

Chapter 7: Series

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Convergent or Divergent Series

Definition 1.1 (Infinite Series)

Let $\{a_n\}$ be an infinite sequence. An expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots + a_n + \dots$$

is called an **infinite series** or **simply series**.

Definition 1.2 (Partial sum)

① The **n^{th} partial sum** of the infinite series $\sum_{n=1}^{\infty} a_n$ is

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \cdots + a_n$$

② The **sequence of partial sums** associated with the infinite series

$$\sum_{n=1}^{\infty} a_n$$

$$S_1, S_2, S_3, \dots, S_n, \dots$$

Convergent or Divergent Series

Definition 1.3

- An infinite series $\sum_{n=1}^{\infty} a_n$ with sequence of partial sums $\{S_n\}$ is **convergent** (or **converges**), if $\lim_{n \rightarrow \infty} S_n = S$, for some real number S . The series is **divergent** (or **diverges**), if this limit does not exist.
- If the series $\sum_{n=1}^{\infty} a_n$ is a convergent infinite series and $\lim_{n \rightarrow \infty} S_n = S$, then S is called the **sum of the series** and we write

$$S = \sum_{n=1}^{\infty} a_n$$

If the series diverges, it has no sum.

Convergent or Divergent Series

Example 1.1

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n(n+1)} + \cdots$$

converges and find its sum.

Convergent or Divergent Series

Solution

Let $a_n = \frac{1}{n(n+1)}$

The partial fraction decomposition of a_n is

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\begin{aligned}S_n &= a_1 + a_2 + a_3 + \cdots + a_n \\&= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1}\right) \\&= 1 - \frac{1}{n+1} = \frac{n}{n+1}\end{aligned}$$

$$\lim_{n \rightarrow \infty} S_n = \lim_{n \rightarrow \infty} \frac{n}{n+1} = 1,$$

the series converges and have the sum 1.

Convergent or Divergent Series

Example 1.2

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{3} + \frac{1}{15} + \cdots + \frac{1}{4n^2 - 1} + \cdots$$

converges and find its sum.

Convergent or Divergent Series

Solution

Let $a_n = \frac{1}{4n^2 - 1} = \frac{1}{(2n-1)(2n+1)}$

The partial fraction decomposition of a_n is

$$a_n = \frac{1}{n(n+1)} = \frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} + \frac{1}{4n-2} - \frac{1}{4n+2}$$

$$\begin{aligned}S_n &= a_1 + a_2 + a_3 + \cdots + a_n \\&= \left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{10} - \frac{1}{14}\right) + \cdots + \frac{1}{4n-2} - \frac{1}{4n+2} \\&= \frac{1}{2} - \frac{1}{4n+2} = \frac{2n+2}{4n+2} \\&\lim_{n \rightarrow \infty} S_n = \lim_{n \rightarrow \infty} \frac{2n+2}{4n+2} = \frac{1}{2},\end{aligned}$$

the series converges and have the sum $\frac{1}{2}$.

Convergent or Divergent Series

Definition 1.4 (Harmonic series)

The Harmonic series is the series defined as follows

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n} + \dots$$

Theorem 1.1

The Harmonic series diverge.

Convergent or Divergent Series

Definition 1.5 (Geometric series)

The Geometric series is the series defined as follows

$$\sum_{n=1}^{\infty} ar^n = ar + ar^2 + ar^3 + \cdots + ar^n + \dots$$

where a and r are real numbers, and $a \neq 0$.

Theorem 1.2

Let $a \neq 0$. The geometric series $\sum_{n=1}^{\infty} ar^n$

- ① *converges and has the sum $S = \frac{a}{1-r}$ if $|r| < 1$.*
- ② *diverges if $|r| > 1$.*

Convergent or Divergent Series

Example 1.3

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{6}{10^n} = 0.6 + 0.06 + 0.006 + \cdots + \frac{6}{10^n} + \dots$$

converges and find its sum.

Solution

This is a Geometric series with $a = 6$ and $r = \frac{1}{10}$.

By Theorem 3.1, the series converges and the sum

$$S = \frac{6}{1 - 0.1} = \frac{6}{0.9} = \frac{20}{3}$$

Convergent or Divergent Series

Example 1.4

Prove that the infinite series

$$\sum_{n=1}^{\infty} \frac{2}{3^n} = \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \cdots + \frac{2}{3^n} + \cdots$$

converges and find its sum.

Solution

This is a Geometric series with $a = 2$ and $r = \frac{1}{3}$.

By Theorem 3.2, the series converges and the sum $S = \frac{2}{1 - \frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3$

Convergent or Divergent Series

Exercise 1.1

Determine whether the following series converges. If so, give the sum.

