

t→∞
[ln t− ln 1] = ∞.

The series diverges by theorem 4.2.
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Positive-term Series

Definition 2.2 (p-series)

A p-series, is a series of the form

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ · · ·+ 1

np
+ . . .

where p is a positive real number.

Theorem 2.3 (p-series test)

The p-series
∞∑
n=1

1

np

1 converges if p > 1.

2 diverges if p ≤ 1.
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Positive-term Series

Example 2.2

Decide whether the following series converges or diverges?

1

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+ · · ·+ 1

n2
+ . . .

2

∞∑
n=1

1√
n
= 1 +

1√
2
+

1√
3
+ · · ·+ 1√

n
+ . . .

3

∞∑
n=1

1

n
3
2

= 1 +
1

2
3
2

+
1

3
3
2

+ · · ·+ 1

np
+ . . .

4

∞∑
n=1

1
3
√
n
= 1 +

1
3
√
2
+

1
3
√
3
+ · · ·+ 1

3
√
n
+ . . .
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Positive-term Series

Theorem 2.4 (Basic Comparison Test)

Let
∞∑
n=1

an and
∞∑
n=1

bn be positive-term series.

1 If the series
∞∑
n=1

bn converges and an ≤ bn for every positive integer n,

the series
∞∑
n=1

an converges.

2 If the series
∞∑
n=1

bn diverges and an ≥ bn for every positive integer n,

the series
∞∑
n=1

an diverges.
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Positive-term Series

Example 2.3

Decide whether the following series converges or diverges?

1

∞∑
n=1

1

2 + 5n
.

2

∞∑
n=1

3√
n− 1

.
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Positive-term Series

Solution

1 For every n ≥ 1,
1

2 + 5n
<

1

5n
.

Since the series
∞∑
n=1

1

5n
converges, then the series

∞∑
n=1

1

2 + 5n

converges.

2 For every n ≥ 1,
1√
n− 1

>
1√
n
, then

3√
n− 1

>
1√
n
.

Since the series
∞∑
n=1

1√
n

diverges, then the series
∞∑
n=1

3√
n− 1

diverges.
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Positive-term Series

Theorem 2.5 (Limit Comparison Test)

Let
∞∑
n=1

an and
∞∑
n=1

bn be positive-term series. If there is a positive real

number c such that
lim
n→∞

an
bn

= c > 0,

then either both series converges or both series diverges.
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Positive-term Series

Example 2.4

Decide whether the following series converges or diverges?

1

∞∑
n=1

1
3
√
n2 + 1

.

2

∞∑
n=1

3n2 + 5n

2n(n2 + 1)
.
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Positive-term Series

Solution

1 The nth term of the series is an =
1

3
√
n2 + 1

If we delete the number 1 from the radicand, we obtain bn =
1

3
√
n2

.

∞∑
n=1

1
3
√
n2

=

∞∑
n=1

1

n
2
3

, which is a p-series with p = 2
3 , then its divergent.

lim
n→∞

an
bn

= lim
n→∞

3
√
n2

3
√
n2 + 1

= lim
n→∞

3

√
n2

n2 + 1
= 1 > 0.

From theorem 4.5,
∞∑
n=1

1
3
√
n2 + 1

diverges.
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Positive-term Series

Solution

2 The nth term of the series is an =
3n2 + 5n

2n(n2 + 1)
If we delete the least magnitude in the numerator and the

denominator , we obtain
3n2

2nn2
=

3

2n
, we choose bn =

3

2n
which is a

geometric series with r = 1
2 , then its convergent.

lim
n→∞

an
bn

= lim
n→∞

(3n2 + 5n)2n

2n(n2 + 1)
= lim

n→∞

3n2 + 5n

n2 + 1
= 3 > 0.

From theorem 4.5,
∞∑
n=1

3n2 + 5n

2n(n2 + 1)
converges.
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Positive-term Series

Exercise 2.1

Decide whether the following series converges or diverges?

∞∑
n=1

8n+
√
n

5 + n2 + n
7
2
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The Ratio Test and Root test

Theorem 3.1

Let
∞∑
n=1

an be positive-term series, and suppose that lim
n→∞

an+1

an
= L.

