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The Dot Product

Definition 1.1

In R2, if u = (u1, u2) and v = (v1, v2), the dot product of u and v is the
number ⟨u, v⟩ = u1v1 + u2v2.
In R3, if u = (u1, u2, u3) and v = (v1, v2, v3), the dot product of u and v
is the number ⟨u, v⟩ = u1v1 + u2v2 + u3v3.
The norm of a vector u is ∥u∥ =

√
⟨u, u⟩.
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Recall that if θ is the angle between the vectors −→u and −→v , then

⟨u, v⟩ = ∥u∥ ∥v∥ cos θ.

α

βγ

The direction angles associated to a vector u
are given by: cosα = ⟨u,i⟩

∥u∥ , cosβ = ⟨u,j⟩
∥u∥ ,

cos γ = ⟨u,k⟩
∥u∥ .
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The Cross Product

Definition 1.2

If u1 = (x1, y1, z1) and u2 = (x2, y2, z2), then the cross product of u1 and
u2 is the vector

u1 ∧ u2 =
∣∣∣∣y1 z1
y2 z2

∣∣∣∣−→i +

∣∣∣∣x1 z1
x2 z2

∣∣∣∣−→j +

∣∣∣∣x1 y1
x2 y2

∣∣∣∣−→k .
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Remark 1.1
1 The vector u1 ∧ u2 is orthogonal to the vectors u1 and u2 and its

direction is given by the right-hand rule i.e. the determinant
|u1, u2, u1 ∧ u2| is non negative.

2 |u1 ∧ u2| is the area of the parallelogram spanned by u1 and u2, i.e.,

|u1 ∧ u2| = |u1| |u2| sin θ

3 Two vectors u1 and u2 are parallel if and only if u1 ∧ u2 = 0.
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Theorem 1.1 (Cross Product Properties)

Let u1, u2, and u3 be vectors and let c be a constant:

1 u1 ∧ u2 = −u2 ∧ u1;
2 (cu1) ∧ u2 = c(u1 ∧ u2) = u1 ∧ (cu2);

3 u1 ∧ (u2 + u3) = u1 ∧ u2 + u1 ∧ u3;
4 (u1 + u2) ∧ u3 = u1 ∧ u3 + u2 ∧ u3;
5 u1 · (u2 ∧ u3) = (u1 ∧ u2) · u3;
6 u1 ∧ (u2 ∧ u3) = (u1 · u3)u2 − (u1 · u2)u3.
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Scalar Triple Product

The scalar triple product of three vectors u1, u2, and u3 is the determinant

⟨u1, (u2 ∧ u3)⟩ =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
The volume of the parallelepiped formed by the vectors u1, u2, and u3 is
given by

|⟨u1, (u2 ∧ u3)⟩|.
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The Directional Derivative

Let f be a function defined on a domain D ⊂ R2. For (x0, y0) ∈ D, the
partial derivatives of f with respect to x and y if they exist are defined by:

fx(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
,

fy(x0, , y0) = lim
h→0

f(x0, y0 + h)− f(x0, y0)

h
.

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 11 / 107



Consider a smooth scalar field f : D −→ R. The partial derivatives of f in

the point r = x
−→
i + y

−→
j + z

−→
k ∈ D when these limits exist:

∂f

∂x
(r) = lim

h→0

f(x+ h, y, z)− f(x, y, z)

h
;

∂f

∂y
(r) = lim

h→0

f(x, y + h, z)− f(x, y, z)

h
;

∂f

∂z
(r) = lim

h→0

f(x, y, z + h)− f(x, y, z)

h
.
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The Directional Derivative

Let f be a function defined on a domain D ⊂ R2. For (x0, y0) ∈ D and
u = (a, b) a unit vector in R2. The directional derivative of f in the
direction of u at (x0, y0) if it exists is

Duf(x0, y0) = lim
h→0

f((x0, y0) + hu)− f(x0, y0)

h

= lim
h→0

f(x0 + ah, y0 + bh)− f(x0, y0)

h
.
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Example 1.1

1 If u = (a, b), Duf(x0, y0) is the same as the derivative of
f(x0 + at, y0 + bt) at t = 0. We can compute this by the chain rule
and get

Duf(x0, y0) = afx(x0, y0) + bfy(x0, y0).

2 Find the directional derivative of f(x, y) = xy3 − x2 at (1, 2) in the

direction u = (12 ,
√
3
2 )

3 Find the directional derivative of f(x, y) = x2 ln y at (3, 1) in the

direction of u = (−1
2 ,

√
3
2 ).
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Vector Fields

Definition 2.1

A two-dimensional vector field is a function f that maps each point (x,y)
in R2 to a two-dimensional vector f(x, y) = (u(x, y), v(x, y)).

We denote f(x, y) = u(x, y)
−→
i + v(x, y)

−→
j , where

−→
i = (1, 0) and

−→
j = (0, 1).
Similarly a three-dimensional vector field maps (x, y, z) to
f(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)).

We denote f(x, y, z) = u(x, y, z)
−→
i + v(x, y, z)

−→
j + w(x, y, z)

−→
k , where

−→
i = (1, 0, 0),

−→
j = (0, 1, 0) and

−→
k = (0, 0, 1).
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Example 2.1

The vector fields have many important significations, as they can be used
to represent many physical quantities: gravity, electricity, magnetism or a
velocity of fluid.