①
$$\sum_{n=1}^{\infty} \frac{5}{(5n+2)(5n+7)}.$$

②
$$\sum_{n=1}^{\infty} \frac{325}{1000^n} = 0.325 + 0.000325 + \dots + \frac{325}{1000^n} + \dots$$

Convergent or Divergent Series

Theorem 1.3

If an infinite series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \rightarrow \infty} a_n = 0$

Theorem 1.4

If $\lim_{n \rightarrow \infty} a_n \neq 0$, then infinite series $\sum_{n=1}^{\infty} a_n$ diverges.

Convergent or Divergent Series

Example 1.5

Determine whether the following series converges or diverges

$$\sum_{n=1}^{\infty} \frac{n}{2n+1} = \frac{1}{3} + \frac{2}{5} + \frac{3}{7} + \dots + \frac{n}{2n+1} + \dots$$

converges and find its sum.

Solution

Since

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \frac{n}{2n+1} = \frac{1}{2} \neq 0$$

By theorem 3.4 the series diverges.

Convergent or Divergent Series

Theorem 1.5

If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series such that $a_j = b_j$ for every $j > k$, with k is a positive integer, then both series converges or both series diverges.

Theorem 1.6

For every positive integer k , the series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots \text{ and } \sum_{n=k+1}^{\infty} a_n = a_{k+1} + a_{k+2} + \dots$$

either both converges or diverges.

Convergent or Divergent Series

Example 1.6

Prove that the infinite series

$$\sum_{n=5}^{\infty} \frac{1}{n(n+1)} = \frac{1}{5 \times 6} + \frac{1}{6 \times 7} + \cdots + \frac{1}{n(n+1)} + \cdots$$

converges and find its sum.

Solution

In example 3.1, we proved that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, converges. So, by

theorem 3.6, the series $\sum_{n=5}^{\infty} \frac{1}{n(n+1)}$ converges.

Convergent or Divergent Series

Theorem 1.7

If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series with sums A and B, respectively, then

- ① $\sum_{n=1}^{\infty} a_n + b_n$ converges and has sum $A + B$.
- ② $\sum_{n=1}^{\infty} a_n - b_n$ converges and has sum $A - B$.
- ③ $\sum_{n=1}^{\infty} ca_n$ converges and has sum cA , for every real number c .

Convergent or Divergent Series

Example 1.7

Prove that the infinite series

$$\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right)$$

converges and find its sum.

Convergent or Divergent Series

Solution

$$\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right) = 7 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} + \sum_{n=1}^{\infty} \frac{2}{3^n}$$

From example 3.1, the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges and

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

From example 3.4, the series $\sum_{n=1}^{\infty} \frac{2}{3^n}$ converges and $\sum_{n=1}^{\infty} \frac{2}{3^n} = 3$.

So the series $\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right)$ converges and

$$\sum_{n=1}^{\infty} \left(\frac{7}{n(n+1)} + \frac{2}{3^n} \right) = 7 * 1 + 3 = 10$$

Convergent or Divergent Series

Theorem 1.8

If $\sum_{n=1}^{\infty} a_n$ is a convergent series and $\sum_{n=1}^{\infty} b_n$ is a divergent series, then the series $\sum_{n=1}^{\infty} a_n + b_n$ is divergent.

Example 1.8

Determine the convergence or divergence of the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{5^n} + \frac{1}{n} \right)$$

Convergent or Divergent Series

Solution

The series $\sum_{n=1}^{\infty} \frac{1}{5^n}$ is a geometric series with $r = \frac{1}{5}$, so it's convergent.

$\sum_{n=1}^{\infty} \frac{1}{n}$ is a the harmonis series, so it's divergent.

From theorem 3.8, the series $\sum_{n=1}^{\infty} \left(\frac{1}{5^n} + \frac{1}{n} \right)$ diverges.

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Definition 2.1 (positive-term series)

A positive-term series, is a series $\sum_{n=1}^{\infty} a_n$ such that $a_n > 0$ for every n .

Theorem 2.1

If $\sum_{n=1}^{\infty} a_n$ is a positive-term series and if there exists a number M such that

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n < M, \text{ for every } n$$

then the series converges and has a sum $S \leq M$. If no such M exists the series diverges.

Theorem 2.2 (Integral test)

If $\sum_{n=1}^{\infty} a_n$ is a positive-term series, let $f(n) = a_n$ and let f be the function obtained by replacing n with x . If f is positive-valued, continuous and decreasing for every real number $x \geq 1$, then the series $\sum_{n=1}^{\infty} a_n$

① converges if $\int_1^{\infty} f(x) dx$ converges.

