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Substitution Method (changing variable method)

Theorem (Substitution)

If F is an antiderivative of f , then f(g(x))g′(x) has antiderivative
F (g(x)). Or, ∫

f(g(x))g′(x)dx = F (g(x)) + c.

This is obvious. It is called ”substitution” since it can be obtained by

substituting u = g(x) and du = g′(x)dx into

∫
f(u)du = F (u) + c
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Substitution Method (changing variable method)

Example

Solve

∫
(4x+ 1)2dx.

Put u = 4x+ 1 then du = 4dx hence
1

4
du = dx∫

(4x+ 1)2dx =

∫
u2

1

4
du =

1

4

∫
u2du =

1

4

u3

3
+ C

=
1

4

(4x+ 1)3

3
+ C
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Example

1

∫
(x2 + 1)n2xdx

u=x2+1
=

∫
undu =

un+1

n+ 1
=

(x2 + 1)n+1

n+ 1
+ c.

2

∫
sin(2x+ 3)dx

u=2x+3
=

1

2

∫
sinudu = −1

2
cosu+ c =

−1

2
cos(2x+ 3) + c.

3

∫
1

cos2(πx)
dx

u=πx
=

1

π

∫
1

cos2(u)
du =

1

π
tan(πx) + c.
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Example

∫
(20x+ 30)(x2 + 3x− 5)9 dx =

∫
10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x− 5)

= (x2 + 3x− 5)10 + C
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Substitution Method (changing variable method)

Theorem (Substitution Rule for Definite Integrals)

If g′ is continuous on [a, b], and f is continuous on the range of u = g(x),
then

b∫
a

f(g(x))g′(x)dx =

g(b)∫
g(a)

f(u) du.
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Integration By Parts

It is used to solve integration of a product of two functions using the
formula: ∫

u dv = uv −
∫

v du

1

∫
xexdx, We put, u = x dv = ex dx, Then du = dx v = ex∫
xexdx = xex −

∫
exdx = xex − ex + c

2

π∫
0

x sinx dx, We put u = x dv = sinx dx, Then,

du = dx v = − cosx
π∫

0

x sinx dx = [−x cosx]π0 +

π∫
0

cosxdx = [−x cosx]π0 + [sinx]π0

[(−π cosπ)− (−(0) cos 0)] + [sinπ − sin 0] = π
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Integration By Parts: Examples

∫
xex dx = (x− 1)ex + c∫
x2ex dx = (x2 − 2x+ 2)ex + c∫
x3ex dx = (x3 − 3x2 + 6x− 6)ex + c
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Integration By Parts: Examples

∫
x cosx dx = x sinx+ cosx+ c∫
x2 cosx dx = (x2 − 2) sinx+ 2x cosx+ c∫
x3 cosx dx = (x3 − 6x) sinx+ (3x2 − 6) cosx+ c∫
x4 cosx dx = (x4 − 12x2 + 24) sinx+ (4x3 − 24x) cosx+ c
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Integration By Parts: Examples

∫
x sinx dx = −x cosx+ sinx+ c∫
x2 sinx dx = (−x2 + 2) cosx+ 2x sinx+ c∫
x3 sinx dx = (−x3 + 6x) cosx+ (3x2 − 6) sinx+ c∫
x4 sinx dx = (−x4 + 12x2 − 24) cosx+ (4x3 − 24x) sinx+ c
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Integration By Parts: Examples

Evaluate

∫
cos(ln(x)) dx.

Letting: u = ln(x), we have du = 1/x dx.

du =
1

x
dx ⇒ x · du = dx.

Since u = ln(x), we can use inverse functions and conclude that
eln(x) = eu ⇒ x = eu. therefore we have that dx = x · du = eu du.∫

cos(ln(x)) dx =

∫
eu cos(u) du

=
1

2
eu
(
sin(u) + cos(u)

)
+ C

=
1

2
eln(x)

(
sin(ln(x)) + cos(ln(x))

)
+ C

=
1

2
x
(
sin(ln(x)) + cos(ln(x))

)
+ C.
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Integration By Parts: Examples
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Integrals Involving Trigonometric Functions

First form

Integrals of the forms∫
sin ax cos bx dx,

∫
sin ax sin bx dx,

∫
cos ax cos bx dx

Where a, b ∈ Z

1 The integral

∫
sin ax cos bx dx can be solved using the formula

sin ax cos bx = 1
2 [sin(ax+ bx) + sin(ax− bx)]

2 The integral

∫
sin ax sin bx dx can be solved using the formula

sin ax sin bx = 1
2 [cos(ax− bx)− cos(ax+ bx)]

3 The integral

∫
cos ax cos bx dx can be solved using the formula

cos ax cos bx = 1
2 [cos(ax+ bx) + cos(ax− bx)]
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Integrals Involving Trigonometric Functions (Examples)

1

∫
sin 3x cos 2x dx =

1

2

∫
[sin 5x+ sinx]dx =

1

2

∫
sin 5x dx+

1

2

∫
sinx dx = − 1

10
cos 5x− 1

2
cosx+ c

2

∫
sinx sin 3x dx =

1

2

∫
[cos 2x− cos 4x]dx =

1

2

∫
cos 2x dx− 1

2

∫
cos 4x dx =

1

4
sin 2x− 1

8
sin 4x+ c

3

∫
cos 5x cos 2x dx =

1

2

∫
[cos 7x+ cos 3x]dx =

1

2

∫
cos 7x dx+

∫
cos 3x dx =

1

4
sin 7x+

1

6
sin 3x+ c
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Integrals Involving Trigonometric Functions

Second form

Integrals of the forms∫
sinn x cosm x dx,

∫
sinhn x coshm x dx, Where n,m ∈ N

The above two integrals can be solved by substitution if n or m is odd.