1 If L < 1, the series converges.

2 If L > 1, the series diverges.

3 If L = 1, apply another test, the series may be convergent or
divergent.
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The Ratio Test and Root test

Example 3.1

Decide whether the following series converges or diverges?

1

∞∑
n=1

3n

n!
.

2

∞∑
n=1

3n

n2
.
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The Ratio Test and Root test

Solution
1 Applying theorem 5.1

lim
n→∞

an+1

an
= lim

n→∞

3n+1n!

3n(n+ 1)!
= lim

n→∞

3

n+ 1
= 0 < 1,

the the series converges.

2 Applying theorem 5.1

lim
n→∞

an+1

an
= lim

n→∞

3n+1n2

3n(n+ 1)2
= lim

n→∞

3n2

n2 + 2n+ 1
= 3 > 1,

the the series diverges.
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The Ratio Test and Root test

Exercise 3.1

Decide whether the following series converges or diverges?

1

∞∑
n=1

nn

n!

2

∞∑
n=1

n!

3

∞∑
n=1

1

(n+ 1)!
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The Ratio Test and Root test

Theorem 3.2

Let
∞∑
n=1

an be positive-term series, and suppose that lim
n→∞

n
√
an = L.

1 If L < 1, the series converges.

2 If L > 1, the series diverges.

3 If L = 1, apply another test, the series may be convergent or
divergent.
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The Ratio Test and Root test

Example 3.2

Decide whether the following series converges or diverges?

∞∑
n=1

23n+1

nn
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The Ratio Test and Root test

Solution

Applying theorem 5.2

lim
n→∞

n
√
an = lim

n→∞
n

√
23n+1

nn
= lim

n→∞

23+
1
n

n
= 0 < 1,

the the series converges.
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The Ratio Test and Root test

Exercise 3.2

Decide whether the following series converges or diverges?

1

∞∑
n=1

5n

nn

2

∞∑
n=1

(
8n2 − 7

n+ 1

)n
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Alternating Series and Absolute convergence

Definition 4.1 (Alternating Series)

The alternating series is the series defined by

∞∑
n=1

(−1)n−1an = a1 − a2 + · · ·+ (−1)n−1an + . . .
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Alternating Series and Absolute convergence

Theorem 4.1 (Alternating Series Test (AST))

The alternating series
∞∑
n=1

(−1)n−1an converges if the two following

conditions are satisfied

1 ak ≥ ak+1 > 0, for every k,

2 lim
n→∞

an = 0
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Alternating Series and Absolute convergence

Example 4.1

Determine whether the alternating series converges or diverges.

1

∞∑
n=1

(−1)n−1 2n

4n2 − 3

2

∞∑
n=1

(−1)n−1 2n

4n− 3
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Alternating Series and Absolute convergence

Solution

1 an =
2n

4n2 − 3

ak−ak+1 =
2k

4k2 − 3
− 2(k + 1)

4(k + 1)2 − 3
=

8k2 + 8k + 6

(4k2 − 3)(4k2 + 8k + 1)
≥ 0,

so ak ≥ ak+1

lim
n→∞

an = lim
n→∞

2n

4n2 − 3
= 0,

From Theorem 6.1, the series
∞∑
n=1

(−1)n−1 2n

4n2 − 3
converges.

2 an =
2n

4n− 3

lim
n→∞

an = lim
n→∞

2n

4n− 3
=

1

2
, From Theorem 3.4, the series

∞∑
n=1

(−1)n−1 2n

4n2 − 3
diverges.
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Alternating Series and Absolute convergence

Exercise 4.1

1

∞∑
n=1

(−1)n−1n5−n

2

∞∑
n=1

(−1)n−1n+ 1

n
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Alternating Series and Absolute convergence

Definition 4.2 (Absolute convergence)

The series
∞∑
n=1

an is absolutely convergent if the series

∞∑
n=1

|an| = |a1|+ |a2|+ · · ·+ |an|+ . . .

is convergent.
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Alternating Series and Absolute convergence

Example 4.2

Prove that the following alternating series is absolutely convergent.

∞∑
n=1

(−1)n−1 1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·+ (−1)n−1 1

n2
+ . . .

