# Differential and Integral Calculus (Math 203) 

## BEN AMIRA Aymen

## Department of Mathematics College of Sciences King Saud University

## Chapter 5: Applications

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
(6) Independence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence

A I ine Integrals
(5) Line Integral in Space
(6) Independence of Path and Conservative Vector Field
(7) Green's Theorem
8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## The Dot Product

## Definition 1.1

In $\mathbb{R}^{2}$, if $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$, the dot product of $u$ and $v$ is the number $\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}$. In $\mathbb{R}^{3}$, if $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$, the dot product of $u$ and $v$ is the number $\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
The norm of a vector $u$ is $\|u\|=\sqrt{\langle u, u\rangle}$.

Recall that if $\theta$ is the angle between the vectors $\vec{u}$ and $\vec{v}$, then

$$
\langle u, v\rangle=\|u\|\|v\| \cos \theta
$$



The direction angles associated to a vector $u$ are given by: $\cos \alpha=\frac{\langle u, i\rangle}{\|u\|}, \quad \cos \beta=\frac{\langle u, j\rangle}{\|u\|}$, $\cos \gamma=\frac{\langle u, k\rangle}{\|u\|}$.

## The Cross Product

## Definition 1.2

If $u_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $u_{2}=\left(x_{2}, y_{2}, z_{2}\right)$, then the cross product of $u_{1}$ and $u_{2}$ is the vector

$$
u_{1} \wedge u_{2}=\left|\begin{array}{ll}
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}\right| \overrightarrow{\mathbf{i}}+\left|\begin{array}{ll}
x_{1} & z_{1} \\
x_{2} & z_{2}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

## Remark 1.1

(1) The vector $u_{1} \wedge u_{2}$ is orthogonal to the vectors $u_{1}$ and $u_{2}$ and its direction is given by the right-hand rule i.e. the determinant $\left|u_{1}, u_{2}, u_{1} \wedge u_{2}\right|$ is non negative.
(2) $\left|u_{1} \wedge u_{2}\right|$ is the area of the parallelogram spanned by $u_{1}$ and $u_{2}$, i.e.,

$$
\left|u_{1} \wedge u_{2}\right|=\left|u_{1}\right|\left|u_{2}\right| \sin \theta
$$

(3) Two vectors $u_{1}$ and $u_{2}$ are parallel if and only if $u_{1} \wedge u_{2}=0$.

## Theorem 1.1 (Cross Product Properties)

Let $u_{1}, u_{2}$, and $u_{3}$ be vectors and let $c$ be a constant:
(1) $u_{1} \wedge u_{2}=-u_{2} \wedge u_{1}$;
(2) $\left(c u_{1}\right) \wedge u_{2}=c\left(u_{1} \wedge u_{2}\right)=u_{1} \wedge\left(c u_{2}\right)$;
(3) $u_{1} \wedge\left(u_{2}+u_{3}\right)=u_{1} \wedge u_{2}+u_{1} \wedge u_{3}$;
(9) $\left(u_{1}+u_{2}\right) \wedge u_{3}=u_{1} \wedge u_{3}+u_{2} \wedge u_{3}$;
(5) $u_{1} \cdot\left(u_{2} \wedge u_{3}\right)=\left(u_{1} \wedge u_{2}\right) \cdot u_{3}$;
(0) $u_{1} \wedge\left(u_{2} \wedge u_{3}\right)=\left(u_{1} \cdot u_{3}\right) u_{2}-\left(u_{1} \cdot u_{2}\right) u_{3}$.

## Scalar Triple Product

The scalar triple product of three vectors $u_{1}, u_{2}$, and $u_{3}$ is the determinant

$$
\left\langle u_{1},\left(u_{2} \wedge u_{3}\right)\right\rangle=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

The volume of the parallelepiped formed by the vectors $u_{1}, u_{2}$, and $u_{3}$ is given by

$$
\left|\left\langle u_{1},\left(u_{2} \wedge u_{3}\right)\right\rangle\right|
$$

## The Directional Derivative

Let $f$ be a function defined on a domain $D \subset \mathbb{R}^{2}$. For $\left(x_{0}, y_{0}\right) \in D$, the partial derivatives of $f$ with respect to $x$ and $y$ if they exist are defined by:

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
f_{y}\left(x_{0},, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

Consider a smooth scalar field $f: D \longrightarrow \mathbb{R}$. The partial derivatives of $f$ in the point $\mathbf{r}=x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}} \in D$ when these limits exist:
$\frac{\partial f}{\partial x}(\mathbf{r})=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h} ;$
$\frac{\partial f}{\partial y}(\mathbf{r})=\lim _{h \rightarrow 0} \frac{f(x, y+h, z)-f(x, y, z)}{h}$;
$\frac{\partial f}{\partial z}(\mathbf{r})=\lim _{h \rightarrow 0} \frac{f(x, y, z+h)-f(x, y, z)}{h}$.

## The Directional Derivative

Let $f$ be a function defined on a domain $D \subset \mathbb{R}^{2}$. For $\left(x_{0}, y_{0}\right) \in D$ and $u=(a, b)$ a unit vector in $\mathbb{R}^{2}$. The directional derivative of $f$ in the direction of $u$ at $\left(x_{0}, y_{0}\right)$ if it exists is

$$
\begin{aligned}
D_{u} f\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(\left(x_{0}, y_{0}\right)+h u\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h} .
\end{aligned}
$$

## Example 1.1

(1) If $u=(a, b), D_{u} f\left(x_{0}, y_{0}\right)$ is the same as the derivative of $f\left(x_{0}+a t, y_{0}+b t\right)$ at $t=0$. We can compute this by the chain rule and get

$$
D_{u} f\left(x_{0}, y_{0}\right)=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)
$$

(2) Find the directional derivative of $f(x, y)=x y^{3}-x^{2}$ at $(1,2)$ in the direction $u=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
(3) Find the directional derivative of $f(x, y)=x^{2} \ln y$ at $(3,1)$ in the direction of $u=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integra! in Space
(6) Independence of Path and Conservative Vector Field
(7) Green's Theorem
8. Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(1i1) Stokes's Theorem

## Vector Fields

## Definition 2.1

A two-dimensional vector field is a function $f$ that maps each point $(x, y)$ in $\mathbb{R}^{2}$ to a two-dimensional vector $f(x, y)=(u(x, y), v(x, y))$.
We denote $f(x, y)=u(x, y) \overrightarrow{\mathbf{i}}+v(x, y) \overrightarrow{\mathbf{j}}$, where $\overrightarrow{\mathbf{i}}=(1,0)$ and $\overrightarrow{\mathbf{j}}=(0,1)$.
Similarly a three-dimensional vector field maps $(x, y, z)$ to $f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$.
We denote $f(x, y, z)=u(x, y, z) \overrightarrow{\mathbf{i}}+v(x, y, z) \overrightarrow{\mathbf{j}}+w(x, y, z) \overrightarrow{\mathbf{k}}$, where $\overrightarrow{\mathbf{i}}=(1,0,0), \overrightarrow{\mathbf{j}}=(0,1,0)$ and $\overrightarrow{\mathbf{k}}=(0,0,1)$.