1 If n is odd: The substitution u = cosx can be used to solve∫
sinn x cosm x dx

The substitution u = coshx can be used to solve∫
sinhn x coshm x dx

2 If m is odd: The substitution u = sinx can be used to solve∫
sinn x cosm x dx

The substitution u = sinhx can be used to solve∫
sinhn x coshm x dx
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Integrals Involving Trigonometric Functions (Examples)

1 Evaluate I =

∫
sin5 x cos4 xdx∫

sin5 x cos4 xdx =

∫
(sin2 x)2 cos4 x sinxdx

=

∫
(1− cos2 x) cos4 x sinx dx

to solve this integral put

u = cosx ⇒ −du = sinx dx

I = −
∫
(1− u2)2u4du = −

∫
u4 − 2u6 + u8du

= −
[
u5

5
− 2u7

7
+

u9

9

]
+ c = −

[
cos5 x

5
− 2 cos7 x

7
+

cos9 x

9

]
+ c
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Integrals Involving Trigonometric Functions (Examples)

2 Evaluate I =

∫
sin7 cos3 x dx∫

sin7 cos3 x dx =

∫
sin7 x(1− sin2 x) cosx dx

to solve this integral put

u = sinx ⇒ du = cosx dx

I =

∫
u7(1− u2) du =

∫
u7 − u9 du =

u8

8
− u10

10
+ c

=
sin8 x

8
− sin10

10
+ c

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 26 / 113



Integrals Involving Trigonometric Functions (Examples)

3

∫
sinh3 x cosh2 x dx to solve this integral put

u = coshx ⇒ du = sinhx∫
sinh3 x cosh2 x dx =

∫
(cosh2 x− 1) cosh2 x sinhx dx =∫

(u2 − 1)u2du =

∫
(u4 − u2)du =

u5

5
− u3

3
+ c

=
cosh5 x

5
− cosh3 x

3
+ c
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Integrals Involving Trigonometric Functions (Examples)
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Integrals Involving Trigonometric Functions (Examples)

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 30 / 113



Integrals Involving Trigonometric Functions

Special cases :

1

∫
sin2 x dx =

1

2

∫
[1− cos 2x] dx =

1

2
[x− sin 2x

2
] + c

2

∫
cos2 x dx =

1

2

∫
[1 + cos 2x] dx =

1

2
[x+

sin 2x

2
] + c
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Integrals Involving Trigonometric Functions

Third form

Integrals of the forms∫
secn x tanm x dx,

∫
cscnx cotm x dx,

∫
sechnx tanhm x dx,

∫
cschnx cothm x dx

The above four integrals can be solved by substitution if n is even or m is
odd.

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 32 / 113



Integrals Involving Trigonometric Functions

1 If n is even:

The substitution u = tanx can be used to solve

∫
secn x tanm x dx.

The substitution u = cotx, u = tanhx and u = cothx can be used
to solve the other three integrals respectively.

2 If m is odd:

The substitution u = secx can be used to solve

∫
secn x tanm x dx.

The substitutions u = csc x, u = sech x and u = csch x can be used
to solve the other theree integrals respictively.
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Integrals Involving Trigonometric Functions (Examples)

1 Evaluate I =

∫
tan3 x sec3 x dx

to solve this integral put: u = secx ⇒ du = secx tanx dx

I =

∫
tan3 x sec3 x dx =

∫
(sec2 x− 1) sec2 x secx tanx dx

= (u2 − 1)u2 du =

∫
u4 − u2 du

=
u5

5
− u3

3
+ c

=
sec5 x

5
− sec3 x

3
+ c
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Integrals Involving Trigonometric Functions (Examples)

2 Evaluate I =

∫
tanh3x sech x dx

to solve this integral put: u = sech x ⇒ −du = sech x tanhx dx

I =

∫
tanh3x sech x dx =

∫
(1− sech2x)sech x tanh x dx

= −
∫
(1− u2)du = −u+

u3

3
+ c

= −sech x+
sech3x

3
+ c
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Integrals Involving Trigonometric Functions (Examples)
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Integrals Involving Trigonometric Functions (Examples)
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Trigonometric Substitutions

If the integrand contains a term of the form√
a2 − x2,

√
a2 + x2 or

√
x2 − a2 where a > 0,

then trigonometric substitutions can be used to solve the integral.

1 An integral involving
√
a2 − x2 use the substitution x = a sin θ where

−π
2 < θ < π

2 to solve the integral.

2 An integral involving
√
a2 + x2 use the substitution x = a tan θ where

−π
2 < θ < π

2 to solve the integral.

3 An integral involving
√
x2 − a2 use the substitution x = a sec θ where

0 ≤ θ < π
2 to solve the integral.
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Trigonometric Substitutions (examples)

Solve the following integral:

∫
1

x2
√
16− x2

dx∫
1

x2
√
16− x2

dx =

∫
1

x2
√
(4)2 − x2

dx,

Put x = 4 sin θ ⇒ dx = 4 cos θdθ

I =

∫
4 cos θ

16 sin2 θ
√
16− 16 sin θ

dθ

=

∫
4 cos θ

16 sin2 θ 4 cos θ
dθ

= 1
16

∫
1

sin2 θ
dθ =

1

16

∫
csc2 θdθ =

− 1

16
cot θ + c ∫

1

x2
√
16− x2

dx = − 1

16

√
16− x2

x
+ c
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Trigonometric Substitutions (examples)

Solve the following integral:∫
1

[x2 + 8x+ 25]
3
2

dx

I =

∫
1

[(x+ 4)2 + 32]
3
2

dx.