Let r(t) = x(t)
−→
i + y(t)

−→
j + z(t)

−→
k be the position vector of an object.

We can define various physical quantities associated with the object as
follows:
velocity: v(t) = r′(t) = dr

dt = x′(t)
−→
i + y′(t)

−→
j + z′(t)

−→
k ,

acceleration:
a(t) = v′(t) = dv

dt = r
′′
(t) = d2r

dt2
= x

′′
(t)

−→
i + y

′′
(t)

−→
j + z

′′
(t)

−→
k , The norm

∥v(t)∥ of the velocity vector is called the speed of the object.
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Example 2.2

The gravitational force field between the Earth with mass M and a point
particle with mass m is given by:

F (x, y, z) = −GmMx
−→
i + y

−→
j + z

−→
k

(x2 + y2 + z2)
3
2

,

where G is the gravitational constant, and the (x, y, z) coordinates are
chosen so that (0, 0, 0) is the center of the Earth.
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Gradient Fields

Let f be a scalar function of two variables, the gradient of f is defined by

∇f(x, y) = (
∂f

∂x
(x, y),

∂f

∂y
(x, y)).

If f is a scalar function of three variables, its gradient is a vector field on
R3 given by

∇f(x, y, z) = (
∂f

∂x
(x, y, z),

∂f

∂y
(x, y, z),

∂f

∂z
(x, y, z)).

The operator ∇ will be denoted by:

∇ = ∂
∂x

−→
i + ∂

∂y

−→
j + ∂

∂z

−→
k or ∇ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
as a vector.
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Gradient Fields

Remark 2.1

Let f be a function. The vector ∇f(x0, y0, z0) is orthogonal to the level
surface of f S = {(x, y, z) ∈ R3 : f(x, y, z) = C} that contains
(x0, y0, z0).
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Gradient Fields

Consider f and g two smooth scalar functions defined on a domain
D ⊂ R3 and consider F = (f1, f2, f3) and G = (g1, g2, g3) two smooth
vector fields.

∇(fg) = (
∂(fg)

∂x
,
∂(fg)

∂y
,
∂(fg)

∂z
)

= f∇(g) + g∇(f).

∇(⟨F,G⟩) = ∇(f1g1 + f2g2 + f3g3)

= ∇(f1g1) +∇(f2g2) +∇(f3g3)

= f1∇(g1) + +f2∇(g2) + f3∇(g3)

g1∇(f1) + g2∇(f2) + g3∇(f3).
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Vector Fields

Definition 2.2

A vector field F is called conservative, if F is the gradient of a function,
F = ∇f . In this case, the function f is called a potential of the vector
field F .

For example the vector field

F =

(
−x

(x2 + y2 + z2)
3
2

,
−y

(x2 + y2 + z2)
3
2

,
−z

(x2 + y2 + z2)
3
2

)
= ∇ 1√

x2 + y2 + z2
.
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vector Fields

Example 2.3 ( The inverse square field)

Let r(x, y, z) = x
−→
i + y

−→
j + z

−→
k be the position vector of the point

M(x, y, z). The vector field F (x, y, z) =
c

∥r∥3
r(x, y, z) is called the

inverse square field, where c ∈ R.
The inverse field is conservative.
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Test of Conservative

If F = (P,Q) = ∇f . Then P =
∂f

∂x
and Q =

∂f

∂y
, and provided that f is

smooth, from Schwarz’s Theorem,
∂P

∂y
=

∂2f

∂x∂y
=

∂2f

∂y∂x
=
∂Q

∂x
. Hence, if

∂P

∂y
̸= ∂Q

∂x
, F is not conservative.
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For a vector field F = (P,Q,R), suppose that (P,Q,R) = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
).

If z is constant, then f(x, y, z) is a function of x and y, and by Schwarz’s

Theorem, ∂P
∂y = ∂2f

∂x∂y = ∂2f
∂y∂x = ∂Q

∂y . Likewise, if y is constant, then

∂P

∂z
=

∂2f

∂x∂z
=

∂2f

∂z∂x
=
∂R

∂x
, and if x is constant, we get

∂Q

∂z
=

∂2f

∂y∂z
=

∂2f

∂z∂y
=
∂R

∂y
.

Conversely, if
∂P

∂y
=
∂Q

∂x
,
∂P

∂z
=
∂R

∂x
, and

∂Q

∂z
=
∂R

∂y
then F is

conservative.
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Example 2.4

1 The vector field (1 + 3xy, 2x2 − 3y2) is not conservative because,
∂(1 + 3xy)

∂y
= 3x and

∂(2x2 − 3y2)

∂x
= 4x.

2 The vector field F = (y2z + y cosx, 2xyz + sinx− sin y, xy2) is
conservative because, F = ∇(xy2z + y sinx+ cos y).
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The Divergence

Definition 3.1

The divergence of a vector field F = (P,Q,R) is

⟨∇, F ⟩ =
〈(

∂

∂x
,
∂

∂y
,
∂

∂z

)
, (P,Q,R)

〉
=
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.
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The curl of a vector field

The curl of F = (P,Q,R) is

∇× F =

∣∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ =
(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
.

If F = P
−→
i +Q

−→
j is a two dimensional vector field, the curl ∇× F can

also be defined by regarding the k−component to be zero, i.e.

