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Double integral

Review of the Definite Integral

First let’s recall the basic facts concerning definite integrals of functions of
a single variable. If f(x) is defined for a ⩽ x ⩽ b, we start by dividing the

interval [a, b] into n subintervals [xi−1, xi] of equal width ∆x =
b− a

n
and

we choose sample points ci in these subintervals. Then we form the
Riemann sum

Rn =
n∑

i=1

f(ci)∆x

and take the limit of such sums as n → ∞ to obtain the definite integral
of f from a to b:

b∫
a

f(x)dx = lim
n→∞

Rn = lim
n→∞

n∑
i=1

f(ci)∆x,
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Double integral

In the special case where f(x) ⩾ 0, the Riemann sum can be interpreted
as the sum of the areas of the approximating rectangles in Figure 1, and∫ b

a
f(x) dx represents the area under the curve y = f(x) from a to b.

Figure 1: Reimann sum
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Double integral

Volumes and Double Integrals

In a similar manner we consider a function f of two variables defined on a
closed rectangle

R = [a, b]× [c, d] = {(x, y) ∈ R2|a ⩽ x ⩽ b, c ⩽ y <⩽}

and we first suppose that f(x, y) ⩾ 0. The graph of f is a surface with
equation z = f(x, y) . Let S be the solid that lies above R and under the
graph of f , that is,

S = {(x, y, z) ∈ R3|0 ⩽ z ⩽ f(x, y), (x, y) ∈ R}

(See Figure 2.) Our goal is to find the volume of S.
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Double integral

Figure 2: z = f(x, y)
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Double integral

The first step is to divide the rectangle R into subrectangles. We
accomplish this by dividing the interval [a, b] into m subintervals [xi−1, xi]

of equal width ∆x =
b− a

m
and dividing [c, d] into n subintervals [yj−1, yj ]

of equal width ∆y =
d− c

n
. By drawing lines parallel to the coordinate

axes through the endpoints of these subintervals, as in Figure 3, we form
the subrectangles

Figure 3: Dividing R into subrectangles
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Double integral

If we choose a sample point (x∗ij , y
∗
ij) in each Rij , then we can approximate

the part of S that lies above each Rij by a thin rectangular box (or
“column”) with base Rij and height f(x∗ij , y

∗
ij) as shown in Figure 4.

Figure 4:
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Double integral

The volume of this box is the height of the box times the area of the base
rectangle:

f(x∗ij , y
∗
ij)∆A

If we follow this procedure for all the rectangles and add the volumes of the
corresponding boxes, we get an approximation to the total volume of S:

V ≈
m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A

Figure 5:
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Double integral

Definition 1.1

The double integral of f over the rectangle R is∫∫
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A

if this limit exists.

Definition 1.2

If f(x, y) ⩾ 0, then the volume V of the solid that lies above the rectangle
R and below the surface z = f(x, y) is∫∫

R

f(x, y) dA
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Double integral

Definition 1.3 (Iterated Integral)

Suppose that f is a function of two variables that is integrable on the
rectangle R = [a, b]× [c, d], then∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ b

a

[∫ d

c
f(x, y) dy

]
dx

or ∫∫
R

f(x, y) dA =

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ d

c

[∫ b

a
f(x, y) dx

]
dy
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Double integral

Example 1.1

Evaluate the iterated integrals.

1

∫ 3

0

∫ 2

1
x2y dy dx

2

∫ 2

1

∫ 3

0
x2y dx dy
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Double integral

Solution

1

∫ 3

0

∫ 2

1
x2y dy dx =

∫ 3

0

[∫ 2

1
x2y dy

]
dx

=

∫ 3

0

[
x2

y2

2

]2
1

dx

=

∫ 3

0

(
3x2

2

)
dx =

[
x3

2

]3
0

=
27

2

2

∫ 2

1

∫ 3

0
x2y dx dy =

∫ 2

1

[∫ 3

0
x2y dx

]
dy

=

∫ 2

1

[
x3

3
y

]3
0

dy

=

∫ 2

1
(9y) dy =

[
9y2

2

]2
1

=
27

2
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Double integral

Theorem 1.1 (Fubini’S Theorem)

If f is continuous on the rectangle R = {(x, y)|a ⩽ x ⩽ b, c ⩽ y ⩽ d}, then∫∫
R

f(x, y) dA =

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy

More generally, this is true if we assume that f is bounded on R, f is
discontinuous only on a finite number of smooth curves, and the iterated
integrals exist.
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Double integral

Example 1.2

Evaluate the double integral

∫∫
R
(x− 3y2)dA, where

R = {(x, y)|0 ⩽ x ⩽ 2, 1 ⩽ y ⩽ 2}.

