

Chapter 4

Probability inequalities

Dr. Mohamed Rhaima

Department of Statistics and Operations Research

September, 30, 2019

1. Markov's inequality

Often, for a random variable X that we are interested in, we want to know

”What is the probability that the value of the r.v., X , is ’far’ from its expectation?”

A generic answer to this, which holds for any non-negative random variable, is given by **Markov's inequality**:

Theorem

For a nonnegative random variable, $X : \Omega \rightarrow \mathbb{R}$, where $X(s) \geq 0$ for all $s \in \Omega$, for any positive real number $a > 0$:

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$$

Let's look at a picture that illustrates the event that we are looking at.

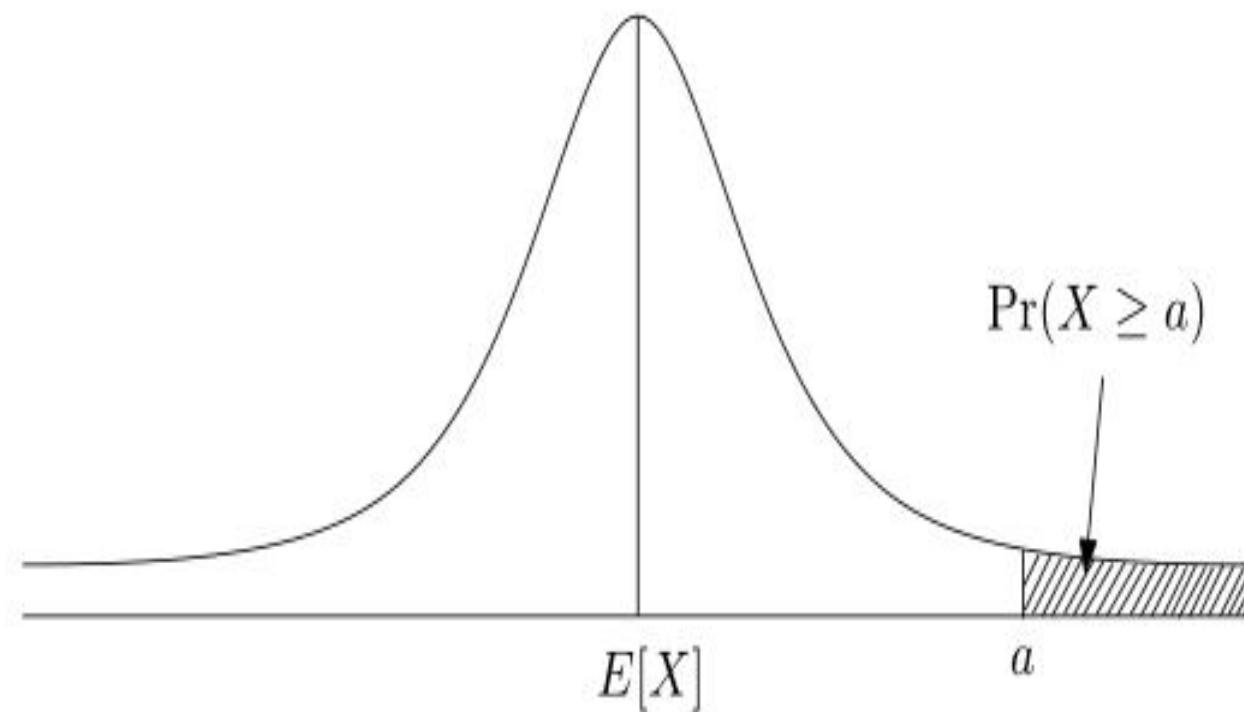


Figure : Markov's Inequality bounds the probability of the shaded region.

Example 1:

A biased coin, which lands heads with probability $\frac{1}{10}$ each time it is flipped, is flipped 200 times consecutively. Give an upper bound on the probability that it lands heads at least 120 times.

Example 1:

A biased coin, which lands heads with probability $\frac{1}{10}$ each time it is flipped, is flipped 200 times consecutively. Give an upper bound on the probability that it lands heads at least 120 times.

