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Substitution Method (changing variable method)

Theorem (Substitution)

If F'is an antiderivative of f , then f(g(z))¢’(x) has antiderivative
F(g(x)). Or,

[ Ho@g@)ds = Flg(o) +c
This is obvious. It is called "substitution” since it can be obtained by

substituting v = g(z) and du = ¢'(z)dx into /f(u)du = F(u) +c¢
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Substitution Method (changing variable method)

Solve /(4x + 1)%dz.

1
Put w = 4x + 1 then du = 4dx hence Zdu =dx

1 1 13
14z +1)°

1 3 +C
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. n+1 2 1 n+1
o /(m2 + 1)"2zdx =i /u”du = ::—l— 1= (@ n++)1 +c.

= 1 1
Q /sin(2x+3)dw “ 2:‘T+3§/sinudu:—§cosu—l—c:

1
=5 cos(2z + 3) +c.

1 e 1 1 1
(3] /Wdaz = ﬂ/cosQ(u)du_ 71_tf:m(7ruv)—|—c.
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/ (20x + 30)(2* + 3z — 5)? dx

10(2x + 3) (2% 4 3z — 5)% dx

I
—

10(2® + 3z — 5)° (22 + 3) da
———r —oo

@ du

10u? du

= ul® + C (replace u with 2 + 32 — 5)
= @2 +3z-5)0+C
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Substitution Method (changing variable method)

Theorem (Substitution Rule for Definite Integrals)

If ¢’ is continuous on [a,b], and f is continuous on the range of u = g(z),
then
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Integration By Parts

It is used to solve integration of a product of two functions using the

formula:
/udvzuv—/vdu

xedr, We put, u =z dv =¢e* dx, Then du = dx v =¢"

zetdr = xe® — /e’”dw =ze —e" +c

Q@ [ zsinx dx, We put u =2z dv =sinx dx, Then,
=dr v= —coszw
™
zsinx dx = [~z cosz]j + /COS xdx = [—x cosz|j + [sinz]j

T BT Ty

(=mcosm) — (—(0) cos0)] + [(;inw —sin0] =7
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Integration By Parts: Examples

o [ze"dr=(zx—1)e"+¢c
22e® dx = (2% — 20+ 2)e® + ¢

o [ 23" dr = (2° — 322 + 62 —6)e” +c

[ ]
—— —
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Integration By Parts: Examples

zcosx dr = xsinx +cosx + ¢

z?cosz dr = (22 — 2)sinz 4+ 2z cosz + ¢

23 cosx dx = (23 — 62)sinz + (322 — 6) cosz + ¢

(]
— e — —

at cosw dr = (2 — 1222 + 24) sinx + (423 — 24x) cosz + ¢
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Integration By Parts: Examples

xsinx dr = —xcosx +sinx + ¢
z?sinz dr = (—x* 4+ 2) cosx + 2xsinz + ¢

3sing do = (=23 + 62) cosz + (32 — 6)sinz + ¢

asing de = (—x* + 1222 — 24) cosx + (423 — 24x)sinz + ¢

(]
— e — —
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Integration By Parts: Examples

Evaluate /cos(ln(x)) dx.
Letting: u = In(x), we have du = 1/z dx.

du:ldm:x-du:daj.
T

Since u = In(x), we can use inverse functions and conclude that
en(®) = et = 1 = ¢¥. therefore we have that dz = z - du = ¢* du.

/ cos(In(z)) dz — / et cos(u) du

— %e"(sin(u) + cos(u)) +C

= %eln(x) (sin(In(z)) + cos(In(z))) + C

= %:v( sin(In(z)) + cos(In(z))) + C.
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Integration By Parts: Examples

/c‘m cosx dr

U = COST dv = e* dx
dit = —sinx dr v =e®

/cm cosxdr = eTcosx + /.e“‘" sin x dx
Now to solve /r.—'z sinx dx

u =sinx dv = e® dx
dit = cosx dxr v ="

Therefore ,/e“‘" cosrdr = e” cosx + ¥ sinx — /cm cos x dx
2 [er cosrdr = e cosxr + e sinx

1 .
/cm cosxdr = 5 [efcosx +e"sinzx] + ¢ .
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Integration By Parts: Examples

In |z| dx
“u=1In || dv = dx

du=—dr v==x
-

/]n|;1'|d1'=:r111|.7:|— /:r id-.1'=:r111|:.':|— /d1'=1r1n|:r|—x+c
. , T ,
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Integration By Parts: Examples