Solution (Method 1)

Fubini’s Theorem gives∫∫
R
(x− 3y2)dA =

∫ 2

0

∫ 2

1
(x− 3y2)dydx =

∫ 2

0

[
xy − y3

]2
1
dx

=

∫ 2

0
(x− 7)dx =

[
x2

2
− 7x

]2
0

= −12
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Double integral

Solution (Method 2)

Fubini’s Theorem gives∫∫
R
(x− 3y2)dA =

∫ 2

1

∫ 2

0
(x− 3y2)dxdy =

∫ 2

1

[
x2

2
− 3xy2

]2
0

dy

=

∫ 2

1
(2− 6y2)dy =

[
2y − 2y3

]2
1
= −12
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Double integral

Example 1.3

Evaluate

∫∫
R
y sin(xy)dA, where R = [1, 2]× [0, π].

Solution∫∫
R
y sin(xy)dA =

∫ π

0

∫ 2

1
y sin(xy) dx dy

=

∫ π

0
[− cos(xy)]21 dy

=

∫ π

0
(− cos(2y) + cos(y)) dy

=

[
−sin(2y)

2
+ sin(y)

]π
0

= 0
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Double integral

Example 1.4

Find the volume of the solid S that is bounded by the elliptic paraboloid
x2 + 2y2 + z = 16, the planes x = 2 and y = 2, and the three coordinate
planes.

Solution

We first observe that S is the solid that lies under the surface
z = 16− x2 − 2y2 and above the square R = [0, 2]× [0, 2].∫∫

R
(16− x2 − 2y2)dA =

∫ 2

0

∫ 2

0
(16− x2 − 2y2) dx dy

=

∫ 2

0

[
16x− x3

3
− 2xy2

]2
0

dy

=

∫ 2

0

(
88

3
− 4y2

)
dy

=

[
88

3
y − 4y3

3

]2
0

dy = 48
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Double integral

In the special case where f(x, y) can be factored as the product of a
function of x only and a function of y only, the double integral of f can be
written in a particularly simple form. To be specific, suppose that
f(x, y) = g(x)h(y) and R = [a, b]× [c, d]. Then,

Theorem 1.2 ∫∫
R
g(x)h(y)dA =

∫ b

a
g(x)dx

∫ d

c
h(y)dy
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Double integral

Example 1.5

Evaluate the integral

∫∫
R
sinx cos ydA, where R = [0, π2 ]× [0, π2 ]

Solution∫∫
R
sinx cos ydA =

∫ π
2

0
sinxdx

∫ π
2

0
cos ydy

= [− cosx]
π
2
0 [sin y]

π
2
0 = 1
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Double integrals over general regions

For single integrals, the region over which we integrate is always an
interval. But for double integrals, we want to be able to integrate a
function f not just over rectangles but also over regions D of more general
shape, such as the one illustrated in Figure 6.

Figure 6:
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Double integrals over general regions

Definition 2.1 (Type I)

A plane region D is said to be of type I if it lies between the graphs of
two continuous functions of x, that is,

D = {(x, y)|a ⩽ x ⩽ b, g1(x) ⩽ y ⩽ g2(x)}

where g1 and g2 are continuous on [a, b]. Some examples of type I regions
are shown in Figure 7.

Figure 7:
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Double integrals over general regions

Definition 2.2 (Type II)

A plane region D is said to be of type II if it lies between the graphs of
two continuous functions of y, that is,

D = {(x, y)|c ⩽ y ⩽ d, h1(y) ⩽ x ⩽ h2(y)}

where h1 and h2 are continuous on [c, g]. Some examples of type II
regions are shown in Figure 8.

Figure 8:
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Double integrals over general regions

Theorem 2.1
1 If f is continuous on a type I region D such that

D = {(x, y)|a ⩽ x ⩽ b, g1(x) ⩽ y ⩽ g2(x)}

then ∫∫
D
f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx

2 If f is continuous on a type II region D such that

D = {(x, y)|c ⩽ y ⩽ d, h1(y) ⩽ x ⩽ h2(y)}

then ∫∫
D
f(x, y)dA =

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy
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Double integrals over general regions

Example 2.1

Evaluate
∫∫

D(x+ 2y)dA, where D is the region bounded by the parabolas
y = 2x2 and y = 1 + x2.

Figure 9:
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Double integrals over general regions

Solution

The parabolas intersect when 2x2 = 1 + x2, that is, x2 = 1, so x = 1 or
x = −1. We note that the region D, sketched in Figure 9, is a type I
region but not a type II region and we can write
D = {(x, y)| − 1 ⩽ x ⩽ 1, 2x2 ⩽ y ⩽ 1 + x2}∫∫

D
(x+ 2y)dA =

∫ 1

−1

∫ 1+x2

2x2

(x+ 2y) dy dx =

∫ 1

−1

[
xy + y2

]1+x2

2x2 dx

=

∫ 1

−1

(
x(1 + x2) + (1 + x2)2 − 2x3 − 4x4

)
dx

=

∫ 1

−1

(
−3x4 − x3 + 2x2 + x+ 1

)
dx

=

[
−3x5

5
− x4

4
+

2x3

3
+

x2

2
+ x

]1
−1

=
32

15
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Double integrals over general regions

Example 2.2

Find the volume of the solid that lies under the paraboloid z = x2 + y2

and above the region D in the xy-plane bounded by the line y = 2x and
the parabola y = x2.