## Example 2.1

The vector fields have many important significations, as they can be used to represent many physical quantities: gravity, electricity, magnetism or a velocity of fluid.
Let $r(t)=x(t) \overrightarrow{\mathbf{i}}+y(t) \overrightarrow{\mathbf{j}}+z(t) \overrightarrow{\mathbf{k}}$ be the position vector of an object.
We can define various physical quantities associated with the object as follows:
velocity: $v(t)=r^{\prime}(t)=\frac{d r}{d t}=x^{\prime}(t) \overrightarrow{\mathbf{i}}+y^{\prime}(t) \overrightarrow{\mathbf{j}}+z^{\prime}(t) \overrightarrow{\mathbf{k}}$,
acceleration:
$a(t)=v^{\prime}(t)=\frac{d v}{d t}=r^{\prime \prime}(t)=\frac{d^{2} r}{d t^{2}}=x^{\prime \prime}(t) \overrightarrow{\mathbf{i}}+y^{\prime \prime}(t) \overrightarrow{\mathbf{j}}+z^{\prime \prime}(t) \overrightarrow{\mathbf{k}}$, The norm $\|v(t)\|$ of the velocity vector is called the speed of the object.

## Example 2.2

The gravitational force field between the Earth with mass $M$ and a point particle with mass $m$ is given by:

$$
F(x, y, z)=-G m M \frac{x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}},
$$

where $G$ is the gravitational constant, and the $(x, y, z)$ coordinates are chosen so that $(0,0,0)$ is the center of the Earth.

## Gradient Fields

Let $f$ be a scalar function of two variables, the gradient of $f$ is defined by

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)
$$

If $f$ is a scalar function of three variables, its gradient is a vector field on $\mathbb{R}^{3}$ given by

$$
\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)
$$

The operator $\nabla$ will be denoted by:
$\nabla=\frac{\partial}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial}{\partial z} \overrightarrow{\mathbf{k}}$ or $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ as a vector.

## Gradient Fields

## Remark 2.1

Let $f$ be a function. The vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to the level surface of $f S=\left\{(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=C\right\}$ that contains $\left(x_{0}, y_{0}, z_{0}\right)$.

## Gradient Fields

Consider $f$ and $g$ two smooth scalar functions defined on a domain $D \subset \mathbb{R}^{3}$ and consider $F=\left(f_{1}, f_{2}, f_{3}\right)$ and $G=\left(g_{1}, g_{2}, g_{3}\right)$ two smooth vector fields.

$$
\begin{aligned}
\nabla(f g) & =\left(\frac{\partial(f g)}{\partial x}, \frac{\partial(f g)}{\partial y}, \frac{\partial(f g)}{\partial z}\right) \\
& =f \nabla(g)+g \nabla(f)
\end{aligned}
$$

$$
\begin{aligned}
\nabla(\langle F, G\rangle)= & \nabla\left(f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}\right) \\
= & \nabla\left(f_{1} g_{1}\right)+\nabla\left(f_{2} g_{2}\right)+\nabla\left(f_{3} g_{3}\right) \\
= & f_{1} \nabla\left(g_{1}\right)++f_{2} \nabla\left(g_{2}\right)+f_{3} \nabla\left(g_{3}\right) \\
& g_{1} \nabla\left(f_{1}\right)+g_{2} \nabla\left(f_{2}\right)+g_{3} \nabla\left(f_{3}\right) .
\end{aligned}
$$

## Vector Fields

## Definition 2.2

A vector field $F$ is called conservative, if $F$ is the gradient of a function, $F=\nabla f$. In this case, the function $f$ is called a potential of the vector field $F$.

For example the vector field

$$
\begin{aligned}
F & =\left(\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{-z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right) \\
& =\nabla \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} .
\end{aligned}
$$

## vector Fields

## Example 2.3 ( The inverse square field)

Let $\mathbf{r}(x, y, z)=x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}$ be the position vector of the point $M(x, y, z)$. The vector field $F(x, y, z)=\frac{c}{\|\mathbf{r}\|^{3}} \mathbf{r}(x, y, z)$ is called the inverse square field, where $c \in \mathbb{R}$.
The inverse field is conservative.

## Test of Conservative

If $F=(P, Q)=\nabla f$. Then $P=\frac{\partial f}{\partial x}$ and $Q=\frac{\partial f}{\partial y}$, and provided that $f$ is smooth, from Schwarz's Theorem, $\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial Q}{\partial x}$. Hence, if $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}, F$ is not conservative.

For a vector field $F=(P, Q, R)$, suppose that $(P, Q, R)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$. If $z$ is constant, then $f(x, y, z)$ is a function of $x$ and $y$, and by Schwarz's Theorem, $\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial Q}{\partial y}$. Likewise, if $y$ is constant, then $\frac{\partial P}{\partial z}=\frac{\partial^{2} f}{\partial x \partial z}=\frac{\partial^{2} f}{\partial z \partial x}=\frac{\partial R}{\partial x}$, and if $x$ is constant, we get $\frac{\partial Q}{\partial z}=\frac{\partial^{2} f}{\partial y \partial z}=\frac{\partial^{2} f}{\partial z \partial y}=\frac{\partial R}{\partial y}$.
Conversely, if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$, and $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ then $F$ is conservative.

## Example 2.4

(1) The vector field $\left(1+3 x y, 2 x^{2}-3 y^{2}\right)$ is not conservative because, $\frac{\partial(1+3 x y)}{\partial y}=3 x$ and $\frac{\partial\left(2 x^{2}-3 y^{2}\right)}{\partial x}=4 x$.
(2) The vector field $F=\left(y^{2} z+y \cos x, 2 x y z+\sin x-\sin y, x y^{2}\right)$ is conservative because, $F=\nabla\left(x y^{2} z+y \sin x+\cos y\right)$.

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
6. Indenendence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(0) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## The Divergence

## Definition 3.1

The divergence of a vector field $F=(P, Q, R)$ is

$$
\langle\nabla, F\rangle=\left\langle\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right),(P, Q, R)\right\rangle=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} .
$$

## The curl of a vector field

The curl of $F=(P, Q, R)$ is

$$
\nabla \times F=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

If $F=P \overrightarrow{\mathbf{i}}+Q \overrightarrow{\mathbf{j}}$ is a two dimensional vector field, the curl $\nabla \times F$ can also be defined by regarding the $k$-component to be zero, i.e. $F=P \overrightarrow{\mathbf{i}}+Q \overrightarrow{\mathbf{j}}+0 \overrightarrow{\mathbf{k}}$, then $\operatorname{curl} F=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \overrightarrow{\mathbf{k}}$.