Put x+ 4 = 3 tan θ ⇒ dx = 3 sec2 θ dθ∫
1

[x2 + 8x+ 25]
3
2

dx =

∫
3 sec2 θ

(9 tan2 θ + 9)
3
2

dθ

=

∫
3 secθ

(9 sec2 θ)32
dθ =

∫
3 sec2 θ

27 sec3 θ
dθ

= 1
9

∫
1

sec θ
dθ =

1

9
sin θ + c∫

1

[x2 + 8x+ 25]
3
2

dx =
1

9

x+ 4√
x2 + 8x+ 25

+ c
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Trigonometric Substitutions (examples)

Solve the following integral:

∫ √
x2 − 4

x2
dx

Put x = 2 sec θ ⇒ dx = 2 sec θ tan θ dθ∫ √
x2 − 4

x2
dx =∫ √

4 sec2 θ − 4 2 sec θ tan θ

4 sec2 θ
dθ

=

∫
(2 tan θ)(2 sec θ tan θ)

4 sec2 θ
dθ

=

∫
tan2 θ

sec θ
dθ =

∫
sec2 θ − 1

sec θ
dθ

=

∫
sec2 θ

sec θ
dθ −

∫
1

sec θ
dθ

=

∫
sec θdθ −

∫
cos θdθ

= ln | sec θ + tan θ| − sin θ + c∫ √
x2 − 4

x2
dx = ln |x

2
+

√
x2 − 4

2
| −

√
x2 − 4

x
+ c
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Inverse Trigonometeric

Definition (Inverse if sine)

The inverse sine function is denoted by sin−1 and it is defined as
y = sin−1 x ⇔ x = sin y, where x ∈ [−1, 1] and y ∈ [−π

2 ,
π
2 ]

The domain of the inverse sine function is [−1, 1]
The range of the inverse sine function is [−π

2 ,
π
2 ].
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Inverse Trigonometeric

Definition (Inverse of cosine)

The inverse cosine function is denoted by cos−1 and it is defined as
y = cos−1 x ⇔ x = cos y, where x ∈ [−1, 1] and y ∈ [0, π]
The domain of the inverse cosine function is [−1, 1]
The range of the inverse cosine function is [0, π].
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Inverse Trigonometeric

Definition (Inverse of Tangent)

The inverse tangent function is denoted by tan−1 and it is defined as
y = tan−1 x ⇔ x = tan y, where x ∈ R and y ∈ (−π

2 ,
π
2 )

The domain of the inverse tangent function is R
The range of the inverse tangent function is (−π

2 ,
π
2 ).
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Inverse Trigonometeric

Definition (Inverse of cotangent)

The inverse cotangent function is denoted by cot−1 and it is defined as
cot−1 x = π

2 − tan−1 x, where x ∈ R
The domain of the inverse cotangent function is R
The range of the inverse cotangent function is (0, π).
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Inverse Trigonometeric

Definition (Inverse secant)

The inverse secant function is denoted by sec−1 and it is defined as
y = sec−1 x ⇔ x = sec y, where y ∈ [0, π2 ) if x ≥ 1, and y ∈ [π, 3π2 ) if
x ≤ −1
The domain of the inverse secant function is (−∞,−1] ∪ [1,∞)
The range of the inverse secant function is [0, π2 ) ∪ (π2 , π].

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 48 / 113



Inverse Trigonometeric

Definition (Inverse cosecant)

The inverse cosecant function is denoted by csc−1 and it is defined as
csc−1 x = π

2 − sec−1x, where |x| ≥ 1
The domain of the inverse cosecant function is (−∞,−1] ∪ [1,∞)
The range of the inverse cosecant function is [−π

2 , 0) ∪ (0, π2 ].
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Inverse Trigonometeric

Derivatives of the inverse trigonometric functions

1
d

dx
sin−1 x =

1√
1− x2

, where |x| < 1

2
d

dx
cos−1 x =

−1√
1− x2

, where |x| < 1

3
d

dx
tan−1 x =

1

1 + x2

4
d

dx
cot−1 x =

−1

1 + x2

5
d

dx
sec−1 x =

1

x
√
1− x2

, where |x| > 1

6
d

dx
csc−1 x =

−1

x
√
x2 − 1

, where |x| > 1
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Inverse Trigonometeric

Integration of the inverse trigonometric functions

1

∫
1√

a2 − x2
dx = sin−1(

x

a
) + c, (|x| < a)∫

f ′(x)√
a2 − [f(x)]2

dx = sin−1(
f(x)

a
) + c, (|f(x)| < a)

2

∫
1

a2 + x2
dx =

1

a
tan−1(

x

a
) + c∫

f ′(x)

a2 + [f(x)]2
dx =

1

a
tan−1(

f(x)

a
) + c

3

∫
1

x
√
x2 − a2

dx =
1

a
sec−1(

x

a
) + c, (|x| > a)∫

f ′(x)

f(x)
√
[f(x)]2 − a2

dx =
1

a
sec−1(

f(x)

a
) + c, (|f(x)| > a)
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Inverse Trigonometeric

Examples

1

∫
x2

5 + x6
dx =

1

3

∫
3x2

(
√
5)2 + (x3)2

dx =
1

3

1√
5
tan−1(

x3√
5
) + c.

Here a =
√
5, f(x) = x3 and f ′(x) = 3x2.

2

∫
3x√
9− x4

dx =
3

2

∫
2x√

32 − (x2)2
dx =

3

2
sin−1(

x2

3
) + c.