Answer: The number of heads is a binomially distributed r.v., X , with parameters $p = \frac{1}{10}$ and $n = 200$.

Thus, the expected number of heads is

$$\mathbb{E}(X) = np = \frac{1}{10}200 = 20$$

By **Markov Inequality**, the probability of at least 120 heads is

$$\mathbb{P}(X \geq 120) \leq \frac{\mathbb{E}(X)}{120} = \frac{20}{120} = \frac{1}{6}$$

Corollary

Let X be a *discrete* random variable and $h : \mathbb{R} \rightarrow \mathbb{R}$ be a *nonnegative* function. Then for any positive real number $a > 0$:

$$\mathbb{P}(h(X) \geq a) \leq \frac{\mathbb{E}(h(X))}{a}$$

In particular, we have

$$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}$$

2. Chebyshev's inequality

Theorem

Let $X : \Omega \rightarrow \mathbb{R}$ be any random variable, and let $\alpha > 0$ be any positive real number. Then:

$$\mathbb{P}(|X - \mathbb{E}(X)| \geq \alpha) \leq \frac{V(X)}{\alpha^2} \quad \text{and} \quad \mathbb{P}(|X - \mathbb{E}(X)| \leq \alpha) \geq 1 - \frac{V(X)}{\alpha^2}$$

Remark: For any random variable X and scalars $\alpha, t \in \mathbb{R}$ with $\alpha > 0$, convince yourself that

