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Convergent or Divergent Series

Definition 1.1 (Infinite Series)

Let {a,} be an infinite sequence. An expression of the form

(0.9}
Zan:a1+a2+a3+---+an+...
n=1

is called an infinite series or simply series.

Definition 1.2 (Partial sum)

oo
@ The nth partial sum of the infinite series > a,, is
n=1

n
Sn:Zak:a1+a2+a3+~-+an

k=1
@ The sequence of partial sums associated with the infinite series
o
> an is
n=1 51,559,853, ...,5n,...
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Convergent or Divergent Series

Definition 1.3

[e.°]
e An infinite series Y a,, with sequence of partial sums {Sy,} is
n=1
convergent (or converges), if lim S,, =S, for some real number
n—oo

S. The series is divergent (or diverges), if this limit does not exist.

o0
o [f the series ) ay, is a convergent infinite series and lim S,, =S,
n=1 n—0o0

then S is called the sum of the series and we write

SE ian
n=1

If the series diverges, it has no sum.
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Convergent or Divergent Series

Example 1.1

Prove that the infinite series

1 1 1
Znn—{—l ix2t2x3 " tamsn "

n=1

converges and find its sum.
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Convergent or Divergent Series

Solution
1

n(n+1)
The partial fraction decomposition of a,, is

Let a,, =

1 1 1
an:—:——

nn+1) n n+l

(a=w+1)
+ -
n n+1

_ _n

- n+1_$+1
lim S,, = lim =1,
n—oo n—oo N +

the series converges and have the sum 1.
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Convergent or Divergent Series

Example 1.2

Prove that the infinite series

SLolilin Ly
n:14n2—1_3 15 4n2 —1 7

converges and find its sum.
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Convergent or Divergent Series

1 1

m2—1 (2n-1)(2n+1)
The partial fraction decomposition of a, is

Let a,, =

1 1 1 1 1

an: =

n(n+1) 2@2n—1) 22n+1) T2 It

Sp=a1+ax+az3+---+ap

(1 1 . 1 1 N 1 1 . 1 1
- \2 6 6 10 10 14 dn—2 4n+2
1

B I 2n+2
2 4n+2 4dn+2
2n + 2 1

Mo By = Lo 4 o =

: 1
the series converges and have the sum —.
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Convergent or Divergent Series

Definition 1.4 (Harmonic series)

The Harmonic series is the series defined as follows
1
Z l et
— n
Theorem 1.1

The Harmonic series diverge.

S|

AFooc
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Convergent or Divergent Series

Definition 1.5 (Geometric series)
The Geometric series is the series defined as follows

(0.0
Y ar"=ar+a’+at+ a4

n=1

where a and r are real numbers, and a # 0.

Theorem 1.2

o
Let a # 0. The geometric series Z ar”

n=1

if |r| < 1.

a
@ converges and has the sum S = 1
—r

@ diverges if |r| > 1.
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Convergent or Divergent Series

Example 1.3

Prove that the infinite series

o) 6 6
—— =0.6+0.06+0.006+ -+ — +...
7; 10n + + + + 10” +

converges and find its sum.

.. . : : 1
This is a Geometric series with a =6 and r = —.

By Theorem 3.1, the series converges and the sum
G__ 6 _ 6 _2
S 1-01 09 3
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Convergent or Divergent Series

Example 1.4

Prove that the infinite series

n=1

converges and find its sum.

This is a Geometric series with ¢ = 2 and r =

Wl

By Theorem 3.2, the series converges and the sum S = =

olno| DO
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Convergent or Divergent Series

5
= Z Gt )Gnt )’

325
— 0.325 + 0.000325 + - - -
ezmoon 0.325 +0.000325 + -+ + T +

Determine whether the following series converges. If so, give the sum.
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Convergent or Divergent Series

Theorem 1.3

o
If an infinite series E an converges, then lim a, =0
1 n—o0
n=

Theorem 1.4

(0.0}
If lim a,, # 0, then infinite series Z an, diverges.
n— o0

n=1
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Convergent or Divergent Series

Example 1.5

Determine whether the following series converges or diverges

i ——+2+§ U
2n+1 7 2n+1

n=1

ot

converges and find its sum.

