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Function of several variables

Definition 1.1 (function of two variables)

A function f of two variables is a rule that assigns to each ordered pair
of real numbers (x, y) in a set D a unique real number denoted by f(x, y).
The set D is the domain of f and its range is the set of values that f
takes on, that is, {f(x, y)|(x, y) ∈ D}.

Figure 1: Domain of f
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Function of several variables

Example 1.1

For each of the following functions, evaluate f(3, 2) and find and sketch
the domain.

1 f(x, y) =

√
x+ y + 1

x− 1
2 f(x, y) = x ln(y2 − x)
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Function of several variables

Solution

1 f(3, 2) =

√
3 + 2 + 1

3− 1
=

√
6

2
The expression for f makes sense if the denominator is not 0 and the
quantity under the square root sign is nonnegative. So the domain of
f is

D = {(x, y)|x+ y + 1 ≥ 0, x ̸= 1}
The inequality x+ y + 1 ≥ 0, or y ≥ −x− 1, describes the points
that lie on or above the line y = −x− 1, while x ̸= 1 means that the
points on the line x = 1 must be excluded from the domain.

Figure 2: Domain
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Function of several variables

2 f(3, 2) = 3 ln(1) = 0
Since ln(y2 − x) is defined only when y2 − x > 0, that is, x < y2, the
domain of f is D = {(x, y)|x < y2}. This is the set of points to the
left of the parabola x = y2.

Figure 3: Domain
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Function of several variables

Example 1.2

Find the domain and range of g(x, y) =
√
9− x2 − y2

Solution

The domain of g is

D = {(x, y)|9− x2 − y2 ≥ 0} = {(x, y)|x2 + y2 ≤ 9}
which is the disk with center (0, 0) and radius 3. (See Figure 4.)

Figure 4: Domain of g(x, y)
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Function of several variables

The range of g is

{z|z =
√
9− x2 − y2, (x, y) ∈ D}

Since z is a positive square root, z ≥ 0. Also, because 9− x2 − y2 ≤ 9, we
have √

9− x2 − y2 ≤ 3

So the range is
{z| − 3 ≤ z ≤ 3} = [−3, 3]
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Function of several variables

Definition 1.2 (Graph)

If f is a function of two variables with domain D, then the graph of f is
the set of all points (x, y, z) in R3 such that z = f(x, y) and (x, y) is in D.

Just as the graph of a function f of one variable is a curve C with
equation y = f(x), so the graph of a function f of two variables is a
surface S with equation z = f(x, y).
We can visualize the graph S of f as lying directly above or below its
domain D in the xy-plane (see Figure 5).

Figure 5:
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Function of several variables

Example 1.3

Sketch the graph of the function f(x, y) = 6− 3x− 2y.

Solution

The graph of f has the equation z = 6− 3x− 2y, or 3x+ 2y + z = 6,
which represents a plane. To graph the plane we first find the intercepts.
Putting y = z = 0 in the equation, we get x = 2 as the x-intercept.
Similarly, the y-intercept is y = 3 and the z-intercept is z = 6. This helps
us sketch the portion of the graph that lies in the first octant in Figure 6.

Figure 6:
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Function of several variables

Example 1.4

Sketch the graph of the function g(x, y) =
√

9− x2 − y2.

Solution

The graph has equation z =
√
9− x2 − y2. We square both sides of this

equation to obtain z2 = 9− x2 − y2, or x2 + y2 + z2 = 9, which we
recognize as an equation of the sphere with center the origin and radius 3.
But, since z ≥ 0, the graph of g is just the top half of this sphere (see
Figure 7).

Figure 7: Graph of g(x, y) =
√
9− x2 − y2
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Function of several variables

Example 1.5

Find the domain and range and sketch the graph of h(x, y) = 4x2 + y2.

Solution

Notice that h(x, y) is defined for all possible ordered pairs of real numbers
(x, y), so the domain is R2, the entire xy-plane. The range of h is the set
[0,∞) of all non-negative real numbers. The graph of h has the equation
z = 4x2 + y2 which is the elliptic paraboloid. Horizontal traces are ellipses
and vertical traces are parabolas (see Figure 8).
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Function of several variables

Figure 8: Graph of h(x, y) = 4x2 + y2
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Function of several variables

Definition 1.3 (Level curves)

The level curves of a function f of two variables are the curves with
equations f(x, y) = k, where k is a constant (in the range of f ).