F = P
−→
i +Q

−→
j + 0

−→
k , then curlF =

(
∂Q
∂x − ∂P

∂y

)−→
k .

Theorem 3.1 (The Curl Test)

Given a vector field F = (P,Q,R) is defined and continuously
differentiable everywhere in R3 (or everywhere in R2 for vector fields in
R2), then F is conservative if and curlF = 0.
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Here are two simple but useful facts about divergence and curl.

Theorem 3.2

⟨∇, (∇× F )⟩ = 0. In other words, the divergence of the curl is zero.

Theorem 3.3

∇× (∇f) = 0. That is, the curl of a gradient is the zero vector.
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Exercises

Exercise 3.1

A vector field F is said to be incompressible if ⟨∇, F ⟩ = 0.
Prove that any vector field of the form
F (x, y, z) = (f(y, z), g(x, z), h(x, y)) is incompressible.

Exercise 3.2

Find an f so that ∇f = (2x+ y2, 2y + x2), or explain why there is no
such f .
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Exercise 3.3

Find an f so that ∇f = (x3,−y4), or explain why there is no such f .

Exercise 3.4

Find an f so that ∇f = (xey, yex), or explain why there is no such f .
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Exercise 3.5

Find an f so that ∇f = (y cosx, y sinx), or explain why there is no such
f .

Exercise 3.6

Find an f so that ∇f = (y cosx, sinx), or explain why there is no such f .

Exercise 3.7

Find an f so that ∇f = (x2y3, xy4), or explain why there is no such f .
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Exercise 3.8

Find an f so that ∇f = (yz, xz, xy), or explain why there is no such f .
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Line Integrals on plane

Consider a plane curve given by the parametric equations

γ(t) = (x(t), y(t)), t ∈ [a, b].

Definition 4.1

Let f be a continuous function on R2. If γ is continuously differentiable,
the line integral of f on γ with respect to the arc length is defined by:∫ b

a

f ◦ γ(t)
√

(x′(t))2 + (y′(t))2dt =

∫ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2dt.
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Remark 4.1

1 If f = 1,

∫ b

a

√
(x′(t))2 + (y′(t))2dt is the length of γ.

Note that
√

(x′(t))2 + (y′(t))2 = ∥γ′(t)∥. We denote
ds =

√
(x′(t))2 + (y′(t))2dt.

2 The value of the line integral does not depend on the parametrization
of the curve, provided that the curve is traversed exactly once as t
increases from a to b.
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Example 4.1

(Integrating along an arc of circle)
Consider the arc of circle C parametrized by (cos t, sin t), with t ∈ [0, π2 ].

In this case ds =
√

cos2 t+ sin2 tdt = dt∫
C
(x+ 4xy2)ds =

∫ π
2

0
(cos t+ 4 cos t sin2 t)dt

=

∫ π
2

0
cos t(1 + 4 sin2 t)dt

u=cos t
=

∫ 1

0
(1 + 4u2)du =

7

3
.
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Definition 4.2

Let f be a continuous function on R2 and let γ be piecewise-smooth
curve, that is, γ is a union of a finite number of smooth curves γ1, . . . , γk,
such that the initial point of γj+1 is the terminal point of γj . Then we
define the integral of a continuous function f along γ with respect to the
arc length by: ∫

γ
f(x, y)ds =

k∑
j=1

∫
γj

f(x, y)ds.
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Definition 4.3 (Center of mass of a wire)

If ρ(x, y) is the linear density at a point (x, y) of a thin wire shaped like a
curve γ : [a, b] −→ R2. The mass of the thin is

m =

∫ b

a
ρ(γ(t))∥γ′(t)∥dt

and the center of mass of the thin

(x0, y0) =

(∫ b

a
x(t)ρ(γ(t))∥γ′(t)∥dt,

∫ b

a
y(t)ρ(γ(t))∥γ′(t)∥dt

)
.
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Example 4.2

A wire takes the shape of an arc of circle (cos t, sin t), with t ∈ [0, π]. If
the density of the thin is ρ(x, y) = x2 + y2. Then the mass of the thin is

m =

∫ π

0
dt = π

and the center of mass of the this

(∫ π

0
cos tdt,

∫ π

0
sin tdt

)
= (0, 2).
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Consider a space curve given by the parametric equations

γ(t) = (x(t), y(t), z(t)), t ∈ [a, b].

Definition

Let f be a continuous function on R3. If γ is continuously differentiable,
the line integral of f on γ with respect to the arc length is defined by:

∫ b

a
f ◦ γ(t)

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt =

∫ b

a
f(x(t), y(t), z(t))

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt.
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Remark 5.1

1 If f = 1,

∫ b

a

√
(x′(t))2 + (y′(t))2dt is the length of γ.

Note that
√

(x′(t))2 + (y′(t))2 + (z′(t))2 = ∥γ′(t)∥ and we denote
ds =

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt.