## Theorem 3.1 (The Curl Test)

Given a vector field $F=(P, Q, R)$ is defined and continuously differentiable everywhere in $\mathbb{R}^{3}$ (or everywhere in $\mathbb{R}^{2}$ for vector fields in $\mathbb{R}^{2}$ ), then $F$ is conservative if and curl $F=0$.

Here are two simple but useful facts about divergence and curl.

## Theorem 3.2

$\langle\nabla,(\nabla \times F)\rangle=0$. In other words, the divergence of the curl is zero.
Theorem 3.3
$\nabla \times(\nabla f)=0$. That is, the curl of a gradient is the zero vector.

## Exercises

## Exercise 3.1

A vector field $F$ is said to be incompressible if $\langle\nabla, F\rangle=0$.
Prove that any vector field of the form $F(x, y, z)=(f(y, z), g(x, z), h(x, y))$ is incompressible.

## Exercise 3.2

Find an $f$ so that $\nabla f=\left(2 x+y^{2}, 2 y+x^{2}\right)$, or explain why there is no such $f$.

## Exercise 3.3

Find an $f$ so that $\nabla f=\left(x^{3},-y^{4}\right)$, or explain why there is no such $f$.

## Exercise 3.4

Find an $f$ so that $\nabla f=\left(x e^{y}, y e^{x}\right)$, or explain why there is no such $f$.

## Exercise 3.5

Find an $f$ so that $\nabla f=(y \cos x, y \sin x)$, or explain why there is no such $f$.

## Exercise 3.6

Find an $f$ so that $\nabla f=(y \cos x, \sin x)$, or explain why there is no such $f$.

## Exercise 3.7

Find an $f$ so that $\nabla f=\left(x^{2} y^{3}, x y^{4}\right)$, or explain why there is no such $f$.

## Exercise 3.8

Find an $f$ so that $\nabla f=(y z, x z, x y)$, or explain why there is no such $f$.

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence

4 Line Integrals
(5) Line Integral in Space
(6) Independence of Path and Conservative Vector Field
(7) Green's Theorem
8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Line Integrals on plane

Consider a plane curve given by the parametric equations

$$
\gamma(t)=(x(t), y(t)), \quad t \in[a, b] .
$$

## Definition 4.1

Let $f$ be a continuous function on $\mathbb{R}^{2}$. If $\gamma$ is continuously differentiable, the line integral of $f$ on $\gamma$ with respect to the arc length is defined by:

$$
\int_{a}^{b} f \circ \gamma(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

## Remark 4.1

(1) If $f=1, \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$ is the length of $\gamma$.

Note that $\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}=\left\|\gamma^{\prime}(t)\right\|$. We denote $d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.
(2) The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as $t$ increases from $a$ to $b$.

## Example 4.1

(Integrating along an arc of circle)
Consider the arc of circle $C$ parametrized by $(\cos t, \sin t)$, with $t \in\left[0, \frac{\pi}{2}\right]$. In this case $d s=\sqrt{\cos ^{2} t+\sin ^{2} t} d t=d t$

$$
\begin{aligned}
\int_{C}\left(x+4 x y^{2}\right) d s & =\int_{0}^{\frac{\pi}{2}}\left(\cos t+4 \cos t \sin ^{2} t\right) d t \\
& =\int_{0}^{\frac{\pi}{2}} \cos t\left(1+4 \sin ^{2} t\right) d t \\
& \stackrel{=\cos t}{=} \int_{0}^{1}\left(1+4 u^{2}\right) d u=\frac{7}{3}
\end{aligned}
$$

## Definition 4.2

Let $f$ be a continuous function on $\mathbb{R}^{2}$ and let $\gamma$ be piecewise-smooth curve, that is, $\gamma$ is a union of a finite number of smooth curves $\gamma_{1}, \ldots, \gamma_{k}$, such that the initial point of $\gamma_{j+1}$ is the terminal point of $\gamma_{j}$. Then we define the integral of a continuous function $f$ along $\gamma$ with respect to the arc length by:

$$
\int_{\gamma} f(x, y) d s=\sum_{j=1}^{k} \int_{\gamma_{j}} f(x, y) d s
$$

## Definition 4.3 (Center of mass of a wire)

If $\rho(x, y)$ is the linear density at a point $(x, y)$ of a thin wire shaped like a curve $\gamma:[a, b] \longrightarrow \mathbb{R}^{2}$. The mass of the thin is

$$
m=\int_{a}^{b} \rho(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t
$$

and the center of mass of the thin

$$
\left(x_{0}, y_{0}\right)=\left(\int_{a}^{b} x(t) \rho(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t, \int_{a}^{b} y(t) \rho(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t\right)
$$

## Example 4.2

A wire takes the shape of an arc of circle $(\cos t, \sin t)$, with $t \in[0, \pi]$. If the density of the thin is $\rho(x, y)=x^{2}+y^{2}$. Then the mass of the thin is

$$
m=\int_{0}^{\pi} d t=\pi
$$

and the center of mass of the this $\left(\int_{0}^{\pi} \cos t d t, \int_{0}^{\pi} \sin t d t\right)=(0,2)$.

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
(6) Independence of Path and Conservative Vector Field
(7) Green's Theorem
8. Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

Consider a space curve given by the parametric equations

$$
\gamma(t)=(x(t), y(t), z(t)), \quad t \in[a, b] .
$$

## Definition

Let $f$ be a continuous function on $\mathbb{R}^{3}$. If $\gamma$ is continuously differentiable, the line integral of $f$ on $\gamma$ with respect to the arc length is defined by:

$$
\int_{a}^{b} f \circ \gamma(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

## Remark 5.1

(1) If $f=1, \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$ is the length of $\gamma$.

Note that $\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}=\left\|\gamma^{\prime}(t)\right\|$ and we denote $d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t$.
(2) The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as $t$ increases from $a$ to $b$.