A level curve f(x, y) = k is the set of all points in the domain of f at
which f takes on a given value k. In other words, it shows where the
graph of f has height k. You can see from Figure 9 the relation between
level curves and horizontal traces. The level curves f(x, y) = k are just
the traces of the graph of f z = k projected down to the xy-plane.
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Function of several variables

Figure 9: level
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Function of several variables

Example 1.6

A contour map for a function f is shown in Figure 10. Use it to estimate
the values of f(1, 3) and f(4, 5).

Figure 10: level
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Function of several variables

Solution

The point (1, 3) lies partway between the level curves with z-values 70 and
80. We estimate that f(1, 3) ≈ 73
Similarly, we estimate that f(4, 5) ≈ 56.
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Function of several variables

Example 1.7

Sketch the level curves of the function f(x, y) = 6− 3x− 2y for the
values k = −6, 0, 6, 12.

Figure 11: Contour map of f(x, y) = 6− 3x− 2y
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Function of several variables

Solution

The level curves are

6− 3x− 2y = k or 3x+ 2y + (k − 6) = 0

This is a family of lines with slope −3

2
. The four particular level curves

with k = −6, 0, 6 and 12 are 3x+ 2y − 12 = 0, 3x+ 2y − 6 = 0,
3x+ 2y = 0, and 3x+ 2y + 6 = 0. They are sketched in Figure 11. The
level curves are equally spaced parallel lines because the graph of f is a
plane (see Figure 6).
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Function of several variables

Example 1.8

Sketch the level curves of the function

g(x, y) =
√
9− x2 − y2 for k = 0, 1, 2, 3

Solution

The level curves are√
9− x2 − y2 = k or 9− x2 − y2 = k2

This is a family of concentric circles with center (0, 0) and radius
√
9− k2.

The cases k = 0, 1, 2, 3 are shown in Figure 12. Try to visualize these level
curves lifted up to form a surface and compare with the graph of g (a
hemisphere) in Figure 7.
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Function of several variables

Figure 12: Contour map of g(x, y) =
√
9− x2 − y2
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Function of several variables

Example 1.9

Sketch some level curves of the function h(x, y) = 4x2 + y2 + 1.

Solution

The level curves are

4x2 + y2 + 1 = k or
x2

1
4(k − 1)

+
y2

(k − 1)
= 1

which, for k > 1, describes a family of ellipses with semiaxes
√
k − 1 and

1

2

√
k − 1. Figure 13(a) shows a contour map of h drawn by a computer.

Figure 13(b) shows these level curves lifted up to the graph of h (an
elliptic paraboloid) where they become horizontal traces. We see from
Figure 13 how the graph of h is put together from the level curves.
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Function of several variables

Figure 13: The graph of h(x, y) = 4x2 + y2 + 1
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Function of several variables

Definition 1.4 (function of three variables)

A function of three variables, f , is a rule that assigns to each ordered
triple (x, y, z) in a domain D ⊂ R3 a unique real number denoted by
f(x, y, z). For instance, the temperature T at a point on the surface of
the earth depends on the longitude x and latitude y of the point and on
the time t, so we could write T = f(x, y, t).
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Function of several variables

Example 1.10

Find the domain of f if

f(x, y, z) = ln(z − y) + xy sin(z)

Solution

The expression for f(x, y, z) is defined as long as z− y > 0, so the domain
of f is

D = {(x, y, z) ∈ R3|z > y}

This is a half-space consisting of all points that lie above the plane z = y
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Function of several variables

Example 1.11

Find the level surfaces of the function

f(x, y, z) = x2 + y2 + z2

Solution

The level surfaces are x2 + y2 + z2 = k, where k ≥ 0. These form a family
of concentric spheres with radius k . (See Figure 14.) Thus, as (x, y, z)
varies over any sphere with center O, the value of f(x, y, z) remains fixed.
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Function of several variables