2 The value of the line integral does not depend on the parametrization
of the curve, provided that the curve is traversed exactly once as t
increases from a to b.
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Example 5.1

Consider the curve γ parametrized by γ(t) = (cos t, sin t, 1), with

t ∈ [0, π2 ]. In this case ds =
√
cos2 t+ sin2 tdt = dt∫

C
(2xz + 5xy2 + z)ds =

∫ π
2

0
(2 cos t+ 5 cos t sin2 t+ 1)dt

=
π

2
+

∫ π
2

0
cos t(2 + 5 sin2 t)dt

u=sin t
=

π

2
+

∫ 1

0
(2 + 5u2)du =

π

2
+

11

3
.
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Definition 5.1

Let f be a continuous function on R3 and let γ be piecewise-smooth
curve, that is, γ is a union of a finite number of smooth curves γ1, . . . , γk,
such that the initial point of γj+1 is the terminal point of γj . Then we
define the integral of a continuous function f along γ with respect to the
arc length as ∫

γ
f(x, y, z)ds =

k∑
j=1

∫
γj

f(x, y, z)ds.
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Definition 5.2

Let f be a continuous function on D ⊂ R3 and let C be piecewise-smooth
curve on D parametrized by (x(t), y(t), z(t)), t ∈ [a, b]:

1 The line integral of f(x, y, z) with respect to x along the oriented

curve C is written

∫
C
f(x, y, z)dx and defined by:

∫
C
f(x, y, z)dx =

∫ b

a
f(x(t), y(t), z(t))x′(t)dt

2 The line integral of f(x, y, z) with respect to y along the oriented

curve C is written

∫
C
f(x, y, z)dy and defined by:

∫
C
f(x, y, z)dy =

∫ b

a
f(x(t), y(t), z(t))y′(t)dt
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3 The line integral of f(x, y, z) with respect to z along the oriented

curve C is written

∫
C
f(x, y, z)dz and defined by:

∫
C
f(x, y, z)dz =

∫ b

a
f(x(t), y(t), z(t))z′(t)dt
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Work of a Force Field

If F = (f, g, h) is a force field defined on a domain D ⊂ R3 and let C be
piecewise-smooth curve on D parametrized by (x(t), y(t), z(t)), t ∈ [a, b]:
The work of F along the curve C is defined by:

W =

∫ b

a
f(x(t), y(t), z(t))x′(t)dt+

∫ b

a
g(x(t), y(t), z(t))y′(t)dt

+

∫ b

a
h(x(t), y(t), z(t))z′(t)dt

=

∫ b

a
⟨F ◦ C(t), C ′(t)⟩dt.

∫ b

a
⟨F ◦ C(t), C ′(t)⟩dt is denoted also

∫
C
F (x, y, z).dr

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 49 / 107



Table of contents

1 Vector Calculus

2 Vector Fields

3 The Divergence

4 Line Integrals

5 Line Integral in Space

6 Independence of Path and Conservative Vector Field

7 Green’s Theorem

8 Surface Integrals

9 Flux Integrals

10 The Divergence Theorem

11 Stokes’s Theorem

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 50 / 107



Definition 6.1

We say that the line integral

∫
C
F.dr is independent of path in the domain

D if the integral is the same for every path contained in D that has the
same beginning and ending points.
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Theorem 6.1

Let F = (f, g, h) be a continuous vector field defined on a connected
region D and let C be a smooth parametric curve on D parameterized by
C(t) = (x(t), y(t), z(t)), t ∈ [a, b].
The integral∫

C

F.dr =

∫ b

a

f(x(t), y(t), z(t))x′(t)dt+

∫ b

a

f(x(t), y(t), z(t))x′(t)dt∫ b

a

f(x(t), y(t), z(t))x′(t)dt

is independent of the path if and only if F is conservative.
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Independence of Path

Theorem 6.2 (Fundamental Theorem of Line Integrals)

Consider a smooth parametric curve C parameterized by a smooth vector
function C(t) = (x(t), y(t), z(t)), t ∈ [a, b]. If f is a continuously
differentiable function on a domain containing the curve C, then∫
C
∇f.dr = f(C(b))− f(C(a)).

In particular, if the curve is closed, (i.e. C(b) = C(a)), then∫
C
∇f.dr = 0.
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Example 6.1

Consider the vector field F (x, y) = (2xy − 3, x2 + 4y3 + 5).

The line integral

∫
C
F.dr is independent of path. Then, evaluate the line

integral for any curve C with initial point at (−1, 2) and terminal point at
(2, 3).
F = ∇f , ∂f

∂x = 2xy − 3, f = x2y − 3x+ g(y),
∂f
∂y = x2 + g′(y) = x2 + 4y3 + 5. Then f = x2y − 3x+ y4 + 5y.∫
C
F.dr = f(2, 3)− f(−1, 2) = 102− 31 = 71.
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Conservative Vector Fields

Let F (x, y) = (M(x, y), N(x, y)), where we assume that M(x, y) and
N(x, y) have continuous first partial derivatives on an open,
simply-connected region D ⊂ R2. The following five statements are
equivalent, meaning that for a given vector field, either all five statements
are true or all five statements are false.

1 F (x, y) is conservative on D.

2 F (x, y) is a gradient field in D (i.e., F (x, y) = ∇f(x, y), for some
potential function f , for all (x, y) ∈ D).

3

∫
C
F.dr is independent of path in D.

4

∫
C
F.dr = 0 for every piecewise-smooth closed curve C lying in D.

5
∂M

∂y
(x, y) =

∂N

∂x
(x, y), for all (x, y) ∈ D.
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Theorem 6.3

Consider a simple connected region D and let F be a vector field defined
on D.
The following properties of a vector field F are equivalent:

1 F is conservative.

2

∫
C
F.dr is path-independent, (i.e. meaning that it only depends on

the endpoints of the curve C.