## Example 5.1

Consider the curve $\gamma$ parametrized by $\gamma(t)=(\cos t, \sin t, 1)$, with $t \in\left[0, \frac{\pi}{2}\right]$. In this case $d s=\sqrt{\cos ^{2} t+\sin ^{2} t} d t=d t$

$$
\begin{aligned}
\int_{C}\left(2 x z+5 x y^{2}+z\right) d s & =\int_{0}^{\frac{\pi}{2}}\left(2 \cos t+5 \cos t \sin ^{2} t+1\right) d t \\
& =\frac{\pi}{2}+\int_{0}^{\frac{\pi}{2}} \cos t\left(2+5 \sin ^{2} t\right) d t \\
& \stackrel{u}{=} \stackrel{\sin t}{=} \frac{\pi}{2}+\int_{0}^{1}\left(2+5 u^{2}\right) d u=\frac{\pi}{2}+\frac{11}{3}
\end{aligned}
$$

## Definition 5.1

Let $f$ be a continuous function on $\mathbb{R}^{3}$ and let $\gamma$ be piecewise-smooth curve, that is, $\gamma$ is a union of a finite number of smooth curves $\gamma_{1}, \ldots, \gamma_{k}$, such that the initial point of $\gamma_{j+1}$ is the terminal point of $\gamma_{j}$. Then we define the integral of a continuous function $f$ along $\gamma$ with respect to the arc length as

$$
\int_{\gamma} f(x, y, z) d s=\sum_{j=1}^{k} \int_{\gamma_{j}} f(x, y, z) d s
$$

## Definition 5.2

Let $f$ be a continuous function on $D \subset \mathbb{R}^{3}$ and let $C$ be piecewise-smooth curve on $D$ parametrized by $(x(t), y(t), z(t)), t \in[a, b]$ :
(1) The line integral of $f(x, y, z)$ with respect to $x$ along the oriented curve $C$ is written $\int_{C} f(x, y, z) d x$ and defined by:

$$
\int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t
$$

(2) The line integral of $f(x, y, z)$ with respect to $y$ along the oriented curve $C$ is written $\int_{C} f(x, y, z) d y$ and defined by:

$$
\int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t
$$

(3) The line integral of $f(x, y, z)$ with respect to $z$ along the oriented curve $C$ is written $\int_{C} f(x, y, z) d z$ and defined by:

$$
\int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
$$

## Work of a Force Field

If $F=(f, g, h)$ is a force field defined on a domain $D \subset \mathbb{R}^{3}$ and let $C$ be piecewise-smooth curve on $D$ parametrized by $(x(t), y(t), z(t)), t \in[a, b]$ : The work of $F$ along the curve $C$ is defined by:

$$
\begin{aligned}
W= & \int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t+\int_{a}^{b} g(x(t), y(t), z(t)) y^{\prime}(t) d t \\
& +\int_{a}^{b} h(x(t), y(t), z(t)) z^{\prime}(t) d t \\
= & \int_{a}^{b}\left\langle F \circ C(t), C^{\prime}(t)\right\rangle d t
\end{aligned}
$$

$\int_{a}^{b}\left\langle F \circ C(t), C^{\prime}(t)\right\rangle d t$ is denoted also $\int_{C} F(x, y, z) \cdot d r$

## Table of contents

## (1) Vector Calculus

(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space

6 Independence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(0) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Definition 6.1

We say that the line integral $\int_{C} F . d \mathbf{r}$ is independent of path in the domain $D$ if the integral is the same for every path contained in $D$ that has the same beginning and ending points.

## Theorem 6.1

Let $F=(f, g, h)$ be a continuous vector field defined on a connected region $D$ and let $C$ be a smooth parametric curve on $D$ parameterized by $C(t)=(x(t), y(t), z(t)), t \in[a, b]$. The integral

$$
\begin{aligned}
\int_{C} F . d \mathbf{r}= & \int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t+\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
& \int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t
\end{aligned}
$$

is independent of the path if and only if $F$ is conservative.

## Independence of Path

## Theorem 6.2 (Fundamental Theorem of Line Integrals)

Consider a smooth parametric curve $C$ parameterized by a smooth vector function $C(t)=(x(t), y(t), z(t)), t \in[a, b]$. If $f$ is a continuously differentiable function on a domain containing the curve $C$, then $\int_{C} \nabla f . d \mathbf{r}=f(C(b))-f(C(a))$.
In particular, if the curve is closed, (i.e. $C(b)=C(a)$ ), then
$\int_{C} \nabla f . d \mathbf{r}=0$.

## Example 6.1

Consider the vector field $F(x, y)=\left(2 x y-3, x^{2}+4 y^{3}+5\right)$.
The line integral $\int_{C} F . d \mathbf{r}$ is independent of path. Then, evaluate the line integral for any curve $C$ with initial point at $(-1,2)$ and terminal point at $(2,3)$.
$F=\nabla f, \frac{\partial f}{\partial x}=2 x y-3, f=x^{2} y-3 x+g(y)$, $\frac{\partial f}{\partial y}=x^{2}+g^{\prime}(y)=x^{2}+4 y^{3}+5$. Then $f=x^{2} y-3 x+y^{4}+5 y$.
$\int_{C} F . d \mathbf{r}=f(2,3)-f(-1,2)=102-31=71$.

## Conservative Vector Fields

Let $F(x, y)=(M(x, y), N(x, y))$, where we assume that $M(x, y)$ and $N(x, y)$ have continuous first partial derivatives on an open, simply-connected region $D \subset \mathbb{R}^{2}$. The following five statements are equivalent, meaning that for a given vector field, either all five statements are true or all five statements are false.
(1) $F(x, y)$ is conservative on $D$.
(2) $F(x, y)$ is a gradient field in $D$ (i.e., $F(x, y)=\nabla f(x, y)$, for some potential function $f$, for all $(x, y) \in D)$.
(3) $\int_{C} F . d \mathbf{r}$ is independent of path in $D$.
(9) $\int_{C} F . d \mathbf{r}=0$ for every piecewise-smooth closed curve $C$ lying in $D$.
(6) $\frac{\partial M}{\partial y}(x, y)=\frac{\partial N}{\partial x}(x, y)$, for all $(x, y) \in D$.

## Theorem 6.3

Consider a simple connected region $D$ and let $F$ be a vector field defined on $D$.
The following properties of a vector field $F$ are equivalent:
(1) $F$ is conservative.
(2) $\int_{C} F . d \mathbf{r}$ is path-independent, (i.e. meaning that it only depends on the endpoints of the curve $C$.
(3) $\oint_{C} F . d \mathbf{r}=0$ around any closed smooth curve $C$ in $D$.

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
6. Independence of Path and Conservative Vector Field
(7) Green's Theorem
8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Green's Theorem

## Theorem 7.1 (Green's Theorem)

Let $\gamma$ be a positively oriented, piecewise-smooth, simple closed curve in the plane and let $D$ be the region bounded by $\gamma$. If $P$ and $Q$ have continuous partial derivatives on an open region that contains $D$, then

$$
\int_{\gamma} P(x, y) d x+Q(x, y) d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

## Remark 7.1

The notation $\oint_{\gamma} P(x, y) d x+Q(x, y) d y$ is sometimes used to indicate that the line integral is calculated using the positive orientation of the closed curve. The Green's Theorem can be written as

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{\partial D} P(x, y) d x+Q(x, y) d y
$$

where $\partial D$ is the positively oriented boundary curve of $D$.