Figure 14: The graphs of x2 + y2 + z2 = k
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Partial Derivatives

Definition 2.1 (Partial derivative at (a, b) with respect to x)

In general, if f is a function of two variables x and y, suppose we let only
x vary while keeping y fixed, say y = b, where b is a constant. Then we
are really considering a function of a single variable x, namely,
g(x) = f(x, b). If g has a derivative at a, then we call it the partial
derivative of f with respect to x at (a, b) and denote it by fx(a, b). Thus

fx(a, b) = g′(a) where g(x) = f(x, b)
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Partial Derivatives

Definition 2.2 (Partial derivative at (a, b) with respect to y)

In general, if f is a function of two variables x and y, suppose we let only
y vary while keeping x fixed, say x = a, where a is a constant. Then we
are really considering a function of a single variable y, namely,
u(y) = f(a, y). If h has a derivative at b, then we call it the partial
derivative of f with respect to y at (a, b) and denote it by fy(a, b). Thus

fy(a, b) = u′(b) where u(y) = f(a, y)
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Partial Derivatives

Results
1 By the definition of a derivative, we have

g′(a) = lim
h→0

g(a+ h)− g(a)

h

and so

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h

2 By the definition of a derivative, we have

u′(b) = lim
h→0

u(b+ h)− u(b)

h

and so

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
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Partial Derivatives

Definition 2.3

If f is a function of two variables, its partial derivatives are the functions
fx and fy defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
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Partial Derivatives

Notations for Partial Derivatives

If z = f(x, y), we write

fx(x, y) = fx =
∂f

∂x
=

∂f

∂x
(x, y) =

∂z

∂x

fy(x, y) = fy =
∂f

∂y
=

∂f

∂y
(x, y) =

∂z

∂y

Rule for Finding Partial Derivatives of z = f(x, y)

1 To find fx, regard y as a constant and differentiate f(x, y) with
respect to x.

2 To find fy, regard x as a constant and differentiate f(x, y) with
respect to y.
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Partial Derivatives

Example 2.1

If f(x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

Solution

Holding y constant and differentiating with respect to x, we get

fx(x, y) = 3x2 + 2xy3

and so
fx(2, 1) = 3× 4 + 2× 2× 1 = 12 + 4 = 16

Holding x constant and differentiating with respect to y, we get

fy(x, y) = 3x2y2 − 4y

and so
fy(2, 1) = 3× 4× 1− 4× 1 = 12− 4 = 8
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Partial Derivatives

Example 2.2

If f(x, y) = 4− x2 − 2y2, find fx(1, 1) and fy(1, 1) and interpret these
numbers as slopes.

Solution

We have
fx(x, y) = −2x fy(x, y) = −4y

fx(1, 1) = −2 fy(1, 1) = −4

The graph of f is the paraboloid z = 4− x2 − 2y2 and the vertical plane
y = 1 intersects it in the parabola z = 2− x2, y − 1. (As in the preceding
discussion, we label it C1 in Figure 15). The slope of the tangent line to
this parabola at the point (1, 1, 1) is fx(1, 1) = −2. Similarly, the curve
C2 in which the plane x = 1 intersects the paraboloid is the parabola
z − 3− 2y2, x− 1, and the slope of the tangent line at (1, 1, 1) is
fy(1, 1) = −4. (See Figure 15.)
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Partial Derivatives

Figure 15: Curves for z = 4− x2 − 2y2
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Partial Derivatives

Example 2.3

If f(x, y) = sin

(
x

y + 1

)
, calculate

∂f

∂x
and

∂f

∂y

Solution

Using the Chain Rule for functions of one variable, we have
∂f

∂x
= cos

(
x

y + 1

)
∂

∂x

(
x

y + 1

)
= cos

(
x

y + 1

)
1

y + 1
∂f

∂y
= cos

(
x

y + 1

)
∂

∂y

(
x

y + 1

)
= − cos

(
x

y + 1

)
1

(y + 1)2
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Partial Derivatives

Example 2.4

Find
∂z

∂x
and

∂z

∂y
if z is defined implicitly as a function of x and y by the

equation
x3 + y3 + z3 + 6xyz = 1
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Partial Derivatives