3

∮
C
F.dr = 0 around any closed smooth curve C in D.
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Green’s Theorem

Theorem 7.1 (Green’s Theorem)

Let γ be a positively oriented, piecewise-smooth, simple closed curve in
the plane and let D be the region bounded by γ. If P and Q have
continuous partial derivatives on an open region that contains D, then∫

γ
P (x, y)dx+Q(x, y)dy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.
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Remark 7.1

The notation
∮
γ P (x, y)dx+Q(x, y)dy is sometimes used to indicate that

the line integral is calculated using the positive orientation of the closed
curve. The Green’s Theorem can be written as∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
∂D

P (x, y)dx+Q(x, y)dy

where ∂D is the positively oriented boundary curve of D.

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 59 / 107



Example 7.1

Consider the curve defined by the boudary of the triangle ∆ of vertices
(0, 0), (1, 0), (0, 1). Use Green’s Theorem to calculate a line integral∫
γ
x2ydx+ xy2dy.

∫
γ
x2ydx+ xy2dy =

∫
∆

(
y2 − x2

)
dxdy

=

∫ 1

0

(∫ 1−x

0
(y2 − x2)dy

)
dx = 0.
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Example 7.2

Consider the curve defined by the circle C defined by x2 + y2 = 9. Use
Green’s Theorem to calculate a line integral∫
C
(3y − esinx)dx+ (7x+

√
y4 + 1)dy.

∫
C
(3y − esinx)dx+ (7x+

√
y4 + 1)dy =

∫
D
(7− 3)dxdy

= 36π.
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Remark 7.2

Another application of Green’s Theorem is in computing areas. Since the

area of D is

∫ ∫
D
dxdy, we wish to choose P and Q so that

(
∂Q

∂x
− ∂Q

∂y
) = 1. Hence the area of D id

A =

∮
∂D

xdy = −
∮
∂D

ydx =
1

2

∮
∂D

(xdy − ydx).

For example the area enclosed by the ellipse
x2

a2
+
y2

b2
= 1. A

paramatrization of the ellipse E is x(t) = a cos t, y(t) = b sin t.

A =
1

2

∮
E
(xdy − ydx) =

1

2

∫ 2π

0
ab cos2 t+ ab sin2 tdt = πab.

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 62 / 107



Exercises

Use Green’s Theorem to evaluate the line integral along the given
positively oriented curve.

Exercise 7.1∫
C
(xy2dx+ 2x2ydy), where C is the triangle with vertices (0, 0), (2, 2),

and (2, 4).

Solution 1∫
C
(xy2dx+ 2x2ydy) =

∫ 2

0

∫ 2x

x
(2xy)dydx =

∫ 2

0
3x3dx = 12.
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Exercise 7.2∫
C
(cos ydx+ x2 sin ydy), where C is the rectangle with vertices (0, 0),

(5, 0), and (5, 2).

Solution 2∫
C
(cos ydx+ x2 sin ydy) =

∫ 5

0

∫ 2

0
(2x+ 1) sin ydydx = 30(1− cos 2).
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Exercise 7.3∫
C
(xe−2xdx+ (x4 + 2x2y2)dy), where C is the boundary of the region

between the circles x2 + y2 = 1 and x2 + y2 = 4.

Solution 3

∫
C
(xe−2xdx+ (x4 + 2x2y2)dy) =

∫ 2

1

∫ 2π

0
(4r3 cos3 θ + 4r3 cos θ sin2 θ)rdrdθ

= 4

∫ 2

1
r4
∫ 2π

0
cos θdrdθ = 0.
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Surface Integrals

Theorem 8.1 (Evaluation Theorem)

Consider a surface S in R3 defined by z = g(x, y) for (x, y) on a region
Rx,y ⊂ R2, where g has continuous first partial derivatives, then∫∫

S
f(x, y, z)dS =

∫∫
Rx,y

f(x, y, g(x, y))
√

1 + g2x + g2ydA,

where gx =
∂g

∂x
and gy =

∂g

∂y
.

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 67 / 107



Example 8.1

Evaluate the integral
∫∫

S f(x, y, z)dS, where f(x, y, z) = x2 + yz and S
the upper half sphere x2 + y2 + z2 = R2.

∫∫
S
f(x, y, z)dS

=

∫∫
D(0,R)

(
x2 + y

√
R2 − x2 − y2

)√
1 +

x2

R2 − x2 − y2
+

y2

R2 − x2 − y2
dA

=

∫ 2π

0

∫ R

0

(
r2 cos2 θ + r sin θ

√
R2 − r2

) Rr
√
R2 − r2

drdθ

= R

∫ 2π

0

∫ R

0

r3
√
R2 − r2

cos2 θdrdθ =
2π

3
R4.
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Definition 9.1

A surface S is called orientable if a unit normal vector n̄ can be defined at
every non boundary point of S and n̄ is continuous over the surface.
For a surface defined by f(x, y, z) = c,

n̄ = ± ∇f
∥∇f∥

.