## Example 7.1

Consider the curve defined by the boudary of the triangle $\Delta$ of vertices $(0,0),(1,0),(0,1)$. Use Green's Theorem to calculate a line integral $\int_{\gamma} x^{2} y d x+x y^{2} d y$.

$$
\begin{aligned}
\int_{\gamma} x^{2} y d x+x y^{2} d y & =\int_{\Delta}\left(y^{2}-x^{2}\right) d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{1-x}\left(y^{2}-x^{2}\right) d y\right) d x=0
\end{aligned}
$$

## Example 7.2

Consider the curve defined by the circle $C$ defined by $x^{2}+y^{2}=9$. Use Green's Theorem to calculate a line integral $\int_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y$.

$$
\begin{aligned}
\int_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y & =\int_{D}(7-3) d x d y \\
& =36 \pi
\end{aligned}
$$

## Remark 7.2

Another application of Green's Theorem is in computing areas. Since the area of $D$ is $\iint_{D} d x d y$, we wish to choose $P$ and $Q$ so that $\left(\frac{\partial Q}{\partial x}-\frac{\partial Q}{\partial y}\right)=1$. Hence the area of $D$ id

$$
A=\oint_{\partial D} x d y=-\oint_{\partial D} y d x=\frac{1}{2} \oint_{\partial D}(x d y-y d x) .
$$

For example the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. A paramatrization of the ellipse $E$ is $x(t)=a \cos t, y(t)=b \sin t$.

$$
A=\frac{1}{2} \oint_{E}(x d y-y d x)=\frac{1}{2} \int_{0}^{2 \pi} a b \cos ^{2} t+a b \sin ^{2} t d t=\pi a b
$$

## Exercises

Use Green's Theorem to evaluate the line integral along the given positively oriented curve.

## Exercise 7.1

$\int_{C}\left(x y^{2} d x+2 x^{2} y d y\right)$, where $C$ is the triangle with vertices $(0,0),(2,2)$, and $(2,4)$.

## Solution 1

$\int_{C}\left(x y^{2} d x+2 x^{2} y d y\right)=\int_{0}^{2} \int_{x}^{2 x}(2 x y) d y d x=\int_{0}^{2} 3 x^{3} d x=12$.

## Exercise 7.2

$\int_{C}\left(\cos y d x+x^{2} \sin y d y\right)$, where $C$ is the rectangle with vertices $(0,0)$, $(5,0)$, and $(5,2)$.

## Solution 2

$\int_{C}\left(\cos y d x+x^{2} \sin y d y\right)=\int_{0}^{5} \int_{0}^{2}(2 x+1) \sin y d y d x=30(1-\cos 2)$.

## Exercise 7.3

$\int_{C}\left(x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y\right)$, where $C$ is the boundary of the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

## Solution 3

$$
\begin{aligned}
\int_{C}\left(x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y\right) & =\int_{1}^{2} \int_{0}^{2 \pi}\left(4 r^{3} \cos ^{3} \theta+4 r^{3} \cos \theta \sin ^{2} \theta\right) r c \\
& =4 \int_{1}^{2} r^{4} \int_{0}^{2 \pi} \cos \theta d r d \theta=0
\end{aligned}
$$

## Table of contents

(1) Vector Calculus
(2) Vector Fields

3 The Divergence
(4) Line Integrals
(5) Line Integral in Space
6. Independence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Surface Integrals

## Theorem 8.1 (Evaluation Theorem)

Consider a surface $S$ in $\mathbb{R}^{3}$ defined by $z=g(x, y)$ for $(x, y)$ on a region $R_{x, y} \subset \mathbb{R}^{2}$, where $g$ has continuous first partial derivatives, then

$$
\iint_{S} f(x, y, z) d S=\iint_{R_{x, y}} f(x, y, g(x, y)) \sqrt{1+g_{x}^{2}+g_{y}^{2}} d A
$$

where $g_{x}=\frac{\partial g}{\partial x}$ and $g_{y}=\frac{\partial g}{\partial y}$.

## Example 8.1

Evaluate the integral $\iint_{S} f(x, y, z) d S$, where $f(x, y, z)=x^{2}+y z$ and $S$ the upper half sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
$\iint_{S} f(x, y, z) d S$

$$
\begin{aligned}
& =\iint_{D(0, R)}\left(x^{2}+y \sqrt{R^{2}-x^{2}-y^{2}}\right) \sqrt{1+\frac{x^{2}}{R^{2}-x^{2}-y^{2}}+\frac{y^{2}}{R^{2}-x^{2}-y^{2}}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{R}\left(r^{2} \cos ^{2} \theta+r \sin \theta \sqrt{R^{2}-r^{2}}\right) \frac{R r}{\sqrt{R^{2}-r^{2}}} d r d \theta \\
& =R \int_{0}^{2 \pi} \int_{0}^{R} \frac{r^{3}}{\sqrt{R^{2}-r^{2}}} \cos ^{2} \theta d r d \theta=\frac{2 \pi}{3} R^{4} .
\end{aligned}
$$

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
6. Independence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Definition 9.1

A surface $S$ is called orientable if a unit normal vector $\bar{n}$ can be defined at every non boundary point of $S$ and $\bar{n}$ is continuous over the surface. For a surface defined by $f(x, y, z)=c$,

$$
\bar{n}= \pm \frac{\nabla f}{\|\nabla f\|}
$$

In particular if the surface is defined by $z=g(x, y), \nabla f=\left(-g_{x},-g_{y}, 1\right)$, $d S=\sqrt{1+g_{x}^{2}+g_{y}^{2}}, \bar{n} d S=\nabla f d A$.

## Flux of a Vector Field

Consider $\bar{F}$ a vector field which can represents the velocity of some fluid in the space. The flux of the fluid across $S$ measures how much fluid is passing through the surface $S$.
Consider the unit normal vector $\bar{n}$ to the surface at a point, the number $\bar{F} . \bar{n}$ represents the scalar projection of $F$ onto the direction of $\bar{n}$. So it measures how fast the fluid is moving across the surface. Thus, the total flux across $S$ is $\int_{S} \bar{F} \cdot \bar{n} d S$.

## Theorem 9.1

Let $\bar{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ be a continuous vector field defined on an oriented surface $S$ defined by $z=g(x, y)$ on a region $R_{x, y}$. The surface integral of $F$ over $S$ (or the flux of $F$ over $S$ ) is:

$$
\int_{S} F . n d S=\iint_{R_{x, y}}\left(-M g_{x}-N g_{y}+P\right) d A
$$

if the surface is oriented upward and

$$
\int_{S} \bar{F} \cdot \bar{n} d S=\iint_{R_{x, y}}\left(M g_{x}+N g_{y}-P\right) d A
$$

if the surface is oriented downward.