Solution

To find
∂z

∂x
, we differentiate implicitly with respect to x, being careful to

treat y as a constant:

3x2 + 3z2
∂z

∂x
+ 6yz + 6xy

∂z

∂x
= 0

Solving this equation for
∂z

∂x
, we obtain

∂z

∂x
= −x2 + 2yz

z2 + 2xy

Similarly, implicit differentiation with respect to y gives

∂z

∂x
= −y2 + 2xz

z2 + 2xy

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 41 / 68



Partial Derivatives

Definition 2.4 (Higher derivatives)

If f is a function of two variables, then its partial derivatives fx and fy are
also functions of two variables, so we can consider their partial derivatives
(fx)x, (fx)y, (fy)x, and (fy)y, which are called the second partial
derivatives of f . If z = f(x, y), we use the following notation:

1 (fx)x = fxx =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
=

∂2z

∂x2

2 (fx)y = fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=

∂2z

∂y∂x

3 (fy)x = fyx =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
=

∂2z

∂x∂y

4 (fy)y = fyy =
∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2
=

∂2z

∂y2
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Partial Derivatives

Example 2.5

Find the second partial derivatives of

f(x, y) = x3 + x2y3 − 2y2

Solution

In Example 2.1 we found that
fx(x, y) = 3x2 + 2xy3 and fy(x, y) = 3x2y2 − 4y.
Therefore

fxx =
∂

∂x
(3x2 + 2xy3) = 6x+ 2y2 fxy =

∂

∂y
(3x2 + 2xy3) = 6xy2

fyx =
∂

∂x
(3x2y2 − 4y) = 6xy2 fyy =

∂

∂y
(3x2y2 − 4y) = 6x2y − 4
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Partial Derivatives

Theorem 2.1 (Clairaut’s Theorem)

Suppose f is defined on a disk D that contains the point (a, b). If the
functions fxy and fyx are both continuous on D, then

fxy(a, b) = fyx(a, b)
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Partial Derivatives

Definition 2.5 (Partial Differential Equations)

Partial derivatives occur in partial differential equations that express
certain physical laws. For instance, the partial differential equation

∂2u

∂x2
+

∂2u

∂y2
= 0

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions
of this equation are called harmonic functions; they play a role in
problems of heat conduction, fluid flow, and electric potential.
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Partial Derivatives

Example 2.6

Show that the function u(x, y) = ex sin y is a solution of Laplace’s
equation.

Solution

We first compute the needed second-order partial derivatives:

ux = ex sin y uy = ex cos y

uxx = ex sin y uyy = −ex sin y

So
uxx + uyy = ex sin y − ex sin y = 0

Therefore u satisfies Laplace’s equation.
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Maximum and Minimum Values

Definition 3.1

A function of two variables has a local maximum at (a, b) if
f(x, y) ⩽ f(a, b) when (x, y) is near (a, b). [This means that
f(x, y) ⩽ f(a, b) for all points (x, y) in some disk with center (a, b).] The
number f(a, b) is called a local maximum value. If f(x, y) ⩾ f(a, b) when
(x, y) is near (a, b), then f has a local minimum at (a, b) and f(a, b) is a
local minimum value.

Theorem 3.1

If f has a local maximum or minimum at (a, b) and the first-order partial
derivatives of f exist there, then fx(a, b) = 0 and fy(a, b) = 0.
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Maximum and Minimum Values

Example 3.1

Let f(x, y) = x2 + y2 − 2x− 6y + 14. Then

fx(x, y) = 2x− 2 fy(x, y) = 2y − 6

These partial derivatives are equal to 0 when x = 1 and y = 3, so the only
critical point is (1, 3). By completing the square, we find that

f(x, y) = 4 + (x− 1)2 + (y − 3)2

Since (x− 1)2 ⩾ 0 and (y − 3)2 ⩾ 0, we have f(x, y) ⩾ 4 for all values of
x and y. Therefore f(1, 3) = 4 is a local minimum, and in fact it is the
absolute minimum of f. This can be confirmed geometrically from the
graph of f , which is the elliptic paraboloid with vertex (1, 3, 4) shown in
Figure 16.
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Maximum and Minimum Values

Figure 16: z = x2 + y2 − 2x− 6y + 14
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Maximum and Minimum Values

Example 3.2

Find the extreme values of f(x, y) = y2 − x2.