Solution

Since

n 1
S e I

By theorem 3.4 the series diverges.
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Convergent or Divergent Series

Theorem 1.5

o o0
Ifz an and Z b, are series such that a; = b; for every j > k, with k is
n=1 n=1
a positive integer, then both series converges or both series diverges.
Theorem 1.6
For every positive integer k, the series

(o.0] (o.)
g ap =a1+as+as~+ ... and g Qn = Gpt1 + Gy + - ..
n=1 n=k-+1

either both converges or diverges.
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Convergent or Divergent Series

Example 1.6
Prove that the infinite series

(e.9]

= m+D) 5x6 6x7 Thmty

converges and find its sum.

Solution

oo
1
In example 3.1, we proved that the series nz::l m converges. So, by

o0
) 1
theorem 3.6, the series E ————— converges.
~ n(n

+1)
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Convergent or Divergent Series

Theorem 1.7

o o0
If Z an and Z b,, are convergent series with sums A ans B, respectively,
n=1 n=1

then

o
o Z an + by, converges and has sum A+ B.

n=1

(0.9]
Q Z an — by, converges and has sum A — B.

n=1

o
(s} E ca,, converges and has sum cA, for every real number c.
n=1
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Convergent or Divergent Series

Example 1.7

Prove that the infinite series
]
n + 1 3"
n=1

converges and find its sum.
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Convergent or Divergent Series

A W T
(n+1) n(n+1 3n

n=1 n:l n=1
1
From example 3.1, the series ——— converges and
P ngl n(n+1) &
o
= n n + 1

oo oo
2 2
From example 3.4, the series E 3 converges and E i

n=1 n=1

7 2
So the series Z <— + —> converges and

1 n
— +1) 3
(e.9]
7 2
S (T 2)orait3=10
n(n+1) 37
n=1
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Convergent or Divergent Series

Theorem 1.8

If Z an is a convergent series and Z b, is a divergent series, then the

n=1 n=1

(0.0
series E an + by, is divergent.

n=1

Example 1.8

Determine the convergence or divergence of the series

> (5+4)

n=1
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22/103



Convergent or Divergent Series

Solution

1
The series — is a geometric series with » = —, so it's convergent.
D sisag - g

n=1
0

1. . . g

E — is a the harmonis series, so it's divergent.
n

n=1

oo
1 1
From theorem 3.8, the series E (5—n + —) diverges.
n

n=1
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Positive-term Series

Definition 2.1 (positive-term series)
o0

A positive-term series, is a series E an such that a, > 0 for every n.

n=1

Theorem 2.1

o
If Z an, Is a positive-term series and if there exists a number M such that
n=1

Sp=a1+ay+az+---+a, <M, foreveryn

then the series converges and has a sum S < M. If no such M exists the
series diverges.
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Positive-term Series

Theorem 2.2 (Integral test)

If Z an is a positive-term series, let f(n) = a, and let f be the function
n=1
obtained by replacing n with x. If f is positive-valued, continuous and
o
decreasing for every real number x > 1, then the series Z Gn

n=1

(e}
© converges if / f(x) dx converges.
1

(o)
Q diverges if / f(x) dx diverges.
1

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 26 /103



Positive-term Series

Example 2.1

Use the integral test to prove that the Harmonic series Z — diverges.

n= 1

Solution

. For

K| =

1 1
Since a, = —, we let f(n) = —. Replacing n by = gives f(z) =
n n
every x > 1, f is positive-valued, continuous and decreasing, we can apply
then integral test

dw = lim dx = lim [Inz]} = lim [Int —In1] = oo.
t—o0 t—o0 t—o0

The series dlverges by theorem 4.2.
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Positive-term Series

Definition 2.2 (p-series)

A p-series, is a series of the form

[e.e]

Zi—1+i+i+ g
nP 20 3P np

n=1

where p is a positive real number.

Theorem 2.3 (p-series test)

1
The p-seri Ej—
e p-series n:1np

© converges if p > 1.
Q diverges if p < 1.
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Positive-term Series

Example 2.2
Decide whether the following series converges or diverges?