② diverges if $\int_1^{\infty} f(x) dx$ diverges.

Positive-term Series

Example 2.1

Use the integral test to prove that the Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution

Since $a_n = \frac{1}{n}$, we let $f(n) = \frac{1}{n}$. Replacing n by x gives $f(x) = \frac{1}{x}$. For every $x \geq 1$, f is positive-valued, continuous and decreasing, we can apply the integral test.

$$\int_1^{\infty} \frac{1}{x} dx = \lim_{t \rightarrow \infty} \int_1^t \frac{1}{x} dx = \lim_{t \rightarrow \infty} [\ln x]_1^t = \lim_{t \rightarrow \infty} [\ln t - \ln 1] = \infty.$$

The series diverges by theorem 4.2.

Positive-term Series

Definition 2.2 (p-series)

A **p-series**, is a series of the form

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots + \frac{1}{n^p} + \cdots$$

where p is a positive real number.

Theorem 2.3 (p-series test)

The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

- ① converges if $p > 1$.
- ② diverges if $p \leq 1$.

Positive-term Series

Example 2.2

Decide whether the following series converges or diverges?

$$\textcircled{1} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} + \cdots$$

$$\textcircled{2} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} + \cdots$$

$$\textcircled{3} \quad \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} = 1 + \frac{1}{2^{\frac{3}{2}}} + \frac{1}{3^{\frac{3}{2}}} + \cdots + \frac{1}{n^p} + \cdots$$

$$\textcircled{4} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = 1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \cdots + \frac{1}{\sqrt[3]{n}} + \cdots$$

Positive-term Series

Theorem 2.4 (Basic Comparison Test)

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be positive-term series.

- ① If the series $\sum_{n=1}^{\infty} b_n$ converges and $a_n \leq b_n$ for every positive integer n ,
the series $\sum_{n=1}^{\infty} a_n$ converges.
- ② If the series $\sum_{n=1}^{\infty} b_n$ diverges and $a_n \geq b_n$ for every positive integer n ,
the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example 2.3

Decide whether the following series converges or diverges?

①
$$\sum_{n=1}^{\infty} \frac{1}{2 + 5^n}.$$

②
$$\sum_{n=1}^{\infty} \frac{3}{\sqrt{n} - 1}.$$

Positive-term Series

Solution

① For every $n \geq 1$, $\frac{1}{2+5^n} < \frac{1}{5^n}$.

Since the series $\sum_{n=1}^{\infty} \frac{1}{5^n}$ converges, then the series $\sum_{n=1}^{\infty} \frac{1}{2+5^n}$ converges.

② For every $n \geq 1$, $\frac{1}{\sqrt{n}-1} > \frac{1}{\sqrt{n}}$, then $\frac{3}{\sqrt{n}-1} > \frac{3}{\sqrt{n}}$.

Since the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, then the series $\sum_{n=1}^{\infty} \frac{3}{\sqrt{n}-1}$ diverges.

Theorem 2.5 (Limit Comparison Test)

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be positive-term series. If there is a positive real number c such that

$$\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = c > 0,$$

then either both series converges or both series diverges.

Positive-term Series

Example 2.4

Decide whether the following series converges or diverges?

$$\textcircled{1} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 1}}.$$

$$\textcircled{2} \quad \sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n(n^2 + 1)}.$$

Positive-term Series

Solution

① The n^{th} term of the series is $a_n = \frac{1}{\sqrt[3]{n^2 + 1}}$

If we delete the number 1 from the radicand, we obtain $b_n = \frac{1}{\sqrt[3]{n^2}}$.

$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}$, which is a p-series with $p = \frac{2}{3}$, then its divergent.

$$\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \lim_{n \rightarrow \infty} \frac{\sqrt[3]{n^2}}{\sqrt[3]{n^2 + 1}} = \lim_{n \rightarrow \infty} \sqrt[3]{\frac{n^2}{n^2 + 1}} = 1 > 0.$$

From theorem 4.5, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 1}}$ diverges.

Positive-term Series

Solution

② The n^{th} term of the series is $a_n = \frac{3n^2 + 5n}{2^n(n^2 + 1)}$

If we delete the least magnitude in the numerator and the denominator, we obtain $\frac{3n^2}{2^n n^2} = \frac{3}{2^n}$, we choose $b_n = \frac{3}{2^n}$ which is a geometric series with $r = \frac{1}{2}$, then its convergent.

$$\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \lim_{n \rightarrow \infty} \frac{(3n^2 + 5n)2^n}{2^n(n^2 + 1)} = \lim_{n \rightarrow \infty} \frac{3n^2 + 5n}{n^2 + 1} = 3 > 0.$$

From theorem 4.5, $\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n(n^2 + 1)}$ converges.