Solution

Since fx = −2x and fy = 2y, the only critical point is (0, 0). Notice that
for points on the x-axis we have y = 0, so f(x, y) = −x2 < 0 (if x ̸= 0).
However, for points on the y-axis we have x = 0, so f(x, y) = y2 > 0 (if
y ̸= 0). Thus every disk with center (0, 0) contains points where f takes
positive values as well as points where f takes negative values. Therefore
f(0, 0) = 0 can’t be an extreme value for f , so f has no extreme value.
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Maximum and Minimum Values

Second Derivatives Test

Suppose the second partial derivatives of f are continuous on a disk with
center (a, b), and suppose that fx(a, b) = 0 and fy(a, b) = 0 [that is, (a, b)
is a critical point of f ]. Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2

1 If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

2 If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

3 If D < 0, then f(a, b) is not a local maximum or minimum.
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Maximum and Minimum Values

Remark 3.1

Note 1 In case (3) the point (a, b) is called a saddle point of f and
the graph of f crosses its tangent plane at (a, b).

Note 2 If D = 0, the test gives no information: f could have a local
maximum or local minimum at (a, b), or (a, b) could be a
saddle point of f .

Note 3 To remember the formula for D, it’s helpful to write it as a
determinant:

D =

∣∣∣∣ fxx fxy
fyx fyy

∣∣∣∣ = fxxfyy − (fxy)
2
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Maximum and Minimum Values

Example 3.3

-Find the local maximum and minimum values and saddle points of

f(x, y) = x4 + y4 − 4xy + 1

Solution

We first locate the critical points:

fx = 4x3 − 4y fy = 4y3 − 4x

Setting these partial derivatives equal to 0, we obtain the equations

x3 − y = 0 and y3 − x = 0

To solve these equations we substitute y = x3 from the first equation into
the second one. This gives
0 = x9 − x = x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x4 + 1)
so there are three real roots: x = 0, 1,−1. The three critical points are
(0, 0), (1, 1), and (−1,−1).
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Next we calculate the second partial derivatives and D(x, y):

fxx = 12x2 fxy = −4 fyy = 12y2

D(x, y) = fxxfyy − (fxy)
2 = 144x2y2 − 16

Since D(0, 0) = −16 < 0, it follows from case (3) of the Second
Derivatives Test that the origin is a saddle point; that is, f has no local
maximum or minimum at (0, 0).
Since D(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0, we see from case (1) of
the test that f(1, 1) = −1 is a local minimum. Similarly, we have
D(−1,−1) = 128 > 0 and fxx(−1,−1) = 12 > 0, so f(−1,−1) = −1 is
also a local minimum. The graph of f is shown in Figure 17.
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Figure 17: z = x4 + y4 − 4xy + 1
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Example 3.4

Find and classify the critical points of the function

f(x, y) = 10x2y − 5x2 − 4y2 − x4 − 2y4

Also find the highest point on the graph of f .

Solution

The first-order partial derivatives are

fx = 20xy − 10x− 4x3 fy = 10x2 − 8y − 8y3

So to find the critical points we need to solve the equations

2x(10y − 5− 2x2) = 0 (1)

5x2 − 4y − 4y3 = 0 (2)
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From Equation 1 we see that either

x = 0 or 10y − 5− 2x2 = 0

In the first case (x = 0), Equation 2 becomes −4y(1 + y2) = 0, so y = 0
and we have the critical point (0, 0).
In the second case (10y − 5− 2x2), we get

x2 = 5y − 2.5 (3)

and, putting this in Equation 2, we have 25y − 12.5− 4y − 4y3 = 0. So
we have to solve the cubic equation

4y3 − 21y + 12.5 = 0 (4)