11 1
Fot S+
n

<1
@) —=ltyp+ym
=ll
1 1

o

1 1
@Y —=1+—+—+..t—1+
;\/ﬁ V2 V3 Vin
(0.9]

1 11 1
0 =1+ +—F+-t—+
(o)

1 11 1

44— —
QZ% tmtHmT T T
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Positive-term Series

Theorem 2.4 (Basic Comparison Test)

[o.¢] o
Let Z an and Z b, be positive-term series.
n=1

n=1
[e's)

@ /f the series Z b, converges and a,, < b, for every positive integer n,

n=1
(9

the series g an converges.

n=1

o
@ If the series Z b, diverges and a,, > b, for every positive integer n,

n=1

o
the series E an diverges.

n=1
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Positive-term Series

Example 2.3

Decide whether the following series converges or diverges?
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Positive-term Series

1 1
F > 1, —.
@ For every n > 2+5n < B
1
Since th E — then th E
Ince e series Z 1 ConVergeS en e series 2 T B
converges.
1 1 3 1
Q For every n >1, ﬁ \/_ then W > %
00
3

Since the series E diverges, then the series E —_
\/_ vn—1
n=1

diverges.
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Positive-term Series

Theorem 2.5 (Limit Comparison Test)

o0 (oo}
Let Z an and Z b, be positive-term series. If there is a positive real
n=1 n=1
number ¢ such that “
lim — =¢>0,
n—oo n

then either both series converges or both series diverges.
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Positive-term Series

Example 2.4

Decide whether the following series converges or diverges?

ZW

o
3n2 + 5n
e Zan2+1
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Positive-term Series

I 1
@ The n™ term of the series is a,, = ——
2
n-+1
If we delete the number 1 from the radicand, we obtain b,, = Tt
s = Z —, Which is a p-series with p = % then its divergent.
— n —_n3
n=1 n=1

3
. G,
lim — = lim
n—00 bn N—00 A /n2 n

From theorem 4.5, Z diverges.
\/n +1

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Positive-term Series

3n2+5
@ The nt" term of the series is a,, = JT—:_T)
If we delete the least magnitude in the numerator and the
3 3
denominator , we obtain - —, we choose b,, = — which is a
anQ on an
geometric series with r = % then its convergent.
3n2 4+ 5n)2" 3n2+5
lim & = g PO EM2Y L 8nf4bn L
n—oo by, n—00 2"(n2 + 1) n—oo n2 41
o0
3n? + 5n
From theorem 4.5, —————— converges.
;::1 o2 1 1) e
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Positive-term Series

Decide whether the following series converges or diverges?

i 8n + /n
54 n2+ns
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The Ratio Test and Root test

Theorem 3.1

An+1

o0
Let Z an be positive-term series, and suppose that nlim = L.

—00  Ap
n=1

@ If L < 1, the series converges.
Q@ If L > 1, the series diverges.

© If L =1, apply another test, the series may be convergent or
divergent.
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The Ratio Test and Root test

Example 3.1

Decide whether the following series converges or diverges?
o 3TL
>
n=1
(e} 3TL

—5-
n
n=1
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The Ratio Test and Root test

@ Applying theorem 5.1

3n+1 | 3
lim 2 = Jim -2 = Jim —0<1,
n—0o  Qy, n—oo 3%(n+ 1)l noocon+1
the the series converges.

@ Applying theorem 5.1

. Qng1 . 3ntip? . 3n?
hm = hm _— = = 1im —V—7—F—
n—oo n—00 3”(n + 1)2 n—oo n2 + 2n + 1

the the series diverges.

=3>1,
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The Ratio Test and Root test

Decide whether the following series converges or diverges?

o) n
n
°>
n=1
o0

Q Zn!
n=1

1
= ;(n—i-l)!
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The Ratio Test and Root test

Theorem 3.2

o0

Let a, be positive-term series, and suppose that lim a, = L.
Zl n be p pp lim {/ay
n=

@ If L < 1, the series converges.

Q@ If L > 1, the series diverges.

© If L =1, apply another test, the series may be convergent or
divergent.
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The Ratio Test and Root test

Example 3.2

Decide whether the following series converges or diverges?

>z

n=1

2377,—1—1

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



BEN AMIRA Aymen (King Saud University)

The Ratio Test and Root test

Applying theorem 5.2

L [23n+1 93+
lim a, = lim = lim =0<1,
n—o00 . n—oo nn n—oo n
the the series converges.
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The Ratio Test and Root test

Decide whether the following series converges or diverges?
°Y  E=m

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Table of contents

@ Alternating Series and Absolute convergence

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 47 /103



Alternating Series and Absolute convergence

Definition 4.1 (Alternating Series)
The alternating series is the series defined by

oo
(-1)"tap,=a; —ag+ -+ (D" la, +...

n=1
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Alternating Series and Absolute convergence

Theorem 4.1 (Alternating Series Test (AST))

o0
The alternating series Z(—l)”_lan converges if the two following

n=1
conditions are satisfied

Q ar > axy1 >0, for every k,
Q@ lima,=0

n—oo
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Alternating Series and Absolute convergence

Example 4.1

Determine whether the alternating series converges or diverges.