Figure 10: D as a type I region
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Double integrals over general regions

Solution

From Figure 10 we see that D is a type I region and
D = {(x, y)|0 ⩽ x ⩽ 2, x2 ⩽ y ⩽ 2x}
Therefore the volume under z = x2 + y2 and above D is∫∫

D
(x2 + y2)dA =

∫ 2

0

∫ 2x

x2

(x2 + y2) dy dx =

∫ 2

0

[
x2y +

y3

3

]2x
x2

dx

=

∫ 2

0

(
−x6

3
− x4 +

14x3

3

)
dx

=

[
−x7

21
− x5

5
+

7x4

6

]2
0

=
216

35
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Double integrals over general regions

Figure 11: D as a type II region
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Double integrals over general regions

Solution

From Figure 11 we see that D is a type II region and
D = {(x, y)|0 ⩽ y ⩽ 4, y2 ⩽ y ⩽

√
y}

Therefore the volume under z = x2 + y2 and above D is∫∫
D
(x2 + y2)dA =

∫ 4

0

∫ √
y

y
2

(x2 + y2) dx dy =

∫ 4

0

[
x3

3
+ y2x

]√y

y
2

dy

=

∫ 4

0

(
y

3
2

3
+ y

5
2 − y3

24
− y3

2

)
dy

=

∫ 4

0

[
2y

5
2

15
+

2y
7
2

7
− 13y4

96

)
dy =

216

35
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Double integrals over general regions

Example 2.3

Evaluate

∫∫
D
xydA, where D is the region bounded by the line y = x− 1

and the parabola y2 = 2x+ 6.

Figure 12:
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Double integrals over general regions

Solution

The region D is shown in Figure 12. Again D is both type I and type II,
but the description of D as a type I region is more complicated because
the lower boundary consists of two parts. Therefore we prefer to express D
as a type II region:

D = {(x, y)| − 2 ⩽ y ⩽ 4,
y2

2
− 3 ⩽ x ⩽ y + 1}∫∫

D
xydA =

∫ 4

−2

∫ y+1

y2

2
−3

xy dxdy =

∫ 4

−2

[
x2

2
y

]y+1

y2

2
−3

dy

=
1

2

∫ 4

−2

(
−y5

4
+ 4y3 + 2y2 − 8y

)
dy

=
1

2

[
−y6

24
+ y4 +

2y3

3
− 4y2

]4
−2

dy = 36
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Double integrals over general regions

Exercise 2.1

Evaluate the iterated integral

∫ 1

0

∫ 1

x
sin(y2)dydx.
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Double integrals over general regions

Properties 2.1

1

∫∫
D
cf(x, y) dA = c

∫∫
D
f(x, y) dA, for every real number c.

2

∫∫
D
[f(x, y) + g(x, y)] dA =

∫∫
D
f(x, y) +

∫∫
D
g(x, y) dA

3 If f(x, y) ≥ 0 throughout D, then

∫∫
D
f(x, y) dA ≥ 0

4 If f(x, y) ≥ g(x, y) throughout D, then∫∫
D
f(x, y) dA ≥

∫∫
D
g(x, y) dA
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Double integrals over general regions

5 If D = D1 ∪D2, where D1 and D2 don’t overlap except perhaps on
their boundaries (see Figure 13), then∫∫

D
f(x, y) dA =

∫∫
D1

f(x, y) +

∫∫
D2

f(x, y) dA

Figure 13: D = D1 ∪D2
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Double integrals in polar coordinates

Suppose that we want to evaluate a double integral

∫∫
R
f(x, y) dA,

where R is one of the regions shown in Figure 14. In either case the
description of R in terms of rectangular coordinates is rather complicated,
but R is easily described using polar coordinates.