Using a graphing calculator or computer to graph the function

t(y) = 4y3 − 21y + 12.5
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Figure 18: Cure of t(y) = 4y3 − 21y + 12.5

as in Figure 18, we see that Equation 4 has three real roots. By zooming
in, we can find the roots to four decimal places:

y ≈ −2.5452 y ≈ 0.6468 y ≈ 1.8984
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Absolute Maximum and Minimum Values

For a functions of two variables, the Extreme Value Theorem says that if f
is continuous on a closed set in R2, then f has an absolute minimum value
and an absolute maximum value.
A closed set in R2 is one that contains all its boundary points.
A bounded set in R2 is one that is contained within some disk. In other
words, it is finite in extent. Then, in terms of closed and bounded sets, we
can state the following counterpart of the Extreme Value Theorem in two
dimensions.
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Theorem 3.2 (Extreme Value Theorem for Functions of Two
Variables)

If f is continuous on a closed, bounded set D in R2, then f attains an
absolute maximum value f(x1, y1) and an absolute minimum value
f(x2, y2) at some points (x1, y1) and (x2, y2) in D.
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Theorem 3.3 (Method to find Extreme Value )

To find the absolute maximum and minimum values of a continuous
function f on a closed, bounded set D:

1 Find the values of f at the critical points of f in D.

2 Find the extreme values of f on the boundary of D.

3 The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.
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Example 3.5

Find the absolute maximum and minimum values of the function
f(x, y) = x2 − 2xy + 2y on the rectangle
D = {(x, y)|0 ⩽ x ⩽ 3, 0 ⩽ y ⩽ 2}.
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Solution

Since f is a polynomial, it is continuous on the closed, bounded rectangle
D, f have both an absolute maximum and an absolute minimum.
According to step 1 in Theorem (3.3), we first find the critical points.
These occur when

fx = 2x− 2y = 0 fy = −2x+ 2 = 0

so the only critical point is (1, 1), and the value of f there is f(1, 1) = 1.

Figure 19: Rectangle D = {(x, y)|0 ⩽ x ⩽ 3, 0 ⩽ y ⩽ 2}
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In step 2 we look at the values of f on the boundary of D, which consists
of the four line segments L1, L2, L3, L4 shown in Figure 19. On L1 we
have y = 0 and f(x, 0) = x2 0 ⩽ x ⩽ 3
This is an increasing function of x, so its minimum value is f(0, 0) = 0
and its maximum value is f(3, 0) = 9. On L2 we have x = 3 and

f(3, y) = 9− 4y 0 ⩽ y ⩽ 2

This is a decreasing function of y, so its maximum value is f(3, 0) = 9 and
its minimum value is f(3, 2) = 1. On L3 we have y = 2 and

f(x, 2) = x2 − 4x+ 4 0 ⩽ x ⩽ 3

By observing that f(x, 2) = (x− 2)2, we see that the minimum value of
this function is f(2, 2) = 0 and the maximum value is f(0, 2) = 4. Finally,
on L4 we have x = 0 and

f(0, y) = 2y 0 ⩽ y ⩽ 2

with maximum value f(0, 2) = 4 and minimum value f(0, 0) = 0. Thus,
on the boundary, the minimum value of f is 0 and the maximum is 9.
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In step 3 we compare these values with the value f(1, 1) = 1 at the critical
point and conclude that the absolute maximum value of f on D is
f(3, 0) = 9 and the absolute minimum value is f(0, 0) = f(2, 2) = 0.
Figure 20 shows the graph of f .

Figure 20: f(x, y) = x2 − 2xy + 2y
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Exercise 3.1

Find the local minimum and maximum values and the saddle points of the
functions.

1 f(x, y) = x2 + xy + y2 + y.

2 f(x, y) = xy − 2x− 2y2− x2 − y2.

3 f(x, y) = y(ex − 1).

4 f(x, y) = 2− x4 + 2x2 − y2.
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Exercise 3.2

Find the absolute maximum and minimum values of f on the set D.

1 f(x, y) = x2 + y2 − 2x, D is the closed triangular region with vertices
(2, 0), (0, 2), and (0,−2).

2 f(x, y) = x2 + 2y2 − 2x− 4y+ 1, D = {(x, y)|0 ⩽ x ⩽ 2, 0 ⩽ y ⩽ 3}
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