2n
o _ynl =t
Z( ) 477,2 -3
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Alternating Series and Absolute convergence

Solution

2n
Q=423

. 2k 2(k + 1) 8k2 4 8k + 6 0

° = = — =

PO T 2 23 4(k+1)2 -3 4k —3)(Ak2 +8k+1) —
SO Gk = Ggt1

. o 2n
= M s
> 2n
From Th 6.1, the series Y (—1)""'—— :
rom Theorem e series n:1( ) 12 3 converges
2n
S =

. . 2n 1 )
lim a, = lim = —, From Theorem 3.4, the series
n—00 n—oo 4n — 3 2

> 2n

E —1)l i :
n:1( ) 12 3 diverges
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Alternating Series and Absolute convergence

o Z(_l)n—1n5—n
n=1

(e}

o nln—l—l
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Alternating Series and Absolute convergence

Definition 4.2 (Absolute convergence)

o
The series Z an is absolutely convergent if the series

n=1

[e.9]

Z\an\=!a1|+\a2!—|—---+\an|+...

n=1

is convergent.
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Alternating Series and Absolute convergence

Example 4.2

Prove that the following alternating series is absolutely convergent.

o0
1 1 1 1 1
B e P G 5 NI

nz::l( ) n2 22+32 2 +(=1) ol

Solution
1
We have a,, = (—1)”_1ﬁ, then
1 1 1 . . .

an — + ..., which a p-series with p = 2,

§||1+++42+ -+ —5 +..., which thp =2
n

o
thus its convergent. Then the series Zan is absolutely convergent.

n=1
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Alternating Series and Absolute convergence

Definition 4.3

The series Z an, is conditionally convergent if the series Z an Is

n=1 n=1

(0.9}
convergent and the series E |an| is divergent.

n=1

Theorem 4.2

o o
If the series Z an, Is absolutely convergent the the series Z Qn IS

n=1 n=1
convergent
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Alternating Series and Absolute convergence

Determine whether the series is absolute convergent, conditionally

convergent or divergent

o Z n+1 1
= n—li

o ;(—1) v

® 7;(_1)nn+ 1
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Alternating Series and Absolute convergence

Theorem 4.3 (Absolute Ratio Test)

Gp41
G

=1L.

n—00

o
Let E a, be a series of non-zero terms, and suppose lim
n=1

oo
@ If L <1 then the series Z an is absolutely convergent.
n=1
An+1
Gnp,

oo
= o0 then the series Z an is divergent.
n=1
© If L =1, apply a different test; the series may be absolutely
convergent, conditionally convergent, or divergent.

Q@ /fL>1or lim
n—oo
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Alternating Series and Absolute convergence

Example 4.3

Determine whether the following series is absolutely convergent,
conditionally convergent, or divergent:

n2
Z(_l)n 2:,_ :
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Alternating Series and Absolute convergence

P CREY B, (n+1)2+4 27 ‘
n—oo | ay n—300 on+l n2 44
= lim 1 (—n2—|—2n+5> = l <1
n—oco 2 n2+4 2 '

then, using theorem 6.3, the series is absolutely convergent.
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Alternating Series and Absolute convergence

Determine whether the series is absolute convergent, conditionally
convergent or divergent

o Z n+1 10)

Cnl
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Power Series

Definition 5.1 (Power Series)
Let x be a variable. A power series in x is a series of the form

o
g anx™ = ag + a1 + apx® 4+ -+ apz™ + ...

n=0

where each ay, is a real number.

Remark 5.1
To find other values of = that produce convergent series, we often use the
ratio test for absolute convergence, Theorem 4.3, as illustrated in the

following examples.
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Power Series

Example 5.1

Find all values of x for which the following power series is absolutely
convergent:

(e.9]

n 1 2 4 n

n=0
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Power Series

If we let u,, = s=a™.