Exercise 2.1

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{8n + \sqrt{n}}{5 + n^2 + n^{\frac{7}{2}}}$$

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

The Ratio Test and Root test

Theorem 3.1

Let $\sum_{n=1}^{\infty} a_n$ be positive-term series, and suppose that $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = L$.

- ① If $L < 1$, the series converges.
- ② If $L > 1$, the series diverges.
- ③ If $L = 1$, apply another test, the series may be convergent or divergent.

The Ratio Test and Root test

Example 3.1

Decide whether the following series converges or diverges?

①
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}.$$

②
$$\sum_{n=1}^{\infty} \frac{3^n}{n^2}.$$

The Ratio Test and Root test

Solution

① Applying theorem 5.1

$$\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = \lim_{n \rightarrow \infty} \frac{3^{n+1}n!}{3^n(n+1)!} = \lim_{n \rightarrow \infty} \frac{3}{n+1} = 0 < 1,$$

the the series converges.

② Applying theorem 5.1

$$\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = \lim_{n \rightarrow \infty} \frac{3^{n+1}n^2}{3^n(n+1)^2} = \lim_{n \rightarrow \infty} \frac{3n^2}{n^2 + 2n + 1} = 3 > 1,$$

the the series diverges.

The Ratio Test and Root test

Exercise 3.1

Decide whether the following series converges or diverges?

①
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

②
$$\sum_{n=1}^{\infty} n!$$

③
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$$

The Ratio Test and Root test

Theorem 3.2

Let $\sum_{n=1}^{\infty} a_n$ be positive-term series, and suppose that $\lim_{n \rightarrow \infty} \sqrt[n]{a_n} = L$.

- ① If $L < 1$, the series converges.
- ② If $L > 1$, the series diverges.
- ③ If $L = 1$, apply another test, the series may be convergent or divergent.

The Ratio Test and Root test

Example 3.2

Decide whether the following series converges or diverges?

$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$$

The Ratio Test and Root test

Solution

Applying theorem 5.2

$$\lim_{n \rightarrow \infty} \sqrt[n]{a_n} = \lim_{n \rightarrow \infty} \sqrt[n]{\frac{2^{3n+1}}{n^n}} = \lim_{n \rightarrow \infty} \frac{2^{3+\frac{1}{n}}}{n} = 0 < 1,$$

the series converges.

The Ratio Test and Root test

Exercise 3.2

Decide whether the following series converges or diverges?

①
$$\sum_{n=1}^{\infty} \frac{5^n}{n^n}$$

②
$$\sum_{n=1}^{\infty} \left(\frac{8n^2 - 7}{n + 1} \right)^n$$

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Alternating Series and Absolute convergence

Definition 4.1 (Alternating Series)

The alternating series is the series defined by

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + \cdots + (-1)^{n-1} a_n + \dots$$

Alternating Series and Absolute convergence

Theorem 4.1 (Alternating Series Test (AST))

The alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges if the two following conditions are satisfied

- 1 $a_k \geq a_{k+1} > 0$, for every k ,
- 2 $\lim_{n \rightarrow \infty} a_n = 0$

Alternating Series and Absolute convergence

Example 4.1

Determine whether the alternating series converges or diverges.

①
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2 - 3}$$

②
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n - 3}$$

Alternating Series and Absolute convergence

Solution

① $a_n = \frac{2n}{4n^2 - 3}$

- $a_k - a_{k+1} = \frac{2k}{4k^2 - 3} - \frac{2(k+1)}{4(k+1)^2 - 3} = \frac{8k^2 + 8k + 6}{(4k^2 - 3)(4k^2 + 8k + 1)} \geq 0,$
so $a_k \geq a_{k+1}$
- $\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \frac{2n}{4n^2 - 3} = 0,$

From Theorem 6.1, the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2 - 3}$ converges.

② $a_n = \frac{2n}{4n - 3}$

$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \frac{2n}{4n - 3} = \frac{1}{2}$, From Theorem 3.4, the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2 - 3}$ diverges.

Exercise 4.1

①
$$\sum_{n=1}^{\infty} (-1)^{n-1} n 5^{-n}$$

②
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n+1}{n}$$

Alternating Series and Absolute convergence

Definition 4.2 (Absolute convergence)

The series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + \cdots + |a_n| + \dots$$

is convergent.