[tan'l rdr

w=tan"'z dv = da

[ an~ rdz = rtan” T_%/lfzdl_mm I—%ln(1+1]+
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Integration By Parts: Examples

z ]
/sccﬁ;:r:d:rz /sccxsec“a’dr

U = SecT dv = sec? x dx
du =secrtanax dr v = tanx

/sccjxda'z secrtanaxr — /.seca"t-angxda'

3 SR ) 2
/&cc rdr =secxrtanr — [bec:r{aec x—1) dr
/sccjxda'zsccxtanx— [secs:rda"+ /scc:rd:r

2 [sec"' rdr =secrtanr + In | secx + tan x|

3 1
sec” rdr = 5 [recr tana + In |secx + tanx|] + ¢
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Integration By Parts: Examples

In(1 + 2?) dzx

du = 133::1.2 dr V=2
. . . . 222
AN S SR A a
l[ln{l—f—:r}dx_:thl{l+:r} -/.1+1_2d1
. : . . (222 4 2) — 2
2 — 2 nl y 2 T g
l[ln{l+:r}dx—11n(l+:r) [ 722 dx

_ _ , , 2(z? +1) 1
2 . ; 2 _ . y _—
l[ln{lﬂ"}dﬂr—ll“(l”) [ 1+ 22 d“‘)'_/w:rz‘h

[ln{l +2%)dr =xIn(1 +2%) — 2z +2tan" 'z + ¢
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Integrals Involving Trigonometric Functions

Integrals of the forms

/ sin ax cos bz dz, / sin ax sin bx dz, / cos ax cos bx dx

Where a,b € Z
© The integral /sin ax cos bx dx can be solved using the formula
sin az cos br = 3[sin(az + bz) + sin(azx — bx)]
@ The integral /sin ax sin bx dx can be solved using the formula

sin az sin bz = 3[cos(az — bz) — cos(az + bx)]

© The integral /cos ax cos bx dx can be solved using the formula
cos az cos br = 3[cos(az + bx) + cos(az — bz)|
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Integrals Involving Trigonometric Functions (Examples)

1
(1) /sin 3z cos 2z dx = 3 /[sin Sz + sinx]dx =

1 1 1 1
2/sin5a: dx+2/81n:1: dx——l—ocosf)x—icosx—kc

1
(2] /sinxsin3x dr = /cos2a:—cos4x]d

1 1
2/0082:1; dx—i

(s /COS Sx cos2x dx = B /[cos 7z + cos 3zx]|dx =

1
cosdxr dx = fsm2x — §s1n4x+c

\N)

1 1 1
2/cos?:p dl‘+/cos3w dwzzsinﬂv—i—ésin?)w—l—c
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Integrals Involving Trigonometric Functions

Integrals of the forms

/sin” rcos™ x dx, /sinh” x cosh™ z dx, Where n,m € N

The above two integrals can be solved by substitution if n or m is odd.
@ If n is odd: The substitution v = cosx can be used to solve
sin” x cos™ v dx
The substitution v = cosh 2 can be used to solve

sinh™ z cosh™ z dz

@ If m is odd: The substitution © = sin x can be used to solve
sin” z cos™ z dz
The substitution «w = sinh  can be used to solve

2 n m
sinh” x cosh™ = dx
BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 24 /113



Integrals Involving Trigonometric Functions (Examples)

©Q Evaluate I = /sin5  cost wdx
/ sin® x cos? xdx = / (sin? x)? cos* z sin zdzx
= /(1 — cos?x) cos? rsinz dx
to solve this integral put

U =cosx = —du = sinx dx

I=— (1 -u®)%itdu=— [ u* —2u5 + uBdu
w2’ n u? n cos®x  2cos’ x n cos? x

= - | — — — —_— = — - c
5 7 9 5 7 9
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Integrals Involving Trigonometric Functions (Examples)

7

@ Evaluate I = [ sin” cos® z dx

7 2

sin cos® x dx = /sin7x(1 —sin“ x) cosz dx

to solve this integral put

u=sinz = du = cosz dx

8 10
_singw sin10+
T8 10 €
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Integrals Involving Trigonometric Functions (Examples)

© [ sinh®z cosh? z dz to solve this integral put

u = coshz = du = sinhz

/ sinh® z cosh? z dz = [ (cosh®z — 1) cosh? zsinhz dx =
5 3

/(uQ—l)uzdu—/(u4—u2)du— %—%—i—c

cosh®z  cosh®z
= — + C

5 3
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Integrals Involving Trigonometric Functions (Examples)

/Vsin:r cos® zdr = /\a’sinx cos’r coszdr

= /(sin:r)% (1 —sin’z) coszdx

Put v =sinz = du = cosz dx
. 3 L ) 1 <)
veinr cos"zdr = [ uI(l—u’) du= u? —uT) du

2u?  uT N 2 [sin:r}% Q(Sillﬂ_")% N
= = —_ i
3 7 3 7
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Integrals Involving Trigonometric Functions (Examples)

3
sin” 2 5 . , .
dr= [sin“z cos "z sinzdr = (J — cos? :r) cos "1 sinzdr
Cos? 1 , .