Solution

We have an = (−1)n−1 1

n2
, then

∞∑
n=1

|an| = 1+
1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
+ . . . , which a p-series with p = 2,

thus its convergent. Then the series
∞∑
n=1

an is absolutely convergent.
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Alternating Series and Absolute convergence

Definition 4.3

The series
∞∑
n=1

an is conditionally convergent if the series
∞∑
n=1

an is

convergent and the series
∞∑
n=1

|an| is divergent.

Theorem 4.2

If the series
∞∑
n=1

an is absolutely convergent the the series
∞∑
n=1

an is

convergent
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Alternating Series and Absolute convergence

Exercise 4.2

Determine whether the series is absolute convergent, conditionally
convergent or divergent

1

∞∑
n=1

(−1)n+1 1

n

2

∞∑
n=1

(−1)n−1 1√
n

3

∞∑
n=1

(−1)n
n

n+ 1
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Alternating Series and Absolute convergence

Theorem 4.3 (Absolute Ratio Test)

Let
∞∑
n=1

an be a series of non-zero terms, and suppose lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

1 If L < 1 then the series
∞∑
n=1

an is absolutely convergent.

2 If L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ then the series
∞∑
n=1

an is divergent.

3 If L = 1, apply a different test; the series may be absolutely
convergent, conditionally convergent, or divergent.
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Alternating Series and Absolute convergence

Example 4.3

Determine whether the following series is absolutely convergent,
conditionally convergent, or divergent:

∞∑
n=1

(−1)n
n2 + 4

2n
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Alternating Series and Absolute convergence

Solution

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2 + 4

2n+1

2n

n2 + 4

∣∣∣∣
= lim

n→∞

1

2

(
n2 + 2n+ 5

n2 + 4

)
=

1

2
< 1,

then, using theorem 6.3, the series is absolutely convergent.

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 59 / 103



Alternating Series and Absolute convergence

Exercise 4.3

Determine whether the series is absolute convergent, conditionally
convergent or divergent

1

∞∑
n=1

(−1)n+1 (−10)n

n!

2

∞∑
n=1

(−1)n
n4

en
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Power Series

Definition 5.1 (Power Series)

Let x be a variable. A power series in x is a series of the form

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + . . .

where each ak is a real number.

Remark 5.1

To find other values of x that produce convergent series, we often use the
ratio test for absolute convergence, Theorem 4.3, as illustrated in the
following examples.
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Power Series

Example 5.1

Find all values of x for which the following power series is absolutely
convergent:

∞∑
n=0

n

5n
xn =

1

5
x+

2

52
x2 + · · ·+ n

5n
xn + . . .
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Power Series

Solution

If we let un = n
5nx

n.

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)xn+1

5n+1

5n

nxn

∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)x

5n

∣∣∣∣ = lim
n→∞

(
n+ 1

5n

)
|x| = 1

5
|x|.

By the ratio test (Theorem 4.3), with L =
1

5
|x|, the series is absolutely

convergent if the following equivalent inequalities are true:

L =
1

5
|x| < 1 =⇒ |x| < 5 =⇒ −5 < x < 5
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Power Series

Example 5.2

Find all values of x for which the following power series is absolutely
convergent:

∞∑
n=0

1

n!
xn = 1 +

1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + . . .
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Power Series

Solution

If we let un =
1

n!
xn.

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!

n!

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = lim
n→∞

1

n+ 1
|x| = 0.

By the ratio test (Theorem 4.3), with L = 0 < 1, the power series is
absolutely convergent for every real number x.
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Power Series

Example 5.3

Find all values of x for which the power series
∞∑
n=0

n!xn is convergent.
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Power Series

Solution

If we let un = n!xn, if x ̸= 0.

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣
= lim

n→∞
|(n+ 1)x| = lim

n→∞
(n+ 1)|x| = ∞.

and, by the ratio test (Theorem 4.3), the series diverges. Hence, the power
series is convergent only if x = 0.
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Power Series

Theorem 5.1

1 If a power series
∞∑
n=0

anx
n converges for a nonzero number c, then it

is absolutely convergent whenever |x| < |c|.