Figure 14: Region R
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Double integrals in polar coordinates

Recall from Figure 15 that the polar coordinates (r, θ) of a point are
related to the rectangular coordinates (x, y) by the equations

r2 = x2 + y2, x = r cos(θ) y = r sin(θ)

Figure 15: Polar coordinates

The regions in Figure 14 are special cases of a polar rectangle

R = {(r, θ)|a ⩽ r ⩽ b, α ⩽ θ ⩽ β}
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Double integrals in polar coordinates

Theorem 3.1 (Change to Polar Coodinates in a Double Integral)

If f is continuous on a polar rectangle R given by
0 ⩽ a ⩽ r ⩽ b, α ⩽ θ ⩽ β, where 0 ⩽ β − α ⩽ 2π, then∫∫

R
f(x, y)dA =

∫ β

α

∫ b

a
f(r cos θ, r sin θ)rdrdθ
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Double integrals in polar coordinates

Example 3.1

Evaluate

∫∫
R
(3x+ 4y2)dA, where R is the region in the upper half-plane

bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.
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Double integrals in polar coordinates

Solution

The region R can be described as

R = {(x, y)|y ⩾ 0, 1 ⩽ x2 + y2 ⩽ 4}

It is the half-ring shown in Figure 14(b), and in polar coordinates it is
given by 1 ⩽ r ⩽ 2, 0 ⩽ θ < π. Therefore,∫∫

R
(3x+ 4y2)dA =

∫ π

0

∫ 2

1
(3r cos θ + 4r2 sin2 θ)rdrdθ

=

∫ π

0

∫ 2

1
(3r3 cos θ + 4r3 sin2 θ)drdθ

=

∫ π

0

[
r3 cos θ + r4 sin2 θ

]2
1
dθ]]

=

∫ π

0

(
7 cos θ + 15 sin2 θ

)
dθ
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Double integrals in polar coordinates

=

∫ π

0

(
7 cos θ +

15

2
(1− cos 2θ)

)
dθ

=

[
7 sin θ +

15

2
θ − 15

4
sin 2θ

]π
0

dθ =
15π

2
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Double integrals in polar coordinates

Example 3.2

Find the volume of the solid bounded by the plane z = 0 and the
paraboloid z = 1− x2 − y2.

Figure 16:
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Double integrals in polar coordinates

Solution

If we put z = 0 in the equation of the paraboloid, we get x2+ y2 = 1. This
means that the plane intersects the paraboloid in the circle x2 + y2 = 1, so
the solid lies under the paraboloid and above the circular disk D given by
x2 + y2 ⩽ 1 [see Figures 16 and 14(a)]. In polar coordinates D is given by
0 ⩽ r ⩽ 1, 0 ⩽ θ ⩽ 2π. Since 1− x2 − y2 = 1− r2, the volume is

V =

∫∫
D
(1− x2 − y2) dA =

∫ 2π

0

∫ 1

0
(1− r2)rdrdθ

=

∫ 2π

0
dθ

∫ 1

0
(r − r3)dr = 2π

[
r2

2
− r4

4

]1
0

=
π

2
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Double integrals in polar coordinates

Theorem 3.2

If f is continuous on a polar region of the form

D = {(r, θ)|α ⩽ θ ⩽ β, h1(θ) ⩽ r ⩽ h2(θ)}∫∫
D
f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)
f(r cos(θ), r sin(θ))rdrdθ

Figure 17: D = {(r, θ)|α ⩽ θ ⩽ β, h1(θ) ⩽ r ⩽ h2(θ)}
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Double integrals in polar coordinates

Example 3.3

Use a double integral to find the area enclosed by one loop of the four
leaved rose r = cos 2θ.

Figure 18: Four leaved rose

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 48 / 94



Double integrals in polar coordinates

Solution

From the sketch of the curve in Figure 8, we see that a loop is given by
the region

D = {(r, θ)| − π

4
⩽ θ ⩽

π

4
, 0 ⩽ r ⩽ cos 2θ}

So the area is

A(D) =

∫∫
D
dA =

∫ π
4

−π
4

∫ cos 2θ

0
rdrdθ

=

∫ π
4

−π
4

[
r2

2

]cos 2θ
0

dθ =
1

2

∫ π
4

−π
4

cos2 2θdθ

=
1

4

∫ π
4

−π
4

(1 + cos 4θ)dθ =
1

4

[
θ +

1

4
sin 4θ

]π
4

−π
4

=
π

8
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Double integrals in polar coordinates

Example 3.4

Find the volume of the solid that lies under the paraboloid z = x2 + y2,
above the xy-plane, and inside the cylinder x2 + y2 = 2x.

Figure 19: Four leaved rose
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Double integrals in polar coordinates

Solution

The solid lies above the disk D whose boundary circle has equation
x2 + y2 = 2x or, after completing the square, (x− 1)2 + y2 = 1 In polar
coordinates we have x2 + y2 = r2 and x = r cos θ, so the boundary circle
becomes r2 = 2r cos θ, or r = 2 cos θ. Thus the disk D is given by

D = {(r, θ)| − π

2
⩽ θ ⩽

π

2
, 0 ⩽ r ⩽ 2 cos θ}

V =

∫∫
D
(x2 + y2) dA =

∫ π
2

−π
2

∫ 2 cos θ

0
r2rdrdθ =

∫ π
2

−π
2

[
r4

4

]2 cos θ
0

dθ

= 4

∫ π
2

−π
2

cos4 θ dθ = 8

∫ π
2

0
cos4 θ dθ = 8

∫ π
2

0

(
1 + cos 2θ

2

)2

dθ

= 2

∫ π
2

0

(
1 + 2 cos 2θ +

1

2
(1 + cos 4θ)