5TL
. g (n+ 1)z"t! 57
lim = lim
n—00 [ Uy n—oo 5n+1 nx™
1 1 1
= lim (nt bz = lim (n—i— )]w\ = —|z|.
n—00 5n n—00 5n 5

. : 1 .
By the ratio test (Theorem 4.3), with L = 5|x! the series is absolutely
convergent if the following equivalent inequalities are true:

1
L:5|x|<1:>|1‘|<5:>—5<x<5
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Power Series

Example 5.2

Find all values of x for which the following power series is absolutely
convergent:
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Power Series

Solution
1 n
If we let u, = —z".
n!
. U . "t pl
lim | = lim —
n—0o0 | Uy n—00 (n + 1)' ap®
. T ) 1
= lim = lim |z| = 0.
n—oo (m + 1 n—oon + 1

By the ratio test (Theorem 4.3), with L = 0 < 1, the power series is
absolutely convergent for every real number z.
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Power Series

Example 5.3

o
Find all values of x for which the power series Zn!x" is convergent.

n=0
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Power Series

Solution

If we let u, = nla", if x # 0.

1)1
lim |22 = Jim —(n o+ Dl
n—00 | Uy n—o00 nlxn
= lim |(n+ 1)z| = lim (n + 1)|z| = cc.
n—oo n—o0

and, by the ratio test (Theorem 4.3), the series diverges. Hence, the power
series is convergent only if x = 0.
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Power Series

rem

o0
Q If a power series g anx™ converges for a nonzero number c, then it
n=0
is absolutely convergent whenever |z| < |c|.

o0
@ If a power series E anx" diverges for a nonzero number d, then it

n=0
diverges whenever |x| > |d|.
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Power Series

Theorem 5.2

oo
If Z anx” a Power series, then exactly one of the following is true:
n=0

© The series converges only if x = 0.

@ The series is absolutely convergent for every x.

© There is a number r > 0 such that the series is absolutely convergent
if x is in the open interval (—r,r) (|x| < r) and divergent if x < —r
orx>r (|lz| >r)
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Power Series

Remark 5.2

@ The number 7 is called the radius of convergence of the series.
Either convergence or divergence may occur at —r or 7, depending on
the nature of the series.

@ The totality of numbers for which a power series converges is called
its interval of convergence. If the radius of convergence r is
positive, then the interval of convergence is one of the following

(=r,7), (=r,7], [-7,7), [-7,7]
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Power Series

Example 5.4

Find the interval of convergence of the power series

[e'9)

1
> ="
n=1 \/ﬁ

Note that the coefficient of 2 is 0 and the summation begin with 1.

1
If we let u,, = —z".
vn
+1
. Un+1 . x" n
lim [ = lim —£
n—oo [ Uy n—oo |/ +1 2"
. n .
= lim Lx = lim |z| = ||
n—oo |v/n + 1 n—oo \l n+ 1
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Power Series

By the ratio test (Theorem 4.3), with L = |z|, the series is absolutely

convergent if the following equivalent inequalities are true:

L =|z|] <1= —1 <z <1, then the radius of convergence is r = 1.
o o 1

The case when x = 1, the power series will be a p-series with p = —,

2
which is divergent.

The case when x = —1, the power series will be an alternating series
o

1
Z(—l)"— which is convergent.

n=1 \/ﬁ

Thus the interval of convergence is [—1,1).
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Power Series

Definition 5.2

Let ¢ be a real number and x be a variable. A power series in x —c is a
series of the form

o
Zan(x—c)”=ao—i—al(x—c)—|—a2(x—c)2+‘--—i—an(x—c)”—i—...
n=1

where each ay, is a real number.
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Power Series

Theorem 5.3

o
If Z an(x — )" a Power series, then exactly one of the following is true:
n=0

© The series converges only if x — c =0, that is x = c.

@ The series is absolutely convergent for every x.

© There is a number r > 0 such that the series is absolutely convergent
if x is in the open interval (c —r,c+r) (|z — c| < r) and divergent if
zr<c—rorx>c+r (lvt—c >r)
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Power Series

Example 5.5

Find the interval of convergence of the power series

> 1
-1" x—3)"
SV =9
Solution
1
If we let u, = (—1)" —3)".
we let u, = ( )n+1(x )
.| Unt1 . rz—3)" n+1
lim = lim
n—00 | Up n—o00 n -+ 2 (J,‘—?))"
1 1
— e | — 3| = i|:c—3\:ygc—3|.
n—oo | n + 2 n—oon + 2
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Power Series

By the ratio test (Theorem 4.3), with L = |z — 3|, the series is absolutely
convergent if the following equivalent inequalities are true:
L=jz-3|<l=-1l<z-3<1=2<z<4

The case when x = 4, the power series will be an alternating series

= 1
—1)"—— which is convergent.
nZ::l( )V g
The case when x = 2, the power series will be an harmonic series

o0

1
> — which is divergent.