## Example 9.1

Compute the flux of the vector field $\bar{F}(x, y, z)=(x, y, 0)$ over the portion of the paraboloid $z=x^{2}+y^{2}$ below $z=4$ (oriented with upward-pointing normal vectors).
Solution First, observe that at any given point, the normal vectors for the paraboloid $z=x^{2}+y^{2}$ are $\pm(2 x, 2 y,-1)$. For the normal vector to point upward, we need a positive $z$-component. In this case,

$$
u=-(2 x, 2 y,-1)=(-2 x,-2 y, 1)
$$

is such a normal vector. A unit vector pointing in the same direction as $u$ is then

$$
\bar{n}=\frac{1}{\sqrt{4 x^{2}+4 y^{2}+1}}(-2 x,-2 y, 1)
$$

We have $d S=\|u\| d A=\sqrt{4 x^{2}+4 y^{2}+1} d A$. Then

$$
\begin{aligned}
\iint_{S} \bar{F} \cdot \bar{n} d S & =\iint_{R}(x, y, 0) \cdot \frac{(-2 x,-2 y, 1)}{\sqrt{4 x^{2}+4 y^{2}+1}} \sqrt{4 x^{2}+4 y^{2}+1} d A \\
& =\iint_{R}(x, y, 0) \cdot(-2 x,-2 y, 1) d A=\iint_{R}\left(-2 x^{2}-2 y^{2}\right) d A .
\end{aligned}
$$

The region $R_{x, y}$ is the disc $D(0,2)$, then

$$
\iint_{S} \bar{F} \cdot \bar{n} d S=\int_{0}^{2 \pi} \int_{0}^{2}-2 r^{3} d r d \theta=-16 \pi
$$

## Exercises

## Exercise 9.1

Evaluate $\int_{D}(2,-3,4) \cdot \mathbf{n} d S$, where $D$ is given by $z=x^{2}+y^{2},-1 \leq x \leq 1$, $-1 \leq y \leq 1$, oriented up.

## Exercise 9.2

Evaluate $\int_{D}(x, y, 3) \cdot \mathbf{n} d S$, where $D$ is given by $z=3 x-5 y$, $1 \leq x \leq 2,0 \leq y \leq 2$, oriented up.

## Exercise 9.3

Evaluate $\int_{D}(x, y,-2) \cdot \mathbf{n} d S$, where $D$ is given by $z=1-x^{2}-y^{2}$, $x^{2}+y^{2} \leq 1$, oriented up.

## Exercise 9.4

Evaluate $\int_{D}(x y, y z, z x) \cdot \mathbf{n} d S$, where $D$ is given by $z=x+y^{2}+2$, $0 \leq x \leq 1, x \leq y \leq 1$, oriented up.

## Exercise 9.5

Evaluate $\int_{D}\left(e^{x}, e^{y}, z\right) \cdot \mathbf{n} d S$, where $D$ is given by
$z=x y, 0 \leq x \leq 1,-x \leq y \leq x$, oriented up.

## Exercise 9.6

Evaluate $\int_{D}(x z, y z, z) \cdot \mathbf{n} d S$, where $D$ is given by $z=a^{2}-x^{2}-y^{2}$, $x^{2}+y^{2} \leq b^{2}$, oriented up.

## Example 9.2

Compute the flux of $F=\left(x, y, z^{4}\right)$ across the cone $z=\sqrt{x^{2}+y^{2}}$, $0 \leq z \leq 1$, in the downward direction.
We write the cone as a vector function: $\gamma=(v \cos u, v \sin u, v)$, $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 1$. Then $\gamma_{u}=(-v \sin u, v \cos u, 0)$, $\gamma_{v}=(\cos u, \sin u, 1)$, and $\gamma_{u} \times \gamma_{v}=(v \cos u, v \sin u,-v)$. The third coordinate $-v$ is negative, which is exactly what we desire, that is, the normal vector points down through the surface.

## Then

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{1}\left\langle\left(x, y, z^{4}\right),(v \cos u, v \sin u,-v)\right\rangle d v d u \\
= & \int_{0}^{2 \pi} \int_{0}^{1} x v \cos u+y v \sin u-z^{4} v d v d u \\
= & \int_{0}^{2 \pi} \int_{0}^{1} v^{2} \cos ^{2} u+v^{2} \sin ^{2} u-v^{5} d v d u \\
= & \int_{0}^{2 \pi} \int_{0}^{1} v^{2}-v^{5} d v d u=\frac{\pi}{3}
\end{aligned}
$$

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
6. Independence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(0) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Theorem 10.1 (The Divergence Theorem)

Let $Q$ be a solid region bounded by a closed surface $S$ oriented by a normal vector directed outward and if $\bar{F}$ is vector field $C^{1}$. Then

$$
\iint_{S} \overline{\mathbf{F}} \cdot \overline{\mathbf{n}} d S=\iiint_{Q} \nabla \cdot \bar{F} d V=\iiint_{Q} d i v \overline{\mathbf{F}} d V .
$$

## Example 10.1

Use the Divergence Theorem to evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ of the vector field $\mathbf{F}(x, y, z)=\left(x^{3}, y^{3}, z^{3}\right)$, where $S$ is the surface of a solid bounded by the cone $x^{2}+y^{2}-z^{2}=0$ and the plane $z=1$.

## Solution

Applying the Divergence Theorem, we can write:

$$
\begin{aligned}
I & =\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{G}(\nabla \cdot \mathbf{F}) d V \\
& =\iiint_{G}\left[\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(y^{3}\right)+\frac{\partial}{\partial z}\left(z^{3}\right)\right] d x d y d z \\
& =3 \iiint\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
\end{aligned}
$$

By changing to cylindrical coordinates, we have

$$
\begin{aligned}
I & =3 \iiint_{G}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z \\
& =3 \int_{0}^{2 \pi} d \varphi \int_{0}^{1} \int_{0}^{z}\left(r^{2}+z^{2}\right) r d r d z=6 \pi \int_{0}^{1}\left[\left.\left(\frac{r^{4}}{4}+\frac{z^{2} r^{2}}{2}\right)\right|_{r=0} ^{z}\right] d z \\
& =6 \pi \int_{0}^{1} \frac{3 z^{4}}{4} d z=\frac{9 \pi}{2}\left[\left.\left(\frac{z^{5}}{5}\right)\right|_{0} ^{1}\right]=\frac{9 \pi}{10}
\end{aligned}
$$

## Example 10.2

Evaluate the surface integral $\iint_{S} x^{3} d y d z+y^{3} d x d z+z^{3} d x d y$, where $S$ is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ that has upward orientation.