Alternating Series and Absolute convergence

Example 4.2

Prove that the following alternating series is absolutely convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots + (-1)^{n-1} \frac{1}{n^2} + \cdots$$

Solution

We have $a_n = (-1)^{n-1} \frac{1}{n^2}$, then

$$\sum_{n=1}^{\infty} |a_n| = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} + \cdots, \text{ which is a p-series with } p = 2,$$

thus it is convergent. Then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Alternating Series and Absolute convergence

Definition 4.3

The series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if the series $\sum_{n=1}^{\infty} a_n$ is convergent and the series $\sum_{n=1}^{\infty} |a_n|$ is divergent.

Theorem 4.2

If the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent the the series $\sum_{n=1}^{\infty} a_n$ is convergent

Alternating Series and Absolute convergence

Exercise 4.2

Determine whether the series is absolute convergent, conditionally convergent or divergent

$$\textcircled{1} \quad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

$$\textcircled{2} \quad \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$$

$$\textcircled{3} \quad \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

Alternating Series and Absolute convergence

Theorem 4.3 (Absolute Ratio Test)

Let $\sum_{n=1}^{\infty} a_n$ be a series of non-zero terms, and suppose $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$.

- ① If $L < 1$ then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- ② If $L > 1$ or $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- ③ If $L = 1$, apply a different test; the series may be absolutely convergent, conditionally convergent, or divergent.

Alternating Series and Absolute convergence

Example 4.3

Determine whether the following series is absolutely convergent, conditionally convergent, or divergent:

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 4}{2^n}$$

Alternating Series and Absolute convergence

Solution

$$\begin{aligned}\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{(n+1)^2 + 4}{2^{n+1}} \frac{2^n}{n^2 + 4} \right| \\ &= \lim_{n \rightarrow \infty} \frac{1}{2} \left(\frac{n^2 + 2n + 5}{n^2 + 4} \right) = \frac{1}{2} < 1,\end{aligned}$$

then, using theorem 6.3, the series is absolutely convergent.

Alternating Series and Absolute convergence

Exercise 4.3

Determine whether the series is absolute convergent, conditionally convergent or divergent

①
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-10)^n}{n!}$$

②
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^4}{e^n}$$

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Power Series

Definition 5.1 (Power Series)

Let x be a variable. A **power series** in x is a series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \dots$$

where each a_k is a real number.

Remark 5.1

To find other values of x that produce convergent series, we often use the ratio test for absolute convergence, Theorem 4.3, as illustrated in the following examples.

Example 5.1

Find all values of x for which the following power series is absolutely convergent:

$$\sum_{n=0}^{\infty} \frac{n}{5^n} x^n = \frac{1}{5}x + \frac{2}{5^2}x^2 + \cdots + \frac{n}{5^n}x^n + \dots$$

Power Series

Solution

If we let $u_n = \frac{n}{5^n} x^n$.

$$\begin{aligned}\lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{(n+1)x^{n+1}}{5^{n+1}} \frac{5^n}{nx^n} \right| \\ &= \lim_{n \rightarrow \infty} \left| \frac{(n+1)x}{5n} \right| = \lim_{n \rightarrow \infty} \left(\frac{n+1}{5n} \right) |x| = \frac{1}{5} |x|.\end{aligned}$$

By the ratio test (Theorem 4.3), with $L = \frac{1}{5} |x|$, the series is absolutely convergent if the following equivalent inequalities are true:

$$L = \frac{1}{5} |x| < 1 \implies |x| < 5 \implies -5 < x < 5$$

Example 5.2

Find all values of x for which the following power series is absolutely convergent:

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{1}{1!} x + \frac{1}{2!} x^2 + \cdots + \frac{1}{n!} x^n + \cdots$$

Power Series

Solution

If we let $u_n = \frac{1}{n!}x^n$.

$$\begin{aligned}\lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} \right| \\ &= \lim_{n \rightarrow \infty} \left| \frac{x}{n+1} \right| = \lim_{n \rightarrow \infty} \frac{1}{n+1} |x| = 0.\end{aligned}$$

By the ratio test (Theorem 4.3), with $L = 0 < 1$, the power series is absolutely convergent for every real number x .

Example 5.3

Find all values of x for which the power series $\sum_{n=0}^{\infty} n!x^n$ is convergent.

Power Series

Solution

If we let $u_n = n!x^n$, if $x \neq 0$.

$$\begin{aligned}\lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right| \\ &= \lim_{n \rightarrow \infty} |(n+1)x| = \lim_{n \rightarrow \infty} (n+1)|x| = \infty.\end{aligned}$$

and, by the ratio test (Theorem 4.3), the series diverges. Hence, the power series is convergent only if $x = 0$.

Theorem 5.1

- ① If a power series $\sum_{n=0}^{\infty} a_n x^n$ converges for a nonzero number c , then it is absolutely convergent whenever $|x| < |c|$.
- ② If a power series $\sum_{n=0}^{\infty} a_n x^n$ diverges for a nonzero number d , then it diverges whenever $|x| > |d|$.