3

∫
3x√
9− x2

dx =
3

−2

∫
(9− x2)−

1
2 (−2x)dx = −3

2

(9− x2)
1
2

1
2

+ c

4

∫
1

x
√
1− (lnx)2

dx =

∫
( 1x)√

(1)2 − (lnx)2
dx = sin−1(lnx) + c

5

∫
1

1 + 3x2
dx =

1√
3

∫ √
3

12 + (
√
3x)2

dx =
1√
3
tan−1(

√
3x) + c.
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Inverse Trigonometeric

Examples

6

∫
e2x

e4x + 16
dx =

1

2

∫
2e2x

42 + (22x)2
dx =

1

2 ∗ 4
tan−1

(
e2x

4

)
+ c.

7

∫
1√

e2x − 36
dx =

∫
ex

ex
√
(ex)2 − (6)2

dx =
1

6
sec−1

(
ex

6

)
+ c.

Exercises

Solve the following integrals :

1

∫
x+ sin−1 x√

1− x2
dx

2

∫
x+ 1

x2 + 1
dx
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Hyperbolic Functions

Definition (The hyperbolic sine function)

It is denoted by sinhx and it is defined as sinhx = ex−e−x

2

Notes
1 The domain of sinhx is R and the range of sinhx is R.
2 It is an odd function and sinh(0) = 0
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Hyperbolic Functions

Definition (The hyperbolic cosine function)

It is denoted by coshx and it is defined as coshx = ex+e−x

2

Notes
1 The domain of coshx is R and the range of coshx is [1,∞].

2 It is an even function and cosh(0) = 1
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Hyperbolic Functions

Definitions
1 The hyperbolic tangent function is denoted by tanhx and it is

defined as tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
for every x ∈ R

2 The hyperbolic cotangent function is denoted by cothx and it is

defined as cothx =
coshx

sinhx
=

ex + ex

ex − e−x
for every x ∈ R− {0}

3 The hyperbolic secant function is denoted by sech x and it is defined

as sech x =
1

coshx
=

2

ex − e−x
for every x ∈ R

4 The hyperbolic cosecant function is denoted by csch x and it is

defined as csch x =
1

sinhx
=

2

ex − e−x
for every x ∈ R− {0}
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Hyperbolic Functions

Notes

1 cosh2 x− sinh2 x = 1 for every x ∈ R
2 1− tanh2 x = sech2 x for every x ∈ R
3 coth2 x− 1 = csch2 x for every x ∈ R− {0}
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Hyperbolic Functions

Derivatives of the hyperbolic functions

1
d

dx
sinhx = coshx,

2
d

dx
coshx = sinhx,

3
d

dx
tanh x = sech2 x

4
d

dx
coth x = −csch2 x

5
d

dx
sech x = −sech x tanh x

6
d

dx
csch x = −csch x coth x
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Hyperbolic Functions

Derivatives of the hyperbolic functions

1
d

dx
sinh(f(x)) = cosh(f(x))f ′(x)

2
d

dx
cosh(f(x)) = sinh(f(x))f ′(x)

3
d

dx
tanh (f(x)) = sech2 (f(x))f ′(x)

4
d

dx
coth (f(x)) = −csch2 (f(x))f ′(x)

5
d

dx
sech (f(x)) = −sech (f(x)) tanh (f(x))f ′(x)

6
d

dx
csch (f(x)) = −csch (f(x)) coth (f(x))f ′(x)
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Hyperbolic Functions

Examples

1 Find the value of f(0) if f(x) = ln[cosh(3x)].
f(0) = ln[cosh(0)] = ln(1) = 0.

2 Find the value of f ′(0) if f(x) = ln |1 + sinh(x)|.

f ′(x) =
cosh(x)

1 + sinh(x)
→ f ′(0) =

cosh(0)

1 + sinh(0)
=

1

1 + 0
= 1

3 Find f ′(x) if f(x) = esinh(x).
f ′(x) = esinh(x)cosh(x).

4 Find f ′(x) if f(x) = tan−1(sinh(x)).

f ′(x) =
cosh(x)

1 + (sinh(x))2
=

cosh(x)

(cosh(x))2
=

1

cosh(x)
= sech(x).
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Hyperbolic Functions

Integration of the hyperbolic functions

1

∫
sinhx dx = coshx+ c,

2

∫
sinh(f(x))f ′(x)dx = cosh(f(x)) + c

3

∫
coshx dx = sinhx+ c,

4

∫
cosh(f(x))f ′(x)dx = sinh(f(x)) + c

5

∫
sech2x dx = tanhx+ c

6

∫
sech2(f(x))f ′(x)dx = tanh(f(x)) + c
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Hyperbolic Functions

Integration of the hyperbolic functions

7

∫
csch2x dx = − cothx+ c

8

∫
csch2(f(x))f ′(x)dx = − coth(f(x)) + c
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Hyperbolic Functions

Examples

1

∫
x2 coshx3 dx =

1

3

∫
coshx3 (3x2)dx =

1

3
sinhx3 + c

2

∫
(ex − e−x)sech2(ex + e−x)dx = tanh(ex + e−x) + c

3

∫
sinhx

1 + sinh2 x
dx =

∫
sinhx

cosh2 x
dx =

∫
1

coshx

sinhx

coshx
dx

=

∫
sech x tanhx dx = −sech x+ c

4

∫
1

sech x
√
4− sinh2 x

dx =

∫
coshx√

(2)2 − (sinhx)2
dx

= sin−1(
sinhx

2
) + c
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The Inverse Hyperbolic Functions

Definition

The inverse hyperbolic sine function is denoted by sinh−1 and it is defined
as y = sinh−1 x ⇔ x = sinh y, where x ∈ R and y ∈ R

Definition

The inverse hyperbolic cosine function is denoted by cosh−1 and it is
defined as y = cosh−1 x ⇔ x = cosh y, where x ∈ [1,∞) and y ∈ [0,∞)

Definition

The inverse hyperbolic tangent function is denoted by tanh−1 and it is
defined as y = tanh−1 x ⇔ x = tanh y, where x ∈ [−1, 1] and y ∈ R
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The Inverse Hyperbolic Functions

Definition

The inverse hyperbolic cotangent function is denoted by coth−1 and it is
defined as y = coth−1 x ⇔ x = coth y, where |x| > 1 and y ∈ R.