In particular if the surface is defined by z = g(x, y), ∇f = (−gx,−gy, 1),
dS =

√
1 + g2x + g2y , n̄dS = ∇fdA.
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Flux of a Vector Field

Consider F̄ a vector field which can represents the velocity of some fluid in
the space. The flux of the fluid across S measures how much fluid is
passing through the surface S.
Consider the unit normal vector n̄ to the surface at a point, the number
F̄ .n̄ represents the scalar projection of F onto the direction of n̄. So it
measures how fast the fluid is moving across the surface. Thus, the total

flux across S is

∫
S
F̄ .n̄dS.
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Theorem 9.1

Let F̄ (x, y, z) =M i+N j+ Pk be a continuous vector field defined on an
oriented surface S defined by z = g(x, y) on a region Rx,y. The surface
integral of F over S (or the flux of F over S) is:∫

S
F.ndS =

∫∫
Rx,y

(−Mgx −Ngy + P )dA

if the surface is oriented upward and∫
S
F̄ .n̄dS =

∫∫
Rx,y

(Mgx +Ngy − P )dA

if the surface is oriented downward.
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Example 9.1

Compute the flux of the vector field F̄ (x, y, z) = (x, y, 0) over the portion
of the paraboloid z = x2 + y2 below z = 4 (oriented with upward-pointing
normal vectors).
Solution First, observe that at any given point, the normal vectors for the
paraboloid z = x2 + y2 are ±(2x, 2y,−1). For the normal vector to point
upward, we need a positive z−component. In this case,

u = −(2x, 2y,−1) = (−2x,−2y, 1)

is such a normal vector. A unit vector pointing in the same direction as u
is then

n̄ =
1√

4x2 + 4y2 + 1
(−2x,−2y, 1).

We have dS = ∥u∥dA =
√
4x2 + 4y2 + 1dA. Then
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∫∫
S
F̄ .n̄dS =

∫∫
R
(x, y, 0).

(−2x,−2y, 1)√
4x2 + 4y2 + 1

√
4x2 + 4y2 + 1dA

=

∫∫
R
(x, y, 0).(−2x,−2y, 1)dA =

∫∫
R
(−2x2 − 2y2)dA.

The region Rx,y is the disc D(0, 2), then∫∫
S
F̄ .n̄dS =

∫ 2π

0

∫ 2

0
−2r3drdθ = −16π.
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Exercises

Exercise 9.1

Evaluate

∫
D
(2,−3, 4).ndS, where D is given by z = x2 + y2, −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1, oriented up.
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Exercise 9.2

Evaluate

∫
D
(x, y, 3).ndS, where D is given by z = 3x− 5y,

1 ≤ x ≤ 2, 0 ≤ y ≤ 2, oriented up.

Exercise 9.3

Evaluate

∫
D
(x, y,−2).ndS, where D is given by z = 1− x2 − y2,

x2 + y2 ≤ 1, oriented up.

Exercise 9.4

Evaluate

∫
D
(xy, yz, zx).ndS, where D is given by z = x+ y2 + 2,

0 ≤ x ≤ 1, x ≤ y ≤ 1, oriented up.
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Exercise 9.5

Evaluate

∫
D
(ex, ey, z).ndS, where D is given by

z = xy, 0 ≤ x ≤ 1,−x ≤ y ≤ x, oriented up.

Exercise 9.6

Evaluate

∫
D
(xz, yz, z).ndS, where D is given by z = a2 − x2 − y2,

x2 + y2 ≤ b2, oriented up.
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Example 9.2

Compute the flux of F = (x, y, z4) across the cone z =
√
x2 + y2,

0 ≤ z ≤ 1, in the downward direction.
We write the cone as a vector function: γ = (v cosu, v sinu, v),
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1. Then γu = (−v sinu, v cosu, 0),
γv = (cosu, sinu, 1), and γu × γv = (v cosu, v sinu,−v). The third
coordinate −v is negative, which is exactly what we desire, that is, the
normal vector points down through the surface.
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Then ∫ 2π

0

∫ 1

0
⟨(x, y, z4), (v cosu, v sinu,−v)⟩ dv du

=

∫ 2π

0

∫ 1

0
xv cosu+ yv sinu− z4v dv du

=

∫ 2π

0

∫ 1

0
v2 cos2 u+ v2 sin2 u− v5 dv du

=

∫ 2π

0

∫ 1

0
v2 − v5 dv du =

π

3
.
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Theorem 10.1 (The Divergence Theorem)

Let Q be a solid region bounded by a closed surface S oriented by a
normal vector directed outward and if F̄ is vector field C1. Then∫∫

S
F̄.n̄dS =

∫∫∫
Q
∇.F̄ dV =

∫∫∫
Q
divF̄dV.
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Example 10.1

Use the Divergence Theorem to evaluate the surface integral

∫∫
S

F · dS of

the vector field F (x, y, z) =
(
x3, y3, z3

)
, where S is the surface of a solid

bounded by the cone x2 + y2 − z2 = 0 and the plane z = 1.
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Solution

Applying the Divergence Theorem, we can write:

I =

∫∫
S

F · dS =

∫∫∫
G

(∇ · F) dV

=

∫∫∫
G

[
∂

∂x

(
x3
)
+

∂

∂y

(
y3
)
+

∂

∂z

(
z3
)]
dxdydz

= 3

∫∫∫
G

(
x2 + y2 + z2

)
dxdydz.
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By changing to cylindrical coordinates, we have