Theorem 5.2

If $\sum_{n=0}^{\infty} a_n x^n$ a Power series, then exactly one of the following is true:

- ① The series converges only if $x = 0$.
- ② The series is absolutely convergent for every x .
- ③ There is a number $r > 0$ such that the series is absolutely convergent if x is in the open interval $(-r, r)$ ($|x| < r$) and divergent if $x < -r$ or $x > r$ ($|x| > r$).

Remark 5.2

- The number r is called the **radius of convergence** of the series. Either convergence or divergence may occur at $-r$ or r , depending on the nature of the series.
- The totality of numbers for which a power series converges is called its **interval of convergence**. If the radius of convergence r is positive, then the interval of convergence is one of the following

$$(-r, r), (-r, r], [-r, r), [-r, r]$$

Power Series

Example 5.4

Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n$$

Solution

Note that the coefficient of x^0 is 0 and the summation begin with 1.

If we let $u_n = \frac{1}{\sqrt{n}} x^n$.

$$\begin{aligned} \lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{x^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{x^n} \right| \\ &= \lim_{n \rightarrow \infty} \left| \frac{\sqrt{n}}{\sqrt{n+1}} x \right| = \lim_{n \rightarrow \infty} \sqrt{\frac{n}{n+1}} |x| = |x|. \end{aligned}$$

Power Series

By the ratio test (Theorem 4.3), with $L = |x|$, the series is absolutely convergent if the following equivalent inequalities are true:

$L = |x| < 1 \implies -1 < x < 1$, then the radius of convergence is $r = 1$.

The case when $x = 1$, the power series will be a p-series with $p = \frac{1}{2}$, which is divergent.

The case when $x = -1$, the power series will be an alternating series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$
 which is convergent.

Thus the interval of convergence is $[-1, 1]$.

Definition 5.2

Let c be a real number and x be a variable. A **power series in $x - c$** is a series of the form

$$\sum_{n=1}^{\infty} a_n(x - c)^n = a_0 + a_1(x - c) + a_2(x - c)^2 + \cdots + a_n(x - c)^n + \dots$$

where each a_k is a real number.

Theorem 5.3

If $\sum_{n=0}^{\infty} a_n(x - c)^n$ a Power series, then exactly one of the following is true:

- ① The series converges only if $x - c = 0$, that is $x = c$.
- ② The series is absolutely convergent for every x .
- ③ There is a number $r > 0$ such that the series is absolutely convergent if x is in the open interval $(c - r, c + r)$ ($|x - c| < r$) and divergent if $x < c - r$ or $x > c + r$ ($|x - c| > r$).

Example 5.5

Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1} (x-3)^n$$

Solution

If we let $u_n = (-1)^n \frac{1}{n+1} (x-3)^n$.

$$\begin{aligned} \lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{(x-3)^{n+1}}{n+2} \frac{n+1}{(x-3)^n} \right| \\ &= \lim_{n \rightarrow \infty} \left| \frac{n+1}{n+2} (x-3) \right| = \lim_{n \rightarrow \infty} \frac{n+1}{n+2} |x-3| = |x-3|. \end{aligned}$$

Power Series

By the ratio test (Theorem 4.3), with $L = |x - 3|$, the series is absolutely convergent if the following equivalent inequalities are true:

$$L = |x - 3| < 1 \implies -1 < x - 3 < 1 \implies 2 < x < 4.$$

The case when $x = 4$, the power series will be an alternating series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1} \text{ which is convergent.}$$

The case when $x = 2$, the power series will be an harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n+1} \text{ which is divergent.}$$

Thus the interval of convergence is $(2, 4]$.

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Power series representations of functions

Definition 6.1

A power series $\sum a_n x^n$ determines a function f whose domain is the interval of convergence of the series. Specifically, for each x in this interval, we let $f(x)$ equal the sum of the series, that is,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \dots$$

If a function f is defined in this way, we say that $\sum a_n x^n$ is a **power series representation for $f(x)$ (or of $f(x)$)**. We also use the phrase f is represented by the power series.

Power series representations of functions

Example 6.1

Find a function f that is represented by the power series

$$1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + \dots$$

Solution

If $|x| < 1$, then the series is a geometric series which is convergent and has the sum

$$\frac{a}{1-r} = \frac{1}{1-(-x)} = \frac{1}{1+x}$$

Hence we may write

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + \dots$$

This result is a power series representation for $f(x) = \frac{1}{1+x}$ on the interval $(-1, 1)$.