Definition

The inverse hyperbolic secant function is denoted by sech−1 and it is
defined as y = sech−1x ⇔ x = sech y, where x ∈ [0, 1] and y ∈ [0,∞)

Definition

The inverse hyperbolic cosecant function is denoted by csch−1 and it is
defined as y = csch−1x ⇔ x = csch y, where x ∈ R and y ∈ R− {0}
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The Inverse Hyperbolic Functions

Derivatives of the inverse hyperbolic functions

d

dx
sinh−1 x =

1√
1 + x2

,

d

dx
sinh−1 f(x) =

f ′(x)√
1 + f((x))2

.

d

dx
cosh−1 x =

1√
x2 − 1

, where x > 1

d

dx
cosh−1 f(x) =

f ′(x)√
(f(x))2 − 1

, where |f(x)| > 1

d

dx
tanh−1 x =

1

1− x2
, where |x| > 1

d

dx
tanh−1 f(x) =

f ′(x)

1− (f(x))2
, where|f(x)| > 1
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The Inverse Hyperbolic Functions

Derivatives of the inverse hyperbolic functions

1
d

dx
coth−1x =

−1

1− x2
where |x| > 1

2
d

dx
coth−1f(x) =

−f ′(x)

1− (f(x))2
where |f(x)| > 1

3
d

dx
sech−1x =

−1

x
√
1− x2

where 0 < x < 1

4
d

dx
sech−1f(x) =

−f ′(x)

f(x)
√
1− (f(x))2

where 0 < f(x) < 1

5
d

dx
csch−1x =

−1

|x|
√
1 + x2

, where x ̸= 0

6
d

dx
csch−1f(x) =

−f ′(x)

|f(x)|
√

1 + (f(x))2
, where f(x) ̸= 0

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 69 / 113



The Inverse Hyperbolic Functions

Examples

1 Find f ′(x) if f(x) = tanh−1 3x?

f ′(x) =
3

1− (3x)2
=

3

1− 9x2

2 Find f ′(x) if f(x) = sinh−1√x?

f ′(x) =

1
2
√
x√

1 + (
√
x)2

=
1

2
√
x
√
1 + x

3 Find f ′(x) if f(x) = sech−1(cos 2x)?

f ′(x) =
−(−2 sin 2x)

cos 2x
√
1− (cos 2x)2

=
2 sin 2x

cos 2x
√
1− cos2 2x
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The Inverse Hyperbolic Functions

Integration of the inverse hyperbolic functions∫
1√

a2 + x2
dx = sinh−1(

x

a
) + c∫

f ′(x)√
a2 + (f(x))2

dx = sinh−1(
f(x)

a
) + c∫

1√
x2 − a2

dx = cosh−1(
x

a
) + c, (x > a)∫

f ′(x)√
(f(x))2 − a2

dx = cosh−1(
f(x)

a
) + c, (f(x) > a)∫

1

a2 − x2
dx =

1

a
tanh−1(

x

a
) + c(|x| < a)∫

f ′(x)

a2 − (f(x))2
dx =

1

a
tanh−1(

f(x)

a
) + c, (|f(x)| < a)
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The Inverse Hyperbolic Functions

Integration of the inverse hyperbolic functions∫
1

x
√
a2 − x2

dx = −1

a
sech−1(

x

a
) + c, (0 < x < a)∫

f ′(x)

f(x)
√
a2 − (f(x))2

dx = −1

a
sech−1(

f(x)

a
) + c,

(0 < f(x) < a)∫
1

x
√
x2 + a2

dx = −1

a
csch−1(

x

a
) + c, (x ̸= 0)∫

f ′(x)

x
√
(f(x))2 + a2

dx = −1

a
csch−1(

f(x)

a
) + c, (f(x) ̸= 0)
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The Inverse Hyperbolic Functions

Examples

1

∫
ex

1− e2x
dx =

∫
ex

(1)2 − (ex)2
dx = tanh−1(ex) + c

2

∫
1

√
x
√
4 + x

dx = 2

∫ 1
2
√
x√

(2)2 + (
√
x)2

dx

= 2 sinh−1(

√
x

2
) + c

3

∫
1√

1 + e2x
dx =

∫
ex

ex
√
1 + e2x

dx = −csch−1(ex) + c
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Method of Partial fractions

Definition: linear factor

A linear factor is a polynomial of degree 1. It has the form ax+ b where
a, b ∈ R and a ̸= 0.
Such x, 3x, and 2x− 7

Definition: irreducible quadratic

An irreducible quadratic is a polynomial of degree 2. It has the form
ax2 + bx+ c, where a, b, c ∈ R and b2 − 4ac < 0.
Such x2 + 9 and x2 + x+ 1.
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Method of Partial fractions

What is the Partial Fraction?

It is re-expressing a rational function (a ratio of polynomial function ) as a
sum of simpler fraction.

Let h(x) = P (x)
Q(x) =

a0x
n + a1x

n−1 + · · ·+ a− n− 1x+ an
boxm + b1xm−1 + · · ·+ bm−1x+ bm

be a rational

function, where P (x), Q(x) are polynomials, we have two cases:

1 degree P (x) < degree Q(x) use method of partial fractions.

2 degree P (x) ≥ degree Q(x) use long division of polynomials, then use
method of partial fractions.
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Method of Partial fractions

How do we create partial functions?