Thus the interval of convergence is (2, 4].
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Power series representations of functions

Definition 6.1

A power series Z anx™ determines a function f whose domain is the
interval of convergence of the series. Specifically, for each x in this
interval, we let f(x) equal the sum of the series, that is,

0
f(m):Zanl’"=ao+a1x—i—a2x2+~-+anm”+,,_
n=0

If a function f is defined in this way, we say that Z anx” is a power

series representation for f(x) (or of f(x)). We also use the phrase f is
represented by the power series.
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Power series representations of functions

Example 6.1

Find a function f that is represented by the power series

1-z+z? -3+ 4+ (=12 +. ..

If |x| < 1, then the series is a geometric series which is convergent and has
the sum a 1 1

1-r 1-(-=2) l+=

Hence we may write
1

=l-z+2* -2+ -+ (=1)"2" +...
14+

This result is a power series representation for f(z) = on the

interval (—1,1).
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Power series representations of functions

Theorem 6.1

Suppose that a power series a,x" has a radius of convergence r > 0,
and let f be defined by

(e.9]
f(x):Zanxn:ao+a1x+a2m2+-.-+anx"+,,_
n=0

for every x in the interval of convergence. If —r < x < r. then

(o)
Q@ f(v) = a1 +2asx + 3asz® + -+ napz" L4 = Z napx™
n=1
T $2 I3 xn—f—l 0 In+1
o /0 f(2) dz = apztar = +az g oban — e = Z_%a”rwl

The series obtained by differentiation or integration has the same radius of
convergence as Z anx".
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Power series representations of functions

Example 6.2
1

Use a power series representation for

to obtain a power series

representation for
1
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Power series representations of functions

We have
1
14+
If we differentiate each term of this series, then

=l—z4+22—23+ .. +(-1)"z"+...

=142 -3z 4+ -+ (-1)"nz" 1+ . ..

(14 xz)?
we may multiply both sides by —1, obtaining
1
= 1-2z+32% -+ (=) g iz < 1
(1+x)?
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Power series representations of functions

Example 6.3

Find a power series representation for

In(l1+2z), if |[z| <1
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Power series representations of functions

If |x| <1, then In(1 + z) / —— dt We have
14¢

1
1+ 2

=1l-gz+z?—ad+.- 4+ (-1)"2"+...

T
then ln(l—i—x):/ [1—t+8 =+ + (=1)™" +...] dt we may

0
integrate each term of the series as follows:

ln(1+:1c)=/ 1dt—/ tdt+/ tht+~-+(—1)”/ t"dt+ ...
0 0 0 0
2

3 n+1
X X X
- — — 1+ = ... 1"
x 2+3+ + ( )n—l—l

+... if 2l <1
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Power series representations of functions

Example 6.4

Use the results of Example 1.3 to calculate In(1.1) to five decimal places.

In Example 1.3, we found a series representation for In(1 + ) if |z| < 1.
Substituting 0.1 for z in that series gives us the alternating series

n(11) = 0.1 - Q7 ODF O (017

3 4 5
~ 0.1 —0.005 + 0.000333 — 0.000025 + 0.000002 + . ..
If we sum the first four terms on the right and round off to five decimal
places, we obtain In(1.1) ~ 0.09531.
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Power series representations of functions

Example 6.5

Find a power series representation for tan™! z.
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Power series representations of functions

Solution
We first observe that

o1
tan"lz = / — dt

o 1+1¢2

We have L o_ ! if [t| < 1, then ! is the sum of a
1+ 1—(-t2)’ ’ 1+ ¢2
geometric series with @ = 1 and r = —t?, thus
1
1+¢2
we may integrate each term of the series from 0 to = to obtain
. e B g2l
tan x:x—g—i-g—i-”-—i-(—l) o1 +...,

when |z| < 1. It can be proved that this series representation is also valid

when |z| = 1.