2 If a power series
∞∑
n=0

anx
n diverges for a nonzero number d, then it

diverges whenever |x| > |d|.
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Power Series

Theorem 5.2

If
∞∑
n=0

anx
n a Power series, then exactly one of the following is true:

1 The series converges only if x = 0.

2 The series is absolutely convergent for every x.

3 There is a number r > 0 such that the series is absolutely convergent
if x is in the open interval (−r, r) (|x| < r) and divergent if x < −r
or x > r (|x| > r).
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Power Series

Remark 5.2

The number r is called the radius of convergence of the series.
Either convergence or divergence may occur at −r or r, depending on
the nature of the series.

The totality of numbers for which a power series converges is called
its interval of convergence. If the radius of convergence r is
positive, then the interval of convergence is one of the following

(−r, r), (−r, r], [−r, r), [−r, r]
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Power Series

Example 5.4

Find the interval of convergence of the power series

∞∑
n=1

1√
n
xn

Solution

Note that the coefficient of x0 is 0 and the summation begin with 1.

If we let un =
1√
n
xn.

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

√
n+ 1

√
n

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ √
n√

n+ 1
x

∣∣∣∣ = lim
n→∞

√
n

n+ 1
|x| = |x|.
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Power Series

By the ratio test (Theorem 4.3), with L = |x|, the series is absolutely
convergent if the following equivalent inequalities are true:
L = |x| < 1 =⇒ −1 < x < 1, then the radius of convergence is r = 1.

The case when x = 1, the power series will be a p-series with p =
1

2
,

which is divergent.
The case when x = −1, the power series will be an alternating series
∞∑
n=1

(−1)n
1√
n

which is convergent.

Thus the interval of convergence is [−1, 1).
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Power Series

Definition 5.2

Let c be a real number and x be a variable. A power series in x− c is a
series of the form

∞∑
n=1

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · ·+ an(x− c)n + . . .

where each ak is a real number.
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Power Series

Theorem 5.3

If
∞∑
n=0

an(x− c)n a Power series, then exactly one of the following is true:

1 The series converges only if x− c = 0, that is x = c.

2 The series is absolutely convergent for every x.

3 There is a number r > 0 such that the series is absolutely convergent
if x is in the open interval (c− r, c+ r) (|x− c| < r) and divergent if
x < c− r or x > c+ r (|x− c| > r).
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Power Series

Example 5.5

Find the interval of convergence of the power series

∞∑
n=1

(−1)n
1

n+ 1
(x− 3)n

Solution

If we let un = (−1)n
1

n+ 1
(x− 3)n.

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣(x− 3)n+1

n+ 2

n+ 1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣∣∣n+ 1

n+ 2
(x− 3)

∣∣∣∣ = lim
n→∞

n+ 1

n+ 2
|x− 3| = |x− 3|.
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Power Series

By the ratio test (Theorem 4.3), with L = |x− 3|, the series is absolutely
convergent if the following equivalent inequalities are true:
L = |x− 3| < 1 =⇒ −1 < x− 3 < 1 =⇒ 2 < x < 4.
The case when x = 4, the power series will be an alternating series
∞∑
n=1

(−1)n
1

n+ 1
which is convergent.

The case when x = 2, the power series will be an harmonic series
∞∑
n=1

1

n+ 1
which is divergent.

Thus the interval of convergence is (2, 4].
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Power series representations of functions

Definition 6.1

A power series
∑

anx
n determines a function f whose domain is the

interval of convergence of the series. Specifically, for each x in this
interval, we let f(x) equal the sum of the series, that is,

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + . . .

If a function f is defined in this way, we say that
∑

anx
n is a power

series representation for f(x) (or of f(x)). We also use the phrase f is
represented by the power series.

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 79 / 103



Power series representations of functions

Example 6.1

Find a function f that is represented by the power series

1− x+ x2 − x3 + · · ·+ (−1)nxn + . . .

Solution

If |x| < 1, then the series is a geometric series which is convergent and has
the sum a

1− r
=

1

1− (−x)
=

1

1 + x
Hence we may write

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + . . .

This result is a power series representation for f(x) =
1

1 + x
on the

interval (−1, 1).
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Power series representations of functions

Theorem 6.1

Suppose that a power series
∑

anx
n has a radius of convergence r > 0,

and let f be defined by

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + . . .

for every x in the interval of convergence. If −r < x < r. then

1 f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · · =
∞∑
n=1

nanx
n−1

2

∫ x

0
f(x) dx = a0x+a1

x2

2
+a2

x3

3
+· · ·+an

xn+1

n+ 1
+· · · =

∞∑
n=0

an
xn+1

n+ 1

The series obtained by differentiation or integration has the same radius of

convergence as
∑

anx
n.
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Power series representations of functions

Example 6.2

Use a power series representation for
1

1 + x
to obtain a power series

representation for
1

(1 + x)2
, if |x| < 1
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Power series representations of functions

Solution

We have
1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + . . .

If we differentiate each term of this series, then

−1

(1 + x)2
= −1 + 2x− 3x2 + · · ·+ (−1)nnxn−1 + . . .

we may multiply both sides by −1, obtaining

1

(1 + x)2
= 1− 2x+ 3x2 + · · ·+ (−1)n+1nxn−1 + . . . , if |x| < 1
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Power series representations of functions

Example 6.3

Find a power series representation for

ln(1 + x), if |x| < 1
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Power series representations of functions

Solution

If |x| < 1, then ln(1 + x) =

∫ x

0

1

1 + t
dt We have

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + . . .

then ln(1 + x) =

∫ x

0

[
1− t+ t2 − t3 + · · ·+ (−1)ntn + . . .

]
dt we may

integrate each term of the series as follows:

ln(1 + x) =

∫ x

0
1 dt−

∫ x

0
t dt+

∫ x

0
t2 dt+ · · ·+ (−1)n

∫ x

0
tn dt+ . . .

= x− x2

2
+

x3

3
+ · · ·+ (−1)n

xn+1

n+ 1
+ . . . if |x| < 1
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Power series representations of functions

Example 6.4

Use the results of Example 1.3 to calculate ln(1.1) to five decimal places.

Solution

In Example 1.3, we found a series representation for ln(1 + x) if |x| < 1.
Substituting 0.1 for x in that series gives us the alternating series

ln(1.1) = 0.1− (0.1)2

2
+

(0.1)3

3
+

(0.1)4

4
+

(0.1)5

5
+ . . .

≈ 0.1− 0.005 + 0.000333− 0.000025 + 0.000002 + . . .
If we sum the first four terms on the right and round off to five decimal
places, we obtain ln(1.1) ≈ 0.09531.
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Power series representations of functions

Example 6.5

Find a power series representation for tan−1 x.
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Power series representations of functions

Solution

We first observe that

tan−1 x =

∫ x

0

1

1 + t2
dt

We have
1

1 + t2
=

1

1− (−t2)
, if |t| < 1, then

1

1 + t2
is the sum of a

geometric series with a = 1 and r = −t2, thus

1

1 + t2
= 1− t2 + t4 − t6 + · · ·+ (−1)nt2n + . . .

we may integrate each term of the series from 0 to x to obtain

tan−1 x = x− x3

3
+

x5

5
+ · · ·+ (−1)n

x2n+1

2n+ 1
+ . . . ,

when |x| < 1. It can be proved that this series representation is also valid
when |x| = 1.
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Power series representations of functions

Theorem 6.2

If x is any real number,

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ . . .

Remark 6.1

To obtain a power series representation for e−x, we need only substitute
−x for x:

e−x =

∞∑
n=0

(−x)n

n!
= 1 + (−x) +

(−x)2

2!
+

(−x)3

3!
+ · · ·+ (−x)n

n!
+ . . .

or

e−x =
∞∑
n=0

(−1)nxn

n!
= 1− x+

x2

2!
− x3

3!
+ · · ·+ (−1)nxn

n!
+ . . .
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Power series representations of functions

Example 6.6

Find the power series representations of the functions:

1 f(x) = cosh(x)

2 f(x) = sinh(x)
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Power series representations of functions

Solution

1 We have cosh(x) =
ex + e−x

2
.