Power series representations of functions

Theorem 6.1

Suppose that a power series $\sum a_n x^n$ has a radius of convergence $r > 0$, and let f be defined by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots$$

for every x in the interval of convergence. If $-r < x < r$, then

① $f'(x) = a_1 + 2a_2 x + 3a_3 x^2 + \cdots + n a_n x^{n-1} + \cdots = \sum_{n=1}^{\infty} n a_n x^{n-1}$

② $\int_0^x f(x) dx = a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \cdots + a_n \frac{x^{n+1}}{n+1} + \cdots = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}$

The series obtained by differentiation or integration has the same radius of convergence as $\sum a_n x^n$.

Example 6.2

Use a power series representation for $\frac{1}{1+x}$ to obtain a power series representation for

$$\frac{1}{(1+x)^2}, \text{ if } |x| < 1$$

Power series representations of functions

Solution

We have

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + \cdots$$

If we differentiate each term of this series, then

$$\frac{-1}{(1+x)^2} = -1 + 2x - 3x^2 + \cdots + (-1)^n n x^{n-1} + \cdots$$

we may multiply both sides by -1 , obtaining

$$\frac{1}{(1+x)^2} = 1 - 2x + 3x^2 + \cdots + (-1)^{n+1} n x^{n-1} + \dots, \text{ if } |x| < 1$$

Example 6.3

Find a power series representation for

$$\ln(1 + x), \text{ if } |x| < 1$$

Power series representations of functions

Solution

If $|x| < 1$, then $\ln(1 + x) = \int_0^x \frac{1}{1+t} dt$ We have

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + \dots$$

then $\ln(1 + x) = \int_0^x [1 - t + t^2 - t^3 + \cdots + (-1)^n t^n + \dots] dt$ we may integrate each term of the series as follows:

$$\begin{aligned}\ln(1 + x) &= \int_0^x 1 dt - \int_0^x t dt + \int_0^x t^2 dt + \cdots + (-1)^n \int_0^x t^n dt + \dots \\ &= x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots + (-1)^n \frac{x^{n+1}}{n+1} + \dots \text{ if } |x| < 1\end{aligned}$$

Power series representations of functions

Example 6.4

Use the results of Example 1.3 to calculate $\ln(1.1)$ to five decimal places.

Solution

In Example 1.3, we found a series representation for $\ln(1 + x)$ if $|x| < 1$.

Substituting 0.1 for x in that series gives us the alternating series

$$\begin{aligned}\ln(1.1) &= 0.1 - \frac{(0.1)^2}{2} + \frac{(0.1)^3}{3} + \frac{(0.1)^4}{4} + \frac{(0.1)^5}{5} + \dots \\ &\approx 0.1 - 0.005 + 0.000333 - 0.000025 + 0.000002 + \dots\end{aligned}$$

If we sum the first four terms on the right and round off to five decimal places, we obtain $\ln(1.1) \approx 0.09531$.

Example 6.5

Find a power series representation for $\tan^{-1} x$.

Power series representations of functions

Solution

We first observe that

$$\tan^{-1} x = \int_0^x \frac{1}{1+t^2} dt$$

We have $\frac{1}{1+t^2} = \frac{1}{1-(-t^2)}$, if $|t| < 1$, then $\frac{1}{1+t^2}$ is the sum of a geometric series with $a = 1$ and $r = -t^2$, thus

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \cdots + (-1)^n t^{2n} + \cdots$$

we may integrate each term of the series from 0 to x to obtain

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots + (-1)^n \frac{x^{2n+1}}{2n+1} + \cdots,$$

when $|x| < 1$. It can be proved that this series representation is also valid when $|x| = 1$.

Power series representations of functions

Theorem 6.2

If x is any real number,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + \dots$$

Remark 6.1

To obtain a power series representation for e^{-x} , we need only substitute $-x$ for x :

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = 1 + (-x) + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \cdots + \frac{(-x)^n}{n!} + \dots$$

or

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots + \frac{(-1)^n x^n}{n!} + \dots$$

Example 6.6

Find the power series representations of the functions:

① $f(x) = \cosh(x)$

② $f(x) = \sinh(x)$

Power series representations of functions

Solution

① We have $\cosh(x) = \frac{e^x + e^{-x}}{2}$.

Since $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + \dots$ and

$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots + \frac{(-1)^n x^n}{n!} + \dots$,

we find $e^x + e^{-x} = 2 + 2\frac{x^2}{2!} + 2\frac{x^4}{4!} + \cdots + 2\frac{x^{2n}}{2n!} + \dots$, thus

$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + \frac{x^{2n}}{2n!} + \dots$

Power series representations of functions

② We have $\sinh(x) = \frac{e^x - e^{-x}}{2}$.

we find $e^x - e^{-x} = 2x + 2\frac{x^3}{3!} + 2\frac{x^5}{5!} + \cdots + 2\frac{x^{2n+1}}{(2n+1)!} + \dots$, thus

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

Power series representations of functions

Example 6.7

Find a power series representation for $f(x) = xe^{-2x}$.