)
dθ =

3π

2
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Triple Integrals

Just as we defined single integrals for functions of one variable and double
integrals for functions of two variables, so we can define triple integrals for
functions of three variables. Let’s first deal with the simplest case where f
is defined on a rectangular box:

B = {(x, y, z)|a ⩽ x ⩽ b, c ⩽ y ⩽ d, r ⩽ z ⩽ s}

Figure 20:
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Triple Integrals

Theorem 4.1 (Fubini’s Theorem for Triple Integrals)

If f is continuous on the rectangular box B = [a, b]× [c, d]× [r, s], then∫∫∫
B
f(x, y, z)dV =

∫ b

a

∫ d

c

∫ s

r
f(x, y, z)dzdydx

=

∫ b

a

∫ s

r

∫ d

c
f(x, y, z)dydzdx

=

∫ d

c

∫ b

a

∫ s

r
f(x, y, z)dzdxdy

=

∫ d

c

∫ s

r

∫ b

a
f(x, y, z)dxdzdy

=

∫ s

r

∫ b

a

∫ d

c
f(x, y, z)dydxdz

=

∫ s

r

∫ d

c

∫ b

a
f(x, y, z)dxdydz.
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Triple Integrals

Example 4.1

Evaluate the triple integral
∫∫∫

B xyz2dV , where B is the rectangular box
given by

B = {(x, y, z)|0 ⩽ x ⩽ 1,−1 ⩽ y ⩽ 2, 0 ⩽ z ⩽ 3}
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Triple Integrals

Solution

We could use any of the six possible orders of integration. If we choose to
integrate with respect to x, then y, and then z, we obtain∫∫∫

B
xyz2dV =

∫ 3

0

∫ 2

−1

∫ 1

0
xyz2 dxdydz =

∫ 3

0

∫ 2

−1

[
x2

2
yz2
]1
0

dydz

=

∫ 3

0

∫ 2

−1

yz2

2
dydz =

∫ 3

0

[
y2z2

4

]2
−1

dz =

∫ 3

0

3z2

4
dz

=

[
z3

4

]3
0

=
27

4
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Triple Integrals

A solid region E is said to be of type 1 if it lies between the graphs of two
continuous functions of x and y, that is,

E = {(x, y, z)|(x, y) ∈ D,u1(x, y) ⩽ z ⩽ u2(x, y)}
where D is the projection of E onto the xy-plane as shown in Figure 21.
Notice that the upper boundary of the solid E is the surface with equation
z = u2(x, y), while the lower boundary is the surface z = u1(x, y).
If E is a type 1 region∫∫∫

E
f(x, y, z)dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)
f(x, y, z)dz

]
dA

Figure 21: A type 1 solid region
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Triple Integrals

In particular, if the projection D of E onto the xy-plane is a type I plane
region (as in Figure 22), then

E = {(x, y, z)|a ⩽ x ⩽ b, g1(x) ⩽ y ⩽ g2(x), u1(x, y) ⩽ z ⩽ u2(x, y)}

we have∫∫∫
E
f(x, y, z)dV =

∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)
f(x, y, z)dzdydx

Figure 22: A type 1 solid region where the projection D is a type I plane region
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Triple Integrals

If, on the other hand, D is a type II plane region (as in Figure 23), then

E = {(x, y, z)|c ⩽ y ⩽ d, h1(y) ⩽ x ⩽ h2(y), u1(x, y) ⩽ z ⩽ u2(x, y)}
we have∫∫∫

E

f(x, y, z)dV =

∫ d

c

∫ h2(y)

h1(y)

∫ u2(x,y)

u1(x,y)
f(x, y, z)dzdxdy

Figure 23: A type 1 solid region where the projection D is a type II plane region
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Triple Integrals

Example 4.2

Evaluate

∫∫∫
E

zdV where E is the solid tetrahedron bounded by the four

planes x = 0, y = 0, z = 0, and x+ y + z + 1.

Solution

When we set up a triple integral it’s wise to draw two diagrams: one of
the solid region E (see Figure 24)

Figure 24:
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Triple Integrals

and one of its projection D onto the xy-plane (see Figure 25).