I = 3

∫∫∫
G

(
x2 + y2 + z2

)
dxdydz

= 3

2π∫
0

dφ

1∫
0

z∫
0

(
r2 + z2

)
rdrdz = 6π

1∫
0

[(
r4

4
+
z2r2

2

)∣∣∣∣z
r=0

]
dz

= 6π

1∫
0

3z4

4
dz =

9π

2

[(
z5

5

)∣∣∣∣1
0

]
=

9π

10
.
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Example 10.2

Evaluate the surface integral

∫∫
S

x3dydz + y3dxdz + z3dxdy, where S is

the surface of the sphere x2 + y2 + z2 = a2 that has upward orientation.
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Solution

Using the Divergence Theorem, we can write:

I =

∫∫
S

x3dydz + y3dxdz + z3dxdy =

∫∫∫
G

(
3x2 + 3y2 + 3z2

)
dxdydz

= 3

∫∫∫
G

(
x2 + y2 + z2

)
dxdydz.
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By changing to spherical coordinates, we have

I = 3

∫∫∫
G

(
x2 + y2 + z2

)
dxdydz = 3

∫∫∫
G

r2 · r2 sin θdrdψdθ

= 3

2π∫
0

dψ

π∫
0

sin θdθ

a∫
0

r4dr

= 3 · 2π · [ (− cos θ)|π0 ] ·
[(

r5

5

)∣∣∣∣a
0

]
=

12πa5

5
.
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Example 10.3

Using the Divergence Theorem calculate the surface integral

∫∫
S

F · dS of

the vector field F (x, y, z) = (2xy, 8xz, 4yz) , where is the surface of
tetrahedron with vertices A = (0, 0, 0) , B = (1, 0, 0) , C = (0, 1, 0) ,
D = (0, 0, 1).
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Solution

By Divergence Theorem,

I =

∫∫
S

F · dS =

∫∫∫
G

(∇ · F) dV

=

∫∫∫
G

[ ∂
∂x

(2xy) +
∂

∂y
(8xz) +

∂

∂z
(4yz)

]
dV

=

∫∫∫
G

(2y + 0 + 4y) dxdydz = 6

∫∫∫
G

ydxdydz.
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I = 6

∫∫∫
G

ydxdydz = 6

1∫
0

dx

1−x∫
0

dy

1−x−y∫
0

ydz

= 6

1∫
0

dx

1−x∫
0

(1− x− y) ydy = 6

1∫
0

dx

1−x∫
0

[
y (1− x)− y2

]
dy

= 6

1∫
0

[(
(1− x)

y2

2
− y3

3

)∣∣∣∣1−x

y=0

]
dx

= 6

1∫
0

[
(1− x)3

2
− (1− x)3

3

]
dx

= 6 · 1
6

1∫
0

(1− x)3dx =
1

4
.
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Example 10.4

Use the Divergence Theorem to evaluate the surface integral

∫∫
S

F · dS of

the vector field F (x, y, z) = (x, y, z) , where S is the surface of the solid
bounded by the cylinder x2 + y2 = a2 and the planes z = −1 and z = 1.
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Solution

Using the Divergence Theorem, we can have:∫∫
S

F · dS =

∫∫∫
G

(∇ · F) dV

=

∫∫∫
G

[
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(z)

]
dxdydz

=

∫∫∫
G

(1 + 1 + 1) dxdydz = 3

∫∫∫
G

dxdydz.
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By switching to cylindrical coordinates, we have

I = 3

∫∫∫
G

dxdydz = 3

1∫
−1

dz

2π∫
0

dφ

a∫
0

rdr

= 3 · 2 · 2π ·
[(

r2

2

)∣∣∣∣a
0

]
= 6πa2.
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Theorem 11.1 (Stokes’s Theorem)

Let S be an oriented, piecewise-smooth surface with unit normal vector n̄,
bounded by the simple closed, piecewise-smooth boundary curve C having
positive orientation. Let F(x, y, z) be a vector field continuously
differentiable in some open domain containing S. Then,∮

C
F̄.dr̄ =

∮
C
F̄.T̄ ds =

∫∫
S
curlF.n̄dS.
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r̄ = (x, y, z) is the position vector, dr̄ = (dx, dy, dz), the unit tangent
vector to S at r̄ = (x, y, z) is

T̄ =
dx

ds

−→
i +

dy

ds

−→
j +

dz

ds

−→
k .

Hence dr̄ = dT̄ds.
If the surface S is defined by z = g(x, y) on a region Rx,y, then∫∫

S
curlF.n̄dS =

∫∫
Rx,y

(−M1gx −N1gy + P1)dA, where gx =
∂g

∂x
,

gy =
∂g

∂y
and curlF = (M1, N1, P1).
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Example 11.1

Use Stoke’s Theorem to evaluate the line integral∮
C
(y + 2z) dx+ (x+ 2z) dy + (x+ 2y) dz, where C is the curve formed

by intersection of the sphere x2 + y2 + z2 = 1 with the plane
x+ 2y + 2z = 0.

Solution

Let S be the circle cut by the sphere from the plane. Find the coordinates
of the unit normal vector n̄ to the surface S,

n̄ =
1 ·

−→
i + 2 ·

−→
j + 2 ·

−→
k√

12 + 22 + 22
=

1

3

−→
i +

2

3

−→
j +

2

3

−→
k .