1 If we can write Q(x) as a linear factors
box

m + b1x
m−1 + · · ·+ bm−1x+ bm = (x− a)m, a ∈ R, m ∈ N

Then: h(x) =
A0

(x− a)m
+

A1

(x− a)m−1
+ · · ·+ Am−1

x− a
,m ∈ N

2 If we can write Q(x) as a irreducible quadratic factors
box

m + b1x
m−1 + · · ·+ bm−1x+ bm = (ax2 + bx+ c)n, a, b, c ∈ N

and b2 − 4ac < 0
Then:

h(x) =
B0x+ C0

(ax2 + bx+ c)n
+

B1x+ C1

(ax2 + bx+ c)n−1
+ · · ·+ Bn−1x+ Cn−1

ax2 + bx+ c
.
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Method of Partial fractions

Some time we can write Q(x) as a product of linear factors and irreducible
quadratics.
Then

h(x) =
A0

(x− a)m
+

A1

(x− a)m−1
+ · · ·+ Am−1

x− a

+
B0x+ C0

(ax2 + bx+ c)n
+

B1x+ C1

(ax2 + bx+ c)n−1
+ · · ·+ Bn−1x+ Cn−1

ax2 + bx+ c
.
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Method of Partial fractions (Examples)

Determine the partial fraction for:
x− 3

x2 − 4
x− 3

(x− 2)(x+ 2)
=

A

x− 2
+

B

x+ 2
⇒ x− 3 = A(x+ 2) +B(x− 2)

x = −2 ⇒ −5 = −4B ⇒ B = 5
4

x = 2 ⇒ −1 = 4A ⇒ A = −1
4

So:
x− 3

(x− 2)(x+ 2)
=

−1

4(x− 2)
+

5

4(x+ 2)
Now Integrate:

Determine

∫
x− 3

x2 − 4
dx∫

x− 3

x2 − 4
dx =

∫ [
−1

4(x− 2)
+

5

4(x+ 2)

]
dx

= −−1

4
ln
∣∣∣x− 2

∣∣∣+ 5

4
ln
∣∣∣x+ 2

∣∣∣+ c
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Method of Partial fractions (Examples)

Determine

∫
x− 3

x2 + 4x
dx

Note that degree P (x) < degree Q(x)
x− 3

x2 + 4x
=

x− 3

x(x+ 4)
=

A

x
+

B

x+ 4
⇒ x− 3 = A(x+ 4) +Bx

x = −4 ⇒ −7 = −4B ⇒ B = 7
4

x = 0 ⇒ −3 = 4A ⇒ A = −3
4
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Method of Partial fractions (Examples)

Now we can write:

x− 3

x2 − 4x
=

−3

4x
+

7

4(x+ 4)
.∫

x− 3

x2 − 4x
dx =

∫
−3

4x
dx+

∫
7

4(x+ 4)
dx

= −3

4
ln |x|+ 7

4
ln |x+ 4|+ C

=
ln |x+ 4|

7
4

ln |x|
3
4

+ C
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Method of Partial fractions (Examples)

Determine

∫
x2 − 2

x3 + 3x2 + 2x
dx

Note that degree P (x) < degree Q(x)
x2 − 2

x3 + 3x2 + 2x
=

x2 − 2

x(x+ 2)(x+ 1)
=

A

x
+

B

x+ 2
+

C

x+ 1
⇒ x2 − 2 = A(x+ 2)(x+ 1) +Bx(x+ 1) + Cx(x+ 2)
x = 0 ⇒ −2 = 2A ⇒ A = −1
x = −2 ⇒ 2 = 2B ⇒ b = 1
x = −1 ⇒ −1 = −C ⇒ c = 1
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Method of Partial fractions (Examples)

Now we can write:

x2 − 2

x3 + 3x2 + 2x
=

−1

x
+

1

x+ 2
+

1

x+ 1
.∫

x2 − 2

x3 + 3x2 + 2x
dx =

∫
−1

x
dx+

∫
1

x+ 2
dx+

∫
1

x+ 1

= − ln |x|+ ln |x+ 2|+ ln |x+ 1|+ c
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Method of Partial fractions (Examples)

Determine

∫
x3 − 2x2 + x+ 1

x4 + 5x2 + 4
dx

Note that degree P (x) < degree Q(x).
We can write: x4 + 5x2 + 4 = (x2 + 4)(x2 + 1)

x3 − 2x2 + x+ 1

x4 + 5x2 + 4
=

Ax+ b

x2 + 4
+

Cx+D

x2 + 1

⇒ x3 − 2x2 + x+ 1 = (Ax+B)(x2 + 1) + (Cx+D)(x2 + 4)
= (A+ C)x3 + (B +D)x2 + (A+ 4C)x+ (B + 4D)

A = 1, B = −3, C = 0, D = 1
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Method of Partial fractions (Examples)

Now we can write:

x3 − 2x2 + x+ 1

x4 + 5x2 + 4
=

x− 3

x2 + 4
+

1

x2 + 1∫
x3 − 2x2 + x+ 1

x4 + 5x2 + 4
dx =

∫
[
x− 3

x2 + 4
+

1

x2 + 1
]dx

=
1

2
ln |x2 + 4| − 3

2
tan−1 x

2
+ tan−1 x+ c
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Method of Partial fractions (Examples)

Determine

∫
x2 + 3

x2 − x− 2
dx

Note that degree P (x) ≥ degree Q(x)
Here Divide First

x2 + 3

x2 − x− 2
= 1 +

x+ 5

x2 − x− 2
x+ 5

x2 − x− 2
=

x+ 5

(x− 2)(x+ 1)
=

A

x− 2
+

B

x+ 1
⇒

x+ 5 = A(x+ 1) +B(x− 2)x = 2 ⇒ 7 = 3A ⇒ A = 7
3

x = −1 ⇒ 4 = −3B ⇒ B = −4
3
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Method of Partial fractions (Examples)