Figure 25:

The lower boundary of the tetrahedron is the plane z = 0 and the upper
boundary is the plane x+ y + z = 1 (or z = 1− x− y), so we use
u1(x, y) = 0 and u2(x, y) = 1− x− y. Notice that the planes
x+ y + z = 1 and z = 0 intersect in the line x+ y = 1 (or y = 1− x) in
the xy-plane. So the projection of E is the triangular region shown in
Figure 25, and we have
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Triple Integrals

E = {(x, y, z)|0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1− x, 0 ⩽ z ⩽ 1− x− y}∫∫∫
E

zdV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
z dzdydx =

∫ 1

0

∫ 1−x

0

[
z2

2

]1−x−y

0

dydx

=
1

2

∫ 1

0

∫ 1−x

0
(1− x− y)2 dydx = −1

2

∫ 1

0

[
(1− x− y)3

3

]1−x

0

dx

=
1

6

∫ 1

0
(1− x)3 dx =

1

6

[
−(1− x)4

4

]1
0

=
1

24
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Triple Integrals

A solid region E is said to be of type 2 if it is of the form,

E = {(x, y, z)|(y, z) ∈ D,u1(y, z) ⩽ x ⩽ u2(y, z)}
where D is the projection of E onto the yz-plane as shown in Figure 26.
Notice that the upper boundary of the solid E is the surface with equation
x = u2(y, z), while the lower boundary is the surface x = u1(y, z).
If E is a type 2 region∫∫∫

E
f(x, y, z)dV =

∫∫
D

[∫ u2(y,z)

u1(y,z)
f(x, y, z)dx

]
dA

Figure 26: A type 2 solid region
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Triple Integrals

A solid region E is said to be of type 3 if it is of the form,

E = {(x, y, z)|(x, z) ∈ D,u1(x, z) ⩽ y ⩽ u2(x, z)}
where D is the projection of E onto the xz-plane as shown in Figure 27.
Notice that the upper boundary of the solid E is the surface with equation
y = u2(x, z), while the lower boundary is the surface y = u1(x, z).
If E is a type 2 region∫∫∫

E
f(x, y, z)dV =

∫∫
D

[∫ u2(x,z)

u1(x,z)
f(x, y, z)dy

]
dA

Figure 27: A type 3 solid region
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Triple Integrals

Example 4.3

Evaluate

∫∫∫
E

√
x2 + z2dV , where E is the region bounded by the

paraboloid y = x2 + z2 and the plane y = 4.

Figure 28: Region of integration and Projection onto xy-plane
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Triple Integrals

Solution

The solid E is shown in Figure 28. If we regard it as a type 1 region, then
we need to consider its projection D1 onto the xy-plane, which is the
parabolic region in Figure 28. (The trace of y = x2 + z2 in the plane
z = 0 is the parabola y = x2.)
From y = x2 + z2 we obtain z = ±

√
y − x2 , so the lower boundary

surface of E is z = −
√
y − x2 and the upper surface is z =

√
y − x2 .

Therefore the description of E as a type 1 region is

E =
{
(x, y, z)| − 2 ⩽ x ⩽ 2, x2 ⩽ y ⩽ 4,−

√
y − x2 ⩽ z ⩽

√
y − x2

}
and so we obtain

∫∫∫
E

√
x2 + z2dV =

∫ 2

−2

∫ 4

x2

∫ √
y−x2

−
√

y−x2

√
x2 + z2
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Triple Integrals

Although this expression is correct, it is extremely difficult to evaluate. So
let’s instead consider E as a type 3 region. As such, its projection D3 onto
the xz-plane is the disk x2 + z2 ⩽ 4 shown in Figure 29.

Figure 29: Region of integration and Projection onto xy-plane

Then the left boundary of E is the paraboloid y = x2 + z2 and the right
boundary is the plane y = 4, so taking u1(x, z) = x2 + z2 and
u2(x, z) = 4, we have.
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Triple Integrals

∫∫∫
E

√
x2 + z2dV =

∫∫
D3

[∫ 4

x2+z2

√
x2 + z2dy

]
dA

=

∫∫
D3

(4− x2 − z2)
√

x2 + z2dA

it’s easier to convert to polar coordinates in the xz-plane: x = r cos θ,
z = r sin θ. This gives∫∫∫

E

√
x2 + z2dV =

∫∫
D3

(4− x2 − z2)
√
x2 + z2dA

=

∫ 2π

0

∫ 2

0
(4− r2)r rdrdθ

=

∫ 2π

0
dθ

∫ 2

0
(4r2 − r4)dr

= 2π

[
4r3

3
− r5

5

]2
0

=
128π

15
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Triple integrals in cylindrical coordinates

Definition 5.1 (Cylindrical coordinates)

In the cylindrical coordinate system, a point P in three-dimensional space
is represented by the ordered triple (r, θ, z), where r and θ are polar
coordinates of the projection of P onto the xy-plane and z is the directed
distance from the xy-plane to P . (See Figure 30.)