In this case P = y+ 2z, Q = x+ 2z, R = x+ 2y. Hence, the curl of the
vector F̄ is
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∇× F̄ =

(
∂R

∂y
− ∂Q

∂z

)
−→
i +

(
∂P

∂z
− ∂R

∂x

)
−→
j +

(
∂Q

∂x
− ∂P

∂y

)
−→
k

= (2− 2)
−→
i + (2− 1)

−→
j + (1− 1)

−→
k =

−→
j .
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Using Stoke’s Theorem, we have∮
C
(y + 2z) dx+ (x+ 2z) dy + (x+ 2y) dz =

∫∫
S

(
∇× F̄

)
· n̄dS

=

∫∫
S

−→
j ·
(
1

3

−→
i +

2

3

−→
j +

2

3

−→
k

)
dS

=
2

3

∫∫
S
dS.

As the sphere x2 + y2 + z2 = 1 is centered at the origin and the plane
x+ 2y + 2z = 0 also passes through the origin, the cross section is the
circle of radius 1. Hence the integral is

I =
2

3

∫∫
S
dS =

2

3
· π · 12 = 2π

3
.
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Example 11.2

Use Stoke’s Theorem to calculate the line integral∮
C
y3dx− x3dy + z3dz.

The curve C is the intersection of the cylinder x2 + y2 = a2 and the plane
x+ y + z = b.

Solution

We suppose that S is the part of the plane cut by the cylinder. The curve
C is oriented counterclockwise when viewed from the end of the normal
vector n̄ which has coordinates

n̄ =
1 ·

−→
i + 1 ·

−→
j + 1 ·

−→
k√

12 + 12 + 12
=

1√
3

−→
i +

1√
3

−→
j +

1√
3

−→
k .
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As P = y3, Q = −x3, R = z3, we can write:

∇× F̄ =

(
∂R

∂y
− ∂Q

∂z

)
−→
i +

(
∂P

∂z
− ∂R

∂x

)
−→
j +

(
∂Q

∂x
− ∂P

∂y

)
−→
k

= −3
(
x2 + y2

)−→
k .
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Applying Stoke’s Theorem, we find:

I =

∮
C
y3dx− x3dy + z3dz

=

∫∫
S

(
∇× F̄

)
· n̄dS =

∫∫
S

(
∇× F̄

)
· n̄dS

= =

∫∫
S

(
−3
(
x2 + y2

)−→
k
)
·
(

1√
3

−→
i +

1√
3

−→
j +

1√
3

−→
k

)
dS

= −
√
3

∫∫
S

(
x2 + y2

)
dS.

We can express the surface integral in terms of the double integral:

I = −
√
3

∫∫
S

(
x2 + y2

)
dS

= −
√
3

∫∫
D(0,a)

(
x2 + y2

)√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy.
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The equation of the plane is z = b− x− y, so the square root in the
integrand is equal to√

1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=

√
1 + (−1)2 + (−1)2 =

√
3.

Hence,

I = −
√
3

∫∫
D(0,a)

(
x2 + y2

)√
3dxdy = −3

∫∫
D(x,y)

(
x2 + y2

)
dxdy.

By changing to polar coordinates, we get

I = −3

∫ 2π

0

∫ a

0
r3drdθ = −3 · 2π · r

4

4

∣∣∣∣a
0

= −3πa4

2
.

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 103 / 107



Example 11.3

Use Stoke’s Theorem to evaluate the line integral∮
C
(x+ z) dx+ (x− y) dy + xdz.

The curve C is the ellipse defined by the equation x2

4 + y2

9 = 1, z = 1.

Solution

Let the surface S be the part of the plane z = 1 bounded by the ellipse.
Obviously that the unit normal vector is n = k. Since
P = x+ z, Q = x− y, R = x, then the curl of the vector field F̄ is
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∇× F̄ =

(
∂R

∂y
− ∂Q

∂z

)
−→
i +

(
∂P

∂z
− ∂R

∂x

)
−→
j +

(
∂Q

∂x
− ∂P

∂y

)
−→
k

= (1− 0)
−→
k =

−→
k .

By Stoke’s Theorem,∮
C
(x+ z) dx+ (x− y) dy + xdz =

∫∫
S

(
∇× F̄

)
· n̄dS

=

∫∫
S

(
∇× F̄

)
· n̄dS

=

∫∫
S

−→
k ·

−→
k dS =

∫∫
S
dS.

The double integral in the latter formula is the area of the ellipse.
Therefore, the integral is ∫∫

S
dS = π · 2 · 3 = 6π.
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Example 11.4

Show that the line integral

∮
C
yzdx+ xzdy + xydz is zero along any

closed contour C.

Solution

Let S be a surface bounded by a closed curve C. Applying Stoke’s
formula, we identify that P = yz, Q = xz, R = xy.
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Then

∇× F̄ =

(
∂R

∂y
− ∂Q

∂z

)
−→
i +

(
∂P

∂z
− ∂R

∂x

)
−→
j +

(
∂Q

∂x
− ∂P

∂y

)
−→
k

= (x− x)
−→
i + (y − y)

−→
j + (z − z)

−→
k = 0 ·

−→
i + 0 ·

−→
j + 0 ·

−→
k = 0.

Hence, the line integral:∮
C
yzdx+ xzdy + xydz =

∫∫
S

(
∇× F̄

)
· n̄dS =

∫∫
S
0 · n̄dS = 0.
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