=1l =P e = e (P A,
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Power series representations of functions

Theorem 6.2

If x is any real number,

co  _m 2 3 n
NP _ ror oL r
e_;n!_1+x+2!+3!+ T
Remark 6.1
To obtain a power series representation for e=*, we need only substitute
—z for x:
(0.0
- (—z)" (=2)*  (=2)° (=z)"
xr
=] = ]_ —
e ;::On! )ttt e
or
— (=) z?2 3 (—=1)"z"
- _ — _ - 000 - 7
e _nz% T =lorh oo
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Power series representations of functions

Example 6.6

Find the power series representations of the functions:
Q f(z) = cosh(x)
@ f(z) = sinh(z)
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Power series representations of functions

ag =4y
© We have cosh(z) = %
; & " z2 e Z
Since e :7;)m=1+x+a+§+ +—+... and
oo
B (—1)”.’1’}” 1.2 .’133 (—1)”1‘”
T — = — _— = —
‘ _nzz;) TR T A '
2 4 2n
wefinde‘”—l—e_x:2+2$—+2x—+---—|-2x—+...,thus
) . 21 4!2 2n!
x T "
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Power series representations of functions

et —e T
@ We have sinh(z) = —
23 25 p2n+l
o T
we find e —233""2?4‘25 +2m+...,thus
e R p2n+1
inh(z) =+ = + =+ + ——— +
S 3 5l @ny1)
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Power series representations of functions

Example 6.7

Find a power series representation for f(z) = xe™

First we substitute —2z for x in e” representation and we have

- (=22)%  (=22)° (=22)"
T pr— _ RS —_—
— == (=) or t gttt
.’L’2 .’L’3 (_2)nxn
—1—230—1—45—85 +T+
Multiplying both sides by = gives us
3 x4 (_2)n$n+1
e Xy — 212 —|—4§—8§ —i—T—i—

n=0
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Power series representations of functions

Example 6.8

Tet 1

dt.

Find a power series representation for /
0

Using the power series representation of e* we have

2 3 n
e —l=th ot by
2! 3! n!
then et_l_l " 42 gn—1
= +5+§+"'+ ol T ooo

Tet—1 x? x3 a®
dt =
/0 ¢ SRV TII TR v R
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Power series representations of functions

Find a power series representation for f(x), f/(c) and / f(t) dat
0

o f(x)=3_12x-
3
® /@)=
2
0 fm=""1
(%) f(x):arln(l—:v).
Q f(z) = z2%€”
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Power series representations of functions

Approximate the following integrals to four decimal places.

0.1 )
Q / e " dx
0

05
Q / e’ dx
0

1
2
9/ tan~! 22 dx
0
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Taylor and Maclaurin series

In the preceding section, we considered power series representations for
several special functions, including those where f(z) has the form

112 In(1 + ), tan~*(z), €%, or, cosh(z)

provided z is suitably restricted.
We now wish to consider the following two general questions.

© If a function f(x) has a power series representation

E anz” or f(x g an(z —c)"

what is the form of a,,?
@ What conditions are sufficient for a function f to have a power series
representation?

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 98 /103



Taylor and Maclaurin series

Theorem 7.1 (Maclaurin series for f(x))

If a function f has a power series representation

(e}

with radius of convergence r > 0, then ) (0) exist for every positive

(n)
integer k and a,, = / n'(O) Thus
1 (n)
£@) = £ + )+ T a2 g Oy
or -
™)
f('r) = Z Ta:
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Taylor and Maclaurin series

Theorem 7.2 (Taylor series for f(x))

If a function f has a power series representation

flz) = Zan(:ﬂ —o)"
n=0

with radius of convergence r > 0, then ) (c) exist for every positive

integer k and a,, = % Thus
! (n)
f@) = @+ @ -+ L@ et T Doy
or X £(n) c
f@) =3 T o
n=0 :
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Taylor and Maclaurin series

Find Maclaurin series of
sin x
CcoS T

x2sinz

x

©00O0

€
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Taylor and Maclaurin series

Find Taylor series of

. T
Q sinz, ng

Q@ Inz,z=c¢c>0

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 102 /103



Taylor and Maclaurin series

Approximate the improper integral to four decimal places.

1
(1 ] / sin x>
0

11

— COoS T

e/ 1= cosw
0 X
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