$$\mathbb{P}(|X - t| \geq \alpha) = \mathbb{P}((X - t)^2 \geq \alpha^2)$$

Again, let us look at a picture that illustrates Chebyshev's Inequality

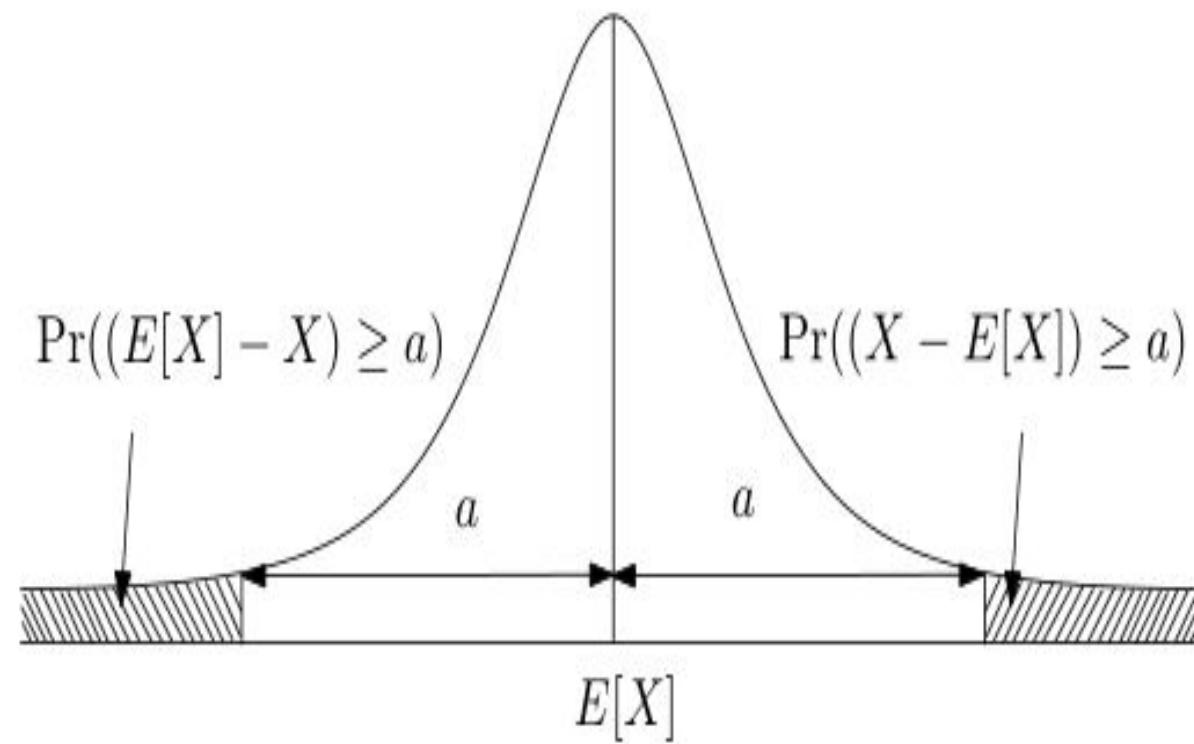


Figure : Chebyshev's Inequality bounds the probability of the shaded regions.

Example 2:

Let X be a random variable such that

$$\mathbb{E}(X) = 0, \quad \mathbb{P}(-3 < X < 2) = \frac{1}{2}$$

Find a lower bound to its variance.

Answer: The lower bound can be derived thanks to Chebyshev's inequality:

$$\begin{aligned}
 V(X) &\geq 2^2 \times \mathbb{P}(|X - \mathbb{E}(X)| \geq 2) && \text{(by the Chebyshev's inequality)} \\
 &\geq 4 \times \mathbb{P}(|X| \geq 2) && \text{because } \mathbb{E}(X) = 0 \\
 &\geq 4 \times (1 - \mathbb{P}(-2 < X < 2)) && \text{(formula for the probability of a complement)} \\
 &\geq 4 \times (1 - \mathbb{P}(-3 < X < 2)) && (\mathbb{P}(-3 < X < 2) \geq \mathbb{P}(-2 < X < 2)) \\
 &\geq 4 \left(1 - \frac{1}{2}\right) = 2
 \end{aligned}$$

Thus, the lower bound is

$$V(X) \geq 2$$

Example 3:

1. Let $X \sim \text{Poisson}(9)$. Give a lower bound for $\mathbb{P}(|X - \mu| \leq 5)$.
2. Let $X \sim N(100, 15)$. Give a lower bound for $\mathbb{P}(|X - \mu| \leq 20)$.

Answer:

1. For $X \sim \text{Poisson}(9)$, $\mu = 9 = \sigma^2$ so $\sigma = 3$ then

$$\mathbb{P}(|X - \mu| \leq 5) = \mathbb{P}(|X - 9| \leq 5) \geq 1 - \frac{\sigma^2}{5^2} = 1 - \frac{9}{25}$$

Note: Using the pdf of $X \sim \text{Poisson}(9)$ we obtain

$$\mathbb{P}(|X - \mu| \leq 5) = \mathbb{P}(4 \leq X \leq 14) \approx 0.9373.$$

2. For $X \sim N(100, 15)$, $\mu = 100$ and $\sigma = 15$ then

$$\mathbb{P}(|X - \mu| \leq 20) = \mathbb{P}(|X - 100| \leq 20) \geq 1 - \frac{\sigma^2}{20^2} = 1 - \frac{15^2}{20^2} = 0.4375$$

One-Sided Chebyshev

Using the Markov Inequality, one can also show that for any random variable with mean μ and variance σ^2 , and any positive number $\alpha > 0$, the following one-sided Chebyshev inequalities hold:

$$\begin{aligned}\mathbb{P}(X \geq \mu + \alpha) &\leq \frac{\sigma^2}{\alpha^2 + \sigma^2} \\ \mathbb{P}(X \leq \mu - \alpha) &\leq \frac{\sigma^2}{\alpha^2 + \sigma^2}\end{aligned}$$

Example 4: Roll a single fair die and let X be the outcome. Then, $\mathbb{E}(X) = 3.5$ and $V(X) = \frac{35}{12}$. Compute $p = \mathbb{P}(X \geq 6)$.

Answer: By using the one-sided Chebyshev inequality, we can obtain an even stronger bound on p :

$$p = \mathbb{P}(X \geq 6) = \mathbb{P}(X \geq 3.5 + 2.5) \leq \frac{\frac{35}{12}}{\frac{35}{12} + (2.5)^2} = \frac{7}{22} \approx 0.318$$