## Solution

Using the Divergence Theorem, we can write:

$$
\begin{aligned}
I & =\iint_{S} x^{3} d y d z+y^{3} d x d z+z^{3} d x d y=\iiint_{G}\left(3 x^{2}+3 y^{2}+3 z^{2}\right) d x d y d z \\
& =3 \iiint_{G}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
\end{aligned}
$$

By changing to spherical coordinates, we have

$$
\begin{aligned}
I & =3 \iiint_{G}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z=3 \iiint_{G} r^{2} \cdot r^{2} \sin \theta d r d \psi d \theta \\
& =3 \int_{0}^{2 \pi} d \psi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{a} r^{4} d r \\
& =3 \cdot 2 \pi \cdot\left[\left.(-\cos \theta)\right|_{0} ^{\pi}\right] \cdot\left[\left.\left(\frac{r^{5}}{5}\right)\right|_{0} ^{a}\right]=\frac{12 \pi a^{5}}{5}
\end{aligned}
$$

## Example 10.3

Using the Divergence Theorem calculate the surface integral $\iint \mathbf{F} \cdot d \mathbf{S}$ of the vector field $\mathbf{F}(x, y, z)=(2 x y, 8 x z, 4 y z)$, where is the surface of tetrahedron with vertices $A=(0,0,0), B=(1,0,0), C=(0,1,0)$, $D=(0,0,1)$.

## Solution

By Divergence Theorem,

$$
\begin{aligned}
I & =\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{G}(\nabla \cdot \mathbf{F}) d V \\
& =\iiint_{G}\left[\frac{\partial}{\partial x}(2 x y)+\frac{\partial}{\partial y}(8 x z)+\frac{\partial}{\partial z}(4 y z)\right] d V \\
& =\iiint_{G}(2 y+0+4 y) d x d y d z=6 \iiint_{G} y d x d y d z
\end{aligned}
$$

$$
\begin{aligned}
I & =6 \iint_{G} y d x d y d z=6 \int_{0}^{1} d x \int_{0}^{1-x} d y \int_{0}^{1-x-y} y d z \\
& =6 \int_{0}^{1} d x \int_{0}^{1-x}(1-x-y) y d y=6 \int_{0}^{1} d x \int_{0}^{1-x}\left[y(1-x)-y^{2}\right] d y \\
& =6 \int_{0}^{1}\left[\left.\left((1-x) \frac{y^{2}}{2}-\frac{y^{3}}{3}\right)\right|_{y=0} ^{1-x}\right] d x \\
& =6 \int_{0}^{1}\left[\frac{(1-x)^{3}}{2}-\frac{(1-x)^{3}}{3}\right] d x \\
& =6 \cdot \frac{1}{6} \int_{0}^{1}(1-x)^{3} d x=\frac{1}{4} .
\end{aligned}
$$

## Example 10.4

Use the Divergence Theorem to evaluate the surface integral $\iint \mathbf{F} \cdot d \mathbf{S}$ of the vector field $\mathbf{F}(x, y, z)=(x, y, z)$, where $S$ is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=a^{2}$ and the planes $z=-1$ and $z=1$.

## Solution

Using the Divergence Theorem, we can have:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{G}(\nabla \cdot \mathbf{F}) d V \\
& =\iiint_{G}\left[\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)\right] d x d y d z \\
& =\iiint_{G}(1+1+1) d x d y d z=3 \iiint_{G} d x d y d z
\end{aligned}
$$

By switching to cylindrical coordinates, we have

$$
\begin{aligned}
I & =3 \iiint_{G} d x d y d z=3 \int_{-1}^{1} d z \int_{0}^{2 \pi} d \varphi \int_{0}^{a} r d r \\
& =3 \cdot 2 \cdot 2 \pi \cdot\left[\left.\left(\frac{r^{2}}{2}\right)\right|_{0} ^{a}\right]=6 \pi a^{2} .
\end{aligned}
$$

## Table of contents

(1) Vector Calculus
(2) Vector Fields
(3) The Divergence
(4) Line Integrals
(5) Line Integral in Space
6. Independence of Path and Conservative Vector Field
(7) Green's Theorem
(8) Surface Integrals
(9) Flux Integrals
(10) The Divergence Theorem
(11) Stokes's Theorem

## Theorem 11.1 (Stokes's Theorem)

Let $S$ be an oriented, piecewise-smooth surface with unit normal vector $\overline{\mathbf{n}}$, bounded by the simple closed, piecewise-smooth boundary curve $C$ having positive orientation. Let $\mathbf{F}(x, y, z)$ be a vector field continuously differentiable in some open domain containing $S$. Then,

$$
\oint_{C} \overline{\mathbf{F}} \cdot d \overline{\mathbf{r}}=\oint_{C} \overline{\mathbf{F}} \cdot \bar{T} d s=\iint_{S} \operatorname{curl} F \cdot \overline{\mathbf{n}} d S .
$$

$\overline{\mathbf{r}}=(x, y, z)$ is the position vector, $d \overline{\mathbf{r}}=(d x, d y, d z)$, the unit tangent vector to $S$ at $\overline{\mathbf{r}}=(x, y, z)$ is

$$
\bar{T}=\frac{d x}{d s} \overrightarrow{\mathbf{i}}+\frac{d y}{d s} \overrightarrow{\mathbf{j}}+\frac{d z}{d s} \overrightarrow{\mathbf{k}}
$$

Hence $d \overline{\mathbf{r}}=d \bar{T} d s$.
If the surface $S$ is defined by $z=g(x, y)$ on a region $R_{x, y}$, then
$\iint_{S} \operatorname{curl} F \cdot \overline{\mathbf{n}} d S=\iint_{R_{x, y}}\left(-M_{1} g_{x}-N_{1} g_{y}+P_{1}\right) d A$, where $g_{x}=\frac{\partial g}{\partial x}$,
$g_{y}=\frac{\partial g}{\partial y}$ and $\operatorname{curl} F=\left(M_{1}, N_{1}, P_{1}\right)$.

## Example 11.1

Use Stoke's Theorem to evaluate the line integral
$\oint_{C}(y+2 z) d x+(x+2 z) d y+(x+2 y) d z$, where $C$ is the curve formed by intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ with the plane $x+2 y+2 z=0$.

## Solution

Let $S$ be the circle cut by the sphere from the plane. Find the coordinates of the unit normal vector $\bar{n}$ to the surface $S$,
$\overline{\mathbf{n}}=\frac{1 \cdot \overrightarrow{\mathbf{i}}+2 \cdot \overrightarrow{\mathbf{j}}+2 \cdot \overrightarrow{\mathbf{k}}}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{1}{3} \overrightarrow{\mathbf{i}}+\frac{2}{3} \overrightarrow{\mathbf{j}}+\frac{2}{3} \overrightarrow{\mathbf{k}}$.
In this case $P=y+2 z, \quad Q=x+2 z, \quad R=x+2 y$. Hence, the curl of the vector $\overline{\mathbf{F}}$ is

$$
\begin{aligned}
\nabla \times \overline{\mathbf{F}} & =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \overrightarrow{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \overrightarrow{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \overrightarrow{\mathbf{k}} \\
& =(2-2) \overrightarrow{\mathbf{i}}+(2-1) \overrightarrow{\mathbf{j}}+(1-1) \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{j}} .
\end{aligned}
$$