Putu =cosz = —du=sinz dr

3
[hll‘lgl‘ dr = - [fl - -u2) du=- /(”_2 1) du
J costn J : |

-1 [
U 1
:——1-|-u-|-r——-|-u+n—sec1 +cosT+e
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Integrals Involving Trigonometric Functions (Examples)

/sin‘ T cos® rdr = /sin' r cos®r coszdr

= /sin?x (1 —sin® x) coszdz
Put w =sinx = du = cosx dx
- T o T 2 T
/sm’ x cos® xdr = /u' (1 —u?) du= /(u" —u?) du

T i e sin®x  sin'®x Y
] 10 T 8 10 )
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Integrals Involving Trigonometric Functions

Special cases :

1 1
o /sian d:czﬁ/[l—cos%:] d:c:§[x—

1 1
o /coszx dxzi/[l—i-cos%n] de = [z +

2

BEN AMIRA Aymen (King Saud University)
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Integrals Involving Trigonometric Functions

Third form
Integrals of the forms

/sec”a:tanma: dx, /csc”:v cot™ z dz,
/sech"a: tanh™ z dz, /csch"aj coth™ z dx

The above four integrals can be solved by substitution if n is even or m is
odd.
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Integrals Involving Trigonometric Functions

Q@ If nis even:
The substitution © = tanx can be used to solve /sec”xtanm$ dz.

The substitution © = cot z, u = tanhx and u = coth x can be used
to solve the other three integrals respectively.

Q If m is odd:
The substitution © = secx can be used to solve /sec”mtanm$ dz.

The substitutions u = csc x,u = sech x and u = csch x can be used
to solve the other theree integrals respictively.
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Integrals Involving Trigonometric Functions (Examples)

@ Evaluate J = [ tan® zsec® z dx
to solve this integral put: w =secx = du = secxtanx dx

I= /tan3 zsecd x dr = [ (sec? z — 1) sec? zsecztanx dx

:(u2—1)u2 du:/u4—u2 du

5 3

. u u

“5 3¢
. Sec5 X sec3 s
R
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Integrals Involving Trigonometric Functions (Examples)

Q@ Evaluate I = [ tanh®z sech = dx
to solve this integral put: u = sech x = —du = sech xz tanhx dx
I= /tanh?’:v sech x dr = /(1 — sech®z)sech x tanh x dx

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Integrals Involving Trigonometric Functions (Examples)

/ esctr cot*rdr

= /cscz x cot*r esc?rdr = /{l +cot?z)cot*r esc? xdr

Put u = cotx = —du = csc x dx

/csc“l r cotrdr = — / (1 +u?)u* du=— /{u“l +u®) du

ud ol cot®r  cotTa
=—— - —=+c=—— — =
fal [} fal i
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Integrals Involving Trigonometric Functions (Examples)

sect

J ytanrx

. _1 o 1
/sech (tanx) "% sec’xdr = /(l+tan2:r} (tanz) 7 sec®zdx

dr

Put u = tanz = du = sec? ¢ dr
sect

\/t—TdI = /(l—l—ug]u_% du = /(-u_% —H’ﬁ) du
, an ) ,

2(tanz)? e

Quz :
= u? + % +c=2(tanz)? +
0

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Table of contents

@ Trigonometric Substitutions

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 38/113



Trigonometric Substitutions

If the integrand contains a term of the form
Va?z — z2,v/a? + 22 or Vo2 — a2 where a > 0,
then trigonometric substitutions can be used to solve the integral.

@ An integral involving v/a? — 22 use the substitution z = a sin 6 where
—5 < 0 < 7 to solve the integral.

@ An integral involving v/a? + 22 use the substitution = = a tan 6 where
—5 < 0 < 3 to solve the integral.

© An integral involving v/ 22 — a? use the substitution = = asec where
0<0< % to solve the integral.