Figure 30: The cylindrical coordinates of a point
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Triple integrals in cylindrical coordinates

To convert from cylindrical to rectangular coordinates, we use the
equations

x = r cos θ y = r sin θ z = z

whereas to convert from rectangular to cylindrical coordinates, we use

x2 + y2 = r2 tan θ =
y

x
z = z
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Triple integrals in cylindrical coordinates

Example 5.1

1 Plot the point with cylindrical coordinates (2,
2π

3
, 1) and find its

rectangular coordinates.

2 Find cylindrical coordinates of the point with rectangular coordinates
(3,−3,−7).

Figure 31:
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Triple integrals in cylindrical coordinates

Solution

1 The point with cylindrical coordinates (2,
2π

3
, 1) is plotted in Figure

31. Its rectangular coordinates are

x = 2 cos

(
2π

3

)
= 2

(
−1

2

)
= −1

y = 2 sin

(
2π

3

)
= 2

(√
3

2

)
=

√
3

z = 1

2 We have

r =
√
32 + (−3)2 =

√
18 = 3

√
2

tan θ =
−3

3
= −1, so θ = −π

4
+ 2kπ

z = −7
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Triple integrals in cylindrical coordinates

Suppose that E is a type 1 region whose projection D onto the xy-plane is
conveniently described in polar coordinates (see Figure 32).

Figure 32:

In particular, suppose that f is continuous and

E = {(x, y, z)|(x, y) ∈ D,u1(x, y) ⩽ z ⩽ u2(x, y)}
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Triple integrals in cylindrical coordinates

where D is given in polar coordinates by

D = {(r, θ)|α ⩽ θ ⩽ β, h1(θ) ⩽ r ⩽ h2(θ)}∫∫∫
E
f(x, y, z)dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)
f(r cos θ, r sin θ, z)rdzdrdθ
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Triple integrals in cylindrical coordinates

Example 5.2

Evaluate

∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ 2

√
x2+y2

(x2 + y2) dzdydx.
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Triple integrals in cylindrical coordinates

Solution

This iterated integral is a triple integral over the solid region

E = {(x, y, z)|2 ⩽ x ⩽ 2,−
√
4− x2 ⩽ y ⩽

√
4− x2,

√
x2 + y2 ⩽ z ⩽ 2}

and the projection of E onto the xy-plane is the disk x2 + y2 ⩽ 4. The
lower surface of E is the cone z =

√
x2 + y2 and its upper surface is the

plane z = 2. See Figure 33.

Figure 33:
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Triple integrals in cylindrical coordinates

This region has a much simpler description in cylindrical coordinates:

E = {(r, θ, z)|0 ⩽ θ ⩽ 2π, 0 ⩽ r ⩽ 2, r ⩽ z ⩽ 2}∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ 2

√
x2+y2

(x2 + y2) dzdydx =

∫∫∫
E
(x2 + y2)dV

=

∫ 2π

0

∫ 2

0

∫ 2

r
r2 r dzdrdθ

=

∫ 2π

0
dθ

∫ 2

0
r3(2− r)dr

= 2π

[
2r4

4
− r5

5

]2
0

=
16π

5
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Triple integrals in cylindrical coordinates

Exercise 5.1

1 Evaluate

∫∫∫
E
(x2 + y2)dV , where E is the region that lies inside the

cylinder x2 + y2 = 16 and between the planes z = −5 and z = 4.

2 Evaluate

∫∫∫
E
zdV , where E is enclosed by the paraboloid

z = x2 + y2 and the plane z = 4.
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Triple integrals in spherical coordinates

Definition 6.1 (Spherical coordinates)

The spherical coordinates (ρ, θ, ϕ) of a point P in space are shown in
Figure 34, where ρ = |OP | is the distance from the origin to P , θ is the
same angle as in cylindrical coordinates, and ϕ is the angle between the
positive z-axis and the line segment OP . Note that

ρ ⩾ 0, 0 ⩽⩽ π

Figure 34: The spherical coordinates of a point
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Triple integrals in spherical coordinates

The relationship between rectangular and spherical coordinates can be
seen from Figure 35.

Figure 35: The relationship between rectangular and spherical coordinates

We have
z = ρ cosϕ, r = ρ sinϕ

But x = r cos θ and y = r sin θ, so to convert from spherical to
rectangular coordinates, we use the equations

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

Also, the distance formula shows that

ρ2 = x2 + y2 + z2
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Triple integrals in spherical coordinates

Example 6.1

The point (2,
π

4
,
π

3
) is given in spherical coordinates. Plot the point and

find its rectangular coordinates.