Using Stoke's Theorem, we have

$$
\begin{aligned}
\oint_{C}(y+2 z) d x+(x+2 z) d y+(x+2 y) d z & =\iint_{S}(\nabla \times \overline{\mathbf{F}}) \cdot \overline{\mathbf{n}} d S \\
& =\iint_{S} \overrightarrow{\mathbf{j}} \cdot\left(\frac{1}{3} \overrightarrow{\mathbf{i}}+\frac{2}{3} \overrightarrow{\mathbf{j}}+\frac{2}{3} \overline{\mathbf{l}}\right. \\
& =\frac{2}{3} \iint_{S} d S .
\end{aligned}
$$

As the sphere $x^{2}+y^{2}+z^{2}=1$ is centered at the origin and the plane $x+2 y+2 z=0$ also passes through the origin, the cross section is the circle of radius 1 . Hence the integral is

$$
I=\frac{2}{3} \iint_{S} d S=\frac{2}{3} \cdot \pi \cdot 1^{2}=\frac{2 \pi}{3} .
$$

## Example 11.2

Use Stoke's Theorem to calculate the line integral

$$
\oint_{C} y^{3} d x-x^{3} d y+z^{3} d z
$$

The curve $C$ is the intersection of the cylinder $x^{2}+y^{2}=a^{2}$ and the plane $x+y+z=b$.

## Solution

We suppose that $S$ is the part of the plane cut by the cylinder. The curve $C$ is oriented counterclockwise when viewed from the end of the normal vector $\overline{\mathbf{n}}$ which has coordinates

$$
\overline{\mathbf{n}}=\frac{1 \cdot \overrightarrow{\mathbf{i}}+1 \cdot \overrightarrow{\mathbf{j}}+1 \cdot \overrightarrow{\mathbf{k}}}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}} \overrightarrow{\mathbf{i}}+\frac{1}{\sqrt{3}} \overrightarrow{\mathbf{j}}+\frac{1}{\sqrt{3}} \overrightarrow{\mathbf{k}}
$$

As $P=y^{3}, Q=-x^{3}, R=z^{3}$, we can write:

$$
\begin{aligned}
\nabla \times \overline{\mathbf{F}} & =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \overrightarrow{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \overrightarrow{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \overrightarrow{\mathbf{k}} \\
& =-3\left(x^{2}+y^{2}\right) \overrightarrow{\mathbf{k}}
\end{aligned}
$$

Applying Stoke's Theorem, we find:

$$
\begin{aligned}
I & =\oint_{C} y^{3} d x-x^{3} d y+z^{3} d z \\
& =\iint_{S}(\nabla \times \overline{\mathbf{F}}) \cdot \overline{\mathbf{n}} d S=\iint_{S}(\nabla \times \overline{\mathbf{F}}) \cdot \overline{\mathbf{n}} d S \\
& ==\iint_{S}\left(-3\left(x^{2}+y^{2}\right) \overrightarrow{\mathbf{k}}\right) \cdot\left(\frac{1}{\sqrt{3}} \overrightarrow{\mathbf{i}}+\frac{1}{\sqrt{3}} \overrightarrow{\mathbf{j}}+\frac{1}{\sqrt{3}} \overrightarrow{\mathbf{k}}\right) d S \\
& =-\sqrt{3} \iint_{S}\left(x^{2}+y^{2}\right) d S .
\end{aligned}
$$

We can express the surface integral in terms of the double integral:

$$
\begin{aligned}
I & =-\sqrt{3} \iint_{S}\left(x^{2}+y^{2}\right) d S \\
& =-\sqrt{3} \iint_{D(0, a)}\left(x^{2}+y^{2}\right) \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y
\end{aligned}
$$

The equation of the plane is $z=b-x-y$, so the square root in the integrand is equal to

$$
\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+(-1)^{2}+(-1)^{2}}=\sqrt{3}
$$

Hence,

$$
I=-\sqrt{3} \iint_{D(0, a)}\left(x^{2}+y^{2}\right) \sqrt{3} d x d y=-3 \iint_{D(x, y)}\left(x^{2}+y^{2}\right) d x d y
$$

By changing to polar coordinates, we get

$$
I=-3 \int_{0}^{2 \pi} \int_{0}^{a} r^{3} d r d \theta=-\left.3 \cdot 2 \pi \cdot \frac{r^{4}}{4}\right|_{0} ^{a}=-\frac{3 \pi a^{4}}{2}
$$

## Example 11.3

Use Stoke's Theorem to evaluate the line integral

$$
\oint_{C}(x+z) d x+(x-y) d y+x d z
$$

The curve $C$ is the ellipse defined by the equation $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1, z=1$.

## Solution

Let the surface $S$ be the part of the plane $z=1$ bounded by the ellipse. Obviously that the unit normal vector is $\mathbf{n}=\mathbf{k}$. Since $P=x+z, \quad Q=x-y, \quad R=x$, then the curl of the vector field $\overline{\mathbf{F}}$ is

$$
\begin{aligned}
\nabla \times \overline{\mathbf{F}} & =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \overrightarrow{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \overrightarrow{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \overrightarrow{\mathbf{k}} \\
& =(1-0) \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{k}}
\end{aligned}
$$

By Stoke's Theorem,

$$
\begin{aligned}
\oint_{C}(x+z) d x+(x-y) d y+x d z & =\iint_{S}(\nabla \times \overline{\mathbf{F}}) \cdot \overline{\mathbf{n}} d S \\
& =\iint_{S}(\nabla \times \overline{\mathbf{F}}) \cdot \overline{\mathbf{n}} d S \\
& =\iint_{S} \overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{k}} d S=\iint_{S} d S
\end{aligned}
$$

The double integral in the latter formula is the area of the ellipse. Therefore, the integral is

$$
\iint_{S} d S=\pi \cdot 2 \cdot 3=6 \pi
$$

## Example 11.4

Show that the line integral $\oint_{C} y z d x+x z d y+x y d z$ is zero along any closed contour $C$.

## Solution

Let $S$ be a surface bounded by a closed curve $C$. Applying Stoke's formula, we identify that $P=y z, Q=x z, R=x y$.

Then

$$
\begin{aligned}
\nabla \times \overline{\mathbf{F}} & =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \overrightarrow{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \overrightarrow{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \overrightarrow{\mathbf{k}} \\
& =(x-x) \overrightarrow{\mathbf{i}}+(y-y) \overrightarrow{\mathbf{j}}+(z-z) \overrightarrow{\mathbf{k}}=0 \cdot \overrightarrow{\mathbf{i}}+0 \cdot \overrightarrow{\mathbf{j}}+0 \cdot \overrightarrow{\mathbf{k}}=
\end{aligned}
$$

Hence, the line integral:

$$
\oint_{C} y z d x+x z d y+x y d z=\iint_{S}(\nabla \times \overline{\mathbf{F}}) \cdot \overline{\mathbf{n}} d S=\iint_{S} \mathbf{0} \cdot \overline{\mathbf{n}} d S=0 .
$$