Now we can write:

x2 + 3

x2 − x− 2
= 1 +

7

3(x− 2)
− 4

3(x+ 1)∫
x2 + 3

x2 − x− 2
dx =

∫ [
1 +

7

3(x− 2)
− 4

3(x+ 1)

]
dx

= x+
7

3
ln
∣∣∣x− 2

∣∣∣− 4

3
ln
∣∣∣x+ 1

∣∣∣+ c
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Method of Partial fractions (Examples)

Determine I =

∫
x4 + 1

(x+ 1)(x2 + x+ 1)
dx

Note that degree P (x) ≥ degree Q(x)
x4 + 1

(x+ 1)(x2 + x+ 1)
= (x− 2) +

2x2 + 3x+ 3

(x+ 1)(x2 + x+ 1)

I =

∫
(x− 2) dx︸ ︷︷ ︸

I1

+

∫
2x2 + 3x+ 3

(x+ 1)(x2 + x+ 1)
dx︸ ︷︷ ︸

I2
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Method of Partial fractions (Examples)

Now for I2 we have de to applied method of partial fraction
2x2 + 3x+ 3

(x+ 1)(x2 + x+ 1)
=

A

x+ 1
+

Bx+ C

x2 + x+ 1
,

⇒ 2x2 + 3x+ 3 = A(x2 + x+ 1) + (Bx+ C)(x+ 1)
= Ax2 +Ax+A+Bx2 +Bx+ Cx+ C
= (A+B)x2 + (A+B + C)x+ (A+ C)

A+B = 2
A+B + C = 3
A+ C = 3
So: A = 2, B = 0, and C = 1.
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Method of Partial fractions (Examples)

Now we can write:

2x2 + 3x+ 3

(x+ 1)(x2 + x+ 1)
=

2

x+ 1
+

1

x2 + x+ 1

I = I1 + I2 =

∫
(x− 2) dx+

∫
2x2 + 3x+ 3

(x+ 1)(x2 + x+ 1)
dx

=

∫
(x− 2) dx︸ ︷︷ ︸

I1

+

∫
2

x+ 1
dx︸ ︷︷ ︸

J1

+

∫
1

x2 + x+ 1
dx︸ ︷︷ ︸

J2︸ ︷︷ ︸
I2
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Method of Partial fractions (Examples)

J2 =

∫
1

x2 + x+ 1
dx =

∫
1

x2 + x+ 1
4 + 3

4

dx

=

∫
1

(x+ 1
2)

2 + 3
4

dx =
2√
3
tan−1(

2x+ 1√
3

) + c

So,∫
x4 + 1

(x+ 1)(x2 + x+ 1)
dx = I1 + J1 + J2︸ ︷︷ ︸

I2

= x2 − 2x︸ ︷︷ ︸
I1

+2 ln |x+ 1|︸ ︷︷ ︸
J1

+
2√
3
tan−1(

2x+ 1√
3

)︸ ︷︷ ︸
J2

+c
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Method of Partial fractions (Examples)

Exercises

1

∫
6x+ 7

(x+ 2)2
dx

2

∫
−2x+ 4

(x2 + 1)(x− 1)2
dx

3

∫
x

x2 + 2x− 3
dx

4

∫
x2

(x− 1)2(x+ 1)
dx

5

∫
x3 − 5x+ 7

x2 + x− 6
dx

6

∫
x3 − 11x− 26

x2 − 2x− 8
dx

7

∫
1

x(x2 + 1)2
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Half-Angle Substitution

It is used to solve integrals of rational functions involving sinx or cosx

Example∫
1

2 + cosx
dx, and

∫
1

1− sinx
dx

Question

How to solve an integral using half angle trigonometric substitution?
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Half-Angle Substitution

To solve this type of integral we have to concentrate on:

1 u = tan
x

2

2 sinx = 2 cos
x

2
sin

x

2
=

2 tan x
2

sec2 x
2

=
2 tan x

2

1 + tan2 x
2

=
2u

1 + u2

3 cosx = 2 cos2
x

2
− 1 =

2

1 + tan2 x
2

− 1 =
1− tan2 x

2

1 + tan2 x
2

=
1− u2

1 + u2

4
du

dx
=

1

2
sec2

x

2
=

1

2
(tan2

x

2
+ 1) =

1

2
(u2 + 1) ⇒

dx =
2

(u2 + 1)
du
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Half-Angle Substitution

Examples

Evaluate

∫
1

2 + cosx
dx and

∫
1

1− sinx
dx

to solve

∫
1

2 + cosx
dx

we put u = tan
x

2
So cosx =

1− u2

1 + u2
, and dx =

2

(u2 + 1)
du∫

1

2 + cosx
dx =

∫
2

(2 + 1−u2

1+u2 )(u2 + 1)
du =

∫
2

u2 + 3
du

=
2√
3
tan−1

(
u√
3

)
+ c =

2√
3
tan−1

(
tan x

2√
3

)
+ c
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Half-Angle Substitution

To solve

∫
1

1− sinx
dx

We put u = tan
x

2
, sinx =

2u

1 + u2
and dx =

2

(u2 + 1)
du∫

1

1− sinx
dx =

∫
2

1− 2u
1+u2 (1 + u2)

du

= − 2

(u− 1)
+ c =

−2

tanx
2 − 1

+ c
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Half-Angle Substitution

Example

How we can integrate using tangent half angle substitution.∫
1

3− 5 sinx
dx

We put u = tan
x

2
, sinx =

2u

u2 + 1
and dx =

2

u2 + 1
Hence, the given integral becomes:∫

1

3− 5 sinx
dx =

∫ 2
u2+1

3− 5( 2u
u2+1

)
du =

∫
2

3u2 − 10u+ 3
du

Now, we need to do partial fraction decomposition.
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Half-Angle Substitution