Since ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ . . . and

e−x =

∞∑
n=0

(−1)nxn

n!
= 1− x+

x2

2!
− x3

3!
+ · · ·+ (−1)nxn

n!
+ . . . ,

we find ex + e−x = 2 + 2
x2

2!
+ 2

x4

4!
+ · · ·+ 2

x2n

2n!
+ . . . ,thus

cosh(x) = 1 +
x2

2!
+

x4

4!
+ · · ·+ x2n

2n!
+ . . .
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Power series representations of functions

2 We have sinh(x) =
ex − e−x

2
.

we find ex − e−x = 2x+ 2
x3

3!
+ 2

x5

5!
+ · · ·+ 2

x2n+1

(2n+ 1)!
+ . . . ,thus

sinh(x) = x+
x3

3!
+

x5

5!
+ · · ·+ x2n+1

(2n+ 1)!
+ . . .
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Power series representations of functions

Example 6.7

Find a power series representation for f(x) = xe−2x.

Solution

First we substitute −2x for x in ex representation and we have

e−2x = 1 + (−2x) +
(−2x)2

2!
+

(−2x)3

3!
+ · · ·+ (−2x)n

n!
+ . . .

e−2x = 1− 2x+ 4
x2

2!
− 8

x3

3!
+ · · ·+ (−2)nxn

n!
+ . . .

Multiplying both sides by x gives us

xe−2xx− 2x2 + 4
x3

2!
− 8

x4

3!
+ · · ·+ (−2)nxn+1

n!
+ . . .

f(x) = xe−2x =

∞∑
n=0

(−2)nxn+1

n!
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Power series representations of functions

Example 6.8

Find a power series representation for

∫ x

0

et − 1

t
dt.

Solution

Using the power series representation of ex we have

et − 1 = t+
t2

2!
+

t3

3!
+ · · ·+ tn

n!
+ . . .

then et − 1

t
= 1 +

t

2!
+

t2

3!
+ · · ·+ tn−1

n!
+ . . .

we may integrate each term of the series from 0 to x to obtain∫ x

0

et − 1

t
dt = x+

x2

2× 2!
+

x3

3× 3!
+ · · ·+ xn

n× n!
+ . . .
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Power series representations of functions

Exercise 6.1

Find a power series representation for f(x), f ′(c) and

∫ x

0
f(t) dt.

1 f(x) =
1

3− 2x
.

2 f(x) =
x3

4− x3
.

3 f(x) =
x2 + 1

x− 1
.

4 f(x) = x ln(1− x).

5 f(x) = x2ex
2
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Power series representations of functions

Exercise 6.2

Approximate the following integrals to four decimal places.

1

∫ 0.1

0
e−x2

dx

2

∫ 0.5

0
e−x3

dx

3

∫ 1
2

0
tan−1 x2 dx
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Taylor and Maclaurin series

In the preceding section, we considered power series representations for
several special functions, including those where f(x) has the form

1

1 + x
, ln(1 + x), tan−1(x), ex, or , cosh(x)

provided x is suitably restricted.
We now wish to consider the following two general questions.

Questions
1 If a function f(x) has a power series representation

f(x) =

∞∑
n=0

anx
n or f(x) =

∞∑
n=0

an(x− c)n

what is the form of an?

2 What conditions are sufficient for a function f to have a power series
representation?
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Taylor and Maclaurin series

Theorem 7.1 (Maclaurin series for f(x))

If a function f has a power series representation

f(x) =
∞∑
n=0

anx
n

with radius of convergence r > 0, then f (k)(0) exist for every positive

integer k and an =
f (n)(0)

n!
. Thus

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + . . .

or
f(x) =

∞∑
n=0

f (n)(0)

n!
xn
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Taylor and Maclaurin series

Theorem 7.2 (Taylor series for f(x))

If a function f has a power series representation

f(x) =
∞∑
n=0

an(x− c)n

with radius of convergence r > 0, then f (k)(c) exist for every positive

integer k and an =
f (n)(c)

n!
. Thus

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + . . .

or
f(x) =

∞∑
n=0

f (n)(c)

n!
(x− c)n
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Taylor and Maclaurin series

Exercise 7.1

Find Maclaurin series of

1 sinx

2 cosx

3 x2 sinx

4 ex
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Taylor and Maclaurin series

Exercise 7.2

Find Taylor series of

1 sinx, x =
π

6
2 lnx, x = c, c > 0
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Taylor and Maclaurin series

Exercise 7.3

Approximate the improper integral to four decimal places.

1

∫ 1

0
sinx2

2

∫ 1

0

1− cosx

x2
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