Figure 36: The relationship between rectangular and spherical coordinates
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Triple integrals in spherical coordinates

Solution

We plot the point in Figure 36. We have

x = ρ sinϕ cos θ = 2 sin
π

3
cos

π

4
= 2

√
3

2

√
2

2
=

√
3

2

y = ρ sinϕ sin θ = 2 sin(
π

3
) sin(

π

4
) = 2

√
3

2

√
2

2
=

√
3

2

z = ρ cosϕ = 2 cos(
π

3
)) = 2

1

2
= 1

The point (2,
π

4
,
π

3
) is (

√
3
2 ,
√

3
2 , 1)
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Triple integrals in spherical coordinates

Example 6.2

The point (0, 2
√
3,−2) is given in rectangular coordinates. Find spherical

coordinates for this point.

Solution

ρ =
√

x2 + y2 + z2 =
√
0 + 12 + 4 = 4

cosϕ =
z

ρ
=

−2

4
= −1

2
ϕ =

2π

3

cos θ =
x

ρ sinϕ
= 0 θ =

π

2

Therefore spherical coordinates of the given point are (4,
π

2
,
2π

3
).
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Triple integrals in spherical coordinates

Theorem 6.1 (Evaluating Triple Integrals with Spherical Coordinates)∫∫∫
E
f(x, y, z)dV =∫ d

c

∫ β

α

∫ b

a
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕ dρ dθ dϕ

where E is a spherical wedge given by

E = {(ρ, θ, ϕ)|a ⩽ ρ ⩽ b, α ⩽ θ ⩽ β, c ⩽ ϕ ⩽ d}
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Triple integrals in spherical coordinates

This formula can be extended to include more general spherical regions
such as

E = {(ρ, θ, ϕ)|α ⩽ θ ⩽ β, c ⩽ ϕ ⩽ d, g1(θ, ϕ) ⩽ ρ ⩽ g2(θ, ϕ)}

In this case the formula is the same as the previous except that the limits
of integration for ρ are g1(θ, ϕ) and g2(θ, ϕ).
Usually, spherical coordinates are used in triple integrals when surfaces
such as cones and spheres form the boundary of the region of integration.
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Triple integrals in spherical coordinates

Example 6.3

Evaluate

∫∫∫
B
e(x

2+y2+z2)
3
2 dV , where B is the unit ball:

B = {(x, y, z)|x2 + y2 + z2 ⩽ 1}

Solution

Since the boundary of B is a sphere, we use spherical coordinates:

B = {(ρ, θ, ϕ)|0 ⩽ ρ ⩽ 1, 0 ⩽ θ ⩽ 2π, 0 ⩽ ϕ ⩽ π}

In addition, spherical coordinates are appropriate because

ρ2 = x2 + y2 + z2
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Triple integrals in spherical coordinates

∫∫∫
B
e(x

2+y2+z2)
3
2 dV =

∫ π

0

∫ 2π

0

∫ 1

0
e(ρ

2)
3
2 ρ2 sinϕ dρ dθ dϕ

=

∫ π

0
sinϕ dϕ

∫ 2π

0
dθ

∫ 1

0
ρ2eρ

3
dρ

= [− cosϕ]π0 [θ]
2π
0

[
1

3
eρ

3

]1
0

=
4

3
π(e− 1)

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 89 / 94



Triple integrals in spherical coordinates

Remark 6.1

It would have been extremely awkward to evaluate the integral in Example
6.3 without spherical coordinates. In rectangular coordinates the iterated
integral would have been∫ 1

−1

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−y2

−
√

1−x2−y2
e(x

2+y2+z2)
3
2 dz dy dx
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Triple integrals in spherical coordinates

Example 6.4

Use spherical coordinates to find the volume of the solid that lies above
the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z. (See

Figure 37.)

Figure 37:
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Triple integrals in spherical coordinates

Solution

Notice that the sphere passes through the origin and has center (0, 0,
1

2
).

We write the equation of the sphere in spherical coordinates as

x2 + y2 + z2 = z gives ρ2 = ρcosϕ or ρ = cosϕ

The equation of the cone can be written as

ρ cosϕ =

√
ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ = ρ sinϕ

This gives sinϕ = cosϕ, so ϕ =
π

4
. Therefore the description of the solid

E in spherical coordinates is

B = {(ρ, θ, ϕ)|0 ⩽ θ ⩽ 2π, 0 ⩽ ϕ ⩽
π

4
, 0 ⩽ ρ ⩽ cosϕ}
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Triple integrals in spherical coordinates

Figure 38 shows how E is swept out if we integrate first with respect to ρ,
then ϕ, and then θ. The volume of E is

V (E) =

∫∫∫
E
dV =

∫ 2π

0

∫ π
4

0

∫ cosϕ

0
ρ2 sinϕ dρ dϕ dθ

=

∫ 2π

0
dθ

∫ π
4

0
sinϕ

[
ρ3

3

]cosϕ
0

dϕ

=
2π

3

∫ π
4

0
sinϕ cos3 ϕ dϕ

=
2π

3

[
−cos4 ϕ

4

]π
4

0

=
π

8
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Triple integrals in spherical coordinates

Figure 38:
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