2

3u2 − 10u+ 3
=

2

(u− 3)(3u− 1)
=

A

u− 3
+

B

3u− 1

2 = A(3u− 1) +B(u− 3) ⇒ 2 = (3A+B)u−A− 3B

3A+B = 0
−A− 3B = 2

A =
1

4
, and B = −3

4
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Half-Angle Substitution

∫
1

3− 5 sinx
dx =

∫
2

3u2 − 10u+ 3
du

=

∫
1

4(u− 3)
du−

∫
3

4(3u− 1)
du

=
1

4
ln |u− 3| − 3

4

1

3
ln |3u− 1|+ c∫

1

3− 5 sinx
dx =

1

4
ln | tan−1 x

2
− 3| − 1

4
ln |3 tan−1 x

2
− 1|+ c
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Half-Angle Substitution
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Improper Integrals

Definition

1 If f is continuous on [a, b) and
∣∣f(x)∣∣→ ∞ as x → b− then

b∫
a

f(x) dx = lim
t→b−

t∫
a

f(x) dx

2 If f is continuous on (a, b] and |f(x)| → ∞ as x → a+ then
b∫

a

f(x) dx = lim
t→a+

b∫
t

f(x) dx

If the limit exists (and equals a value L) then the improper integral
converges (to L).
If the limit does not exist then the improper integral diverges.
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Improper Integrals

Rmark

If f is continuous on [a, b] except at a point c ∈ (a, b) and |f(x)| → ∞ as
x → c then
b∫

a

f(x) dx = lim
t→c−

t∫
a

f(x) dx+ lim
t→c+

b∫
t

f(x) dx

If both limits exist (and equals L1 and L2 respectively) then the improper
integral converges (to L1 + L2).
If at least one of the limits does not exist then the improper integral
diverges.
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Improper Integrals

Definition
1 If f is continuous on [a,∞) then

∞∫
a

f(x) dx = lim
t→∞

t∫
a

f(x) dx

2 If f is continuous on (−∞, a then
a∫

−∞

f(x) dx = lim
t→−∞

a∫
t

f(x) dx

if the limit exists (and equals a value L) then the improper integral
converges (to L).
If the limit does not exist then the improper integral diverges.
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Improper Integrals

Rmark

If f is continuous on (−∞,∞) then for any constant a
∞∫

−∞

f(x) dx = lim
t→−∞

a∫
t

f(x) dx+ lim
t→∞

t∫
a

f(x) dx

If both limits exist (and equals L1 and L2 respectively) then the improper
integral converges (to L1 + L2).
If at least one of the limits does not exist then the improper integral
diverges.
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Improper Integrals: Examples

Example

1

∞∫
1

x−2 dx is an improper integral.

Some such integrals can sometimes be computed by replacing infinite
limits with finite values
∞∫
1

x−2 dx = lim
y→∞

y∫
1

x−2 dx = lim
y→∞

[
− 1

x

]y
1
= lim

y→∞

(
− 1

y
+ 1
)

= 1

2

∞∫
1

1

x
dx = lim

c→∞

c∫
1

1

x
dx = lim

c→∞

[
ln |x|

]c
1

= lim
c→∞

(
ln |c| − ln |1|

)
= ∞
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Improper Integrals: Examples

Example

Evaluate :

∞∫
−∞

1

1 +X2
dx

First, we split the integral in two.
∞∫

−∞

1

1 +X2
dx =

0∫
−∞

1

1 +X2
dx+

∞∫
0

1

1 +X2
dx
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Improper Integrals: Examples

Second, we turn each part into a limit.

∞∫
−∞

1

1 +X2
dx = lim

c→−∞

0∫
c

1

1 +X2
dx+ lim

c→∞

c∫
0

1

1 +X2
dx

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 109 / 113



Improper Integrals: Examples

Finally, we evaluate each part and add up the results.
∞∫

−∞

1

1 +X2
dx = lim

c→−∞

[
tan−1 x

]0
c
+ lim

c→∞

[
tan−1 x

]c
0

= lim
c→−∞

[
tan−1 0− tan−1 c

]
+ lim

c→∞

[
tan−1 c− tan−1 0

]
=
(
0− (−π

2 )
)
+
(
π
2 − 0

)
= π
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Improper Integrals: Examples

Example

Evaluate

∞∫
1

1

xp
dx, where p is a real number.

We have to consider every possible value of p.
First, for p = 1
∞∫
1

1

x
dx = lim

t→∞

t∫
1

1

x
dx = lim

t→∞

[
lnx
]t
1
= lim

b→∞
ln
∣∣t∣∣ = ∞

so the integral diverges when p = 1.
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Improper Integrals: Examples

Now, for p ̸= 1, the power rule applies:
∞∫
1

1

xp
dx = lim

t→∞

t∫
1

1

xp
dx = lim

t→∞

[ 1

1− p
x1−p

]t
1

= lim
t→∞

(
1

1− p
t1−p − 1

1− p

)
=

1

1− p

This means that for p ≤ 1, the integral diverges, and for p > 1, it

converges and equals
−1

1− p
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Improper Integrals: Examples

Example

Evaluate

∞∫
−∞

dx

x2 + 16
dx

∞∫
−∞

dx

x2 + 16
dx = lim

a→−∞

0∫
a

dx

x2 + 16
dx+ lim

b→∞

b∫
0

dx

x2 + 16
dx

= lim
a→−∞

(
0− 1

4
tan−1a

4

)
+ lim

b→∞

(
1

4
tan−1 b

4
− 0

)

=
1

4

π

2
+

1

4

π

2
=

π

4
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