Solution

First we substitute $-2x$ for x in e^x representation and we have

$$e^{-2x} = 1 + (-2x) + \frac{(-2x)^2}{2!} + \frac{(-2x)^3}{3!} + \cdots + \frac{(-2x)^n}{n!} + \cdots$$

$$e^{-2x} = 1 - 2x + 4\frac{x^2}{2!} - 8\frac{x^3}{3!} + \cdots + \frac{(-2)^n x^n}{n!} + \cdots$$

Multiplying both sides by x gives us

$$xe^{-2x} x - 2x^2 + 4\frac{x^3}{2!} - 8\frac{x^4}{3!} + \cdots + \frac{(-2)^n x^{n+1}}{n!} + \cdots$$

$$f(x) = xe^{-2x} = \sum_{n=0}^{\infty} \frac{(-2)^n x^{n+1}}{n!}$$

Power series representations of functions

Example 6.8

Find a power series representation for $\int_0^x \frac{e^t - 1}{t} dt$.

Solution

Using the power series representation of e^x we have

$$e^t - 1 = t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots + \frac{t^n}{n!} + \dots$$

then

$$\frac{e^t - 1}{t} = 1 + \frac{t}{2!} + \frac{t^2}{3!} + \cdots + \frac{t^{n-1}}{n!} + \dots$$

we may integrate each term of the series from 0 to x to obtain

$$\int_0^x \frac{e^t - 1}{t} dt = x + \frac{x^2}{2 \times 2!} + \frac{x^3}{3 \times 3!} + \cdots + \frac{x^n}{n \times n!} + \dots$$

Power series representations of functions

Exercise 6.1

Find a power series representation for $f(x)$, $f'(c)$ and $\int_0^x f(t) dt$.

① $f(x) = \frac{1}{3 - 2x}.$

② $f(x) = \frac{x^3}{4 - x^3}.$

③ $f(x) = \frac{x^2 + 1}{x - 1}.$

④ $f(x) = x \ln(1 - x).$

⑤ $f(x) = x^2 e^{x^2}$

Exercise 6.2

Approximate the following integrals to four decimal places.

① $\int_0^{0.1} e^{-x^2} dx$

② $\int_0^{0.5} e^{-x^3} dx$

③ $\int_0^{\frac{1}{2}} \tan^{-1} x^2 dx$

Table of contents

- 1 Convergent or Divergent Series
- 2 Positive-term Series
- 3 The Ratio Test and Root test
- 4 Alternating Series and Absolute convergence
- 5 Power Series
- 6 Power series representations of functions
- 7 Taylor and Maclaurin series

Taylor and Maclaurin series

In the preceding section, we considered power series representations for several special functions, including those where $f(x)$ has the form

$$\frac{1}{1+x}, \ln(1+x), \tan^{-1}(x), e^x, \text{ or } \cosh(x)$$

provided x is suitably restricted.

We now wish to consider the following two general questions.

Questions

- ① If a function $f(x)$ has a power series representation

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \text{ or } f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

what is the form of a_n ?

- ② What conditions are sufficient for a function f to have a power series representation?

Theorem 7.1 (Maclaurin series for $f(x)$)

If a function f has a power series representation

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

with radius of convergence $r > 0$, then $f^{(k)}(0)$ exist for every positive integer k and $a_n = \frac{f^{(n)}(0)}{n!}$. Thus

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

or

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Theorem 7.2 (Taylor series for $f(x)$)

If a function f has a power series representation

$$f(x) = \sum_{n=0}^{\infty} a_n(x - c)^n$$

with radius of convergence $r > 0$, then $f^{(k)}(c)$ exist for every positive integer k and $a_n = \frac{f^{(n)}(c)}{n!}$. Thus

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \cdots + \frac{f^{(n)}(c)}{n!}(x - c)^n + \dots$$

or

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Exercise 7.1

Find Maclaurin series of

- ① $\sin x$
- ② $\cos x$
- ③ $x^2 \sin x$
- ④ e^x

Exercise 7.2

Find Taylor series of

- ① $\sin x, x = \frac{\pi}{6}$
- ② $\ln x, x = c, c > 0$

Exercise 7.3

Approximate the improper integral to four decimal places.

① $\int_0^1 \sin x^2$

② $\int_0^1 \frac{1 - \cos x}{x^2}$