39/113
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Trigonometric Substitutions (examples)

1
Solve the following integral: /da:
& & 224/16 — 2

1 1
S S [ —
22y/16 — 22 ! x2\/(4)% — x? !

Put z =4sinf = dx = 4 cos 6do
4 cos 6 4

I:/ do

16sin® 01/16 — 16sin 0

B / 4 cos @ 40 9

N 16 sinl2 0 4 cos 91 V16 - x2
2

1
—ﬁcotH—i—c

/ 1 1 V16 — 22
— dr=——"""+¢
22v/16 — 2 16 x
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Trigonometric Substitutions (examples)

Solve the following integral:

1
5 dx
[22 + 8z + 25]2

1
I:/ - dx.
[(x+4)2 + 322
Put 2 +4 = 3tanf = dz = 3sec26 db V@ +47+9

1 3sec? T
dx—/ df
/[x2+8x+25]3 (9tan26 + 9)2 ‘
/ 3sec? dH—/ 3sec29d0
(9sec20)3 J 2Tsec?d

1 1 .
/sec@da_ §s1n6’+c

Rello

1 1 x+4
/ + dt = - ————=+¢
[22 + 8z + 25]2 9 Va2 + 8z + 25
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Trigonometric Substitutions (examples)

2 —4

Solve the following integral: 5
z
Put z = 2secl = dx = 2secOtan6 db
/ Va2 —4
=
T
Vasec20 —4 2se09tan0d9
4sec? 0
_/(2tan0)(2sec€tan«9)d9
N 4sec?d

2 29 _
:/tan9d0:/secﬁ 1d0
sec29 sec 6
sec” 0 1
= df — df
/sec9 /secﬁ

:/secﬁdﬁ—/cosﬂd@
=In|secf + tanf| —sinf + ¢

dx
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Inverse Trigonometeric

Definition (Inverse if sine)

The inverse sine function is denoted by sin ' and it is defined as
y =sin"!'z < x = siny, where z € [—1 ]andye[ L g
The domain of the inverse sine function is [—1, 1]

The range of the inverse sine function is [—7, g]

sin”'x

Graph of sin~ '«
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Inverse Trigonometeric

Definition (Inverse of cosine)

The inverse cosine function is denoted by cos™! and it is defined as
y=cos 2 < 2 =cosy, where z € [-1,1] and y € [0, 7]

The domain of the inverse cosine function is [—1, 1]

The range of the inverse cosine function is [0, 7].

D
Graph of cos™ 'z
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Inverse Trigonometeric

Definition (Inverse of Tangent)

The inverse tangent function is denoted by tan~—! and it is defined as
y=tan 'z < z=tany, wherex € Rand y € (-3, %)

The domain of the inverse tangent function is R

The range of the inverse tangent function is (-3, 5).

Graph of tan—! z
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Inverse Trigonometeric

Definition (Inverse of cotangent)

The inverse cotangent function is denoted by cot~! and it is defined as
cot ™z = &= tan~! z, where z € R

The domain of the inverse cotangent function is R

The range of the inverse cotangent function is (0, ).

z z
4 2

~g
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Inverse Trigonometeric

Definition (Inverse secant)

The inverse secant function is denoted by sec™! and it is defined as
y=sec 'z ez =secy, wherey €[0,%) if x> 1, and y € [, 3T) if
< —1

The domain of the inverse secant function is (—oo, —1] U [1, 00)

The range of the inverse secant function is [0, §) U (5, 7].
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Inverse Trigonometeric

Definition (Inverse cosecant)

The inverse cosecant function is denoted by csc™! and it is defined as
cscta =7 — sec '@, where |z] > 1
The domain of the inverse cosecant function is (—oo, —1] U [1, 00)

The range of the inverse cosecant function is [-7,0) U (0, 5.

,.

]

"
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Inverse Trigonometeric

Derivatives of the inverse trigonometric functions

d 1
Q@ ——sinlz=——0 where|z] <1
dx 1— 22
2] acos_lx = ﬁ where |z| < 1
1
—tan lp = ——
= e
— cot ™l =
& dz 0 T 1122
1
—1 _
o g5 T = g where |z| > 1
d —1
Q@ —csc e = ——— where |z| > 1
dx zvz? —1
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Inverse Trigonometeric

Integration of the inverse trigonometric functions
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Inverse Trigonometeric

2 1 322 @
Here a = v/5, f(z) = 23 and f'(z) = 322.

3x 3 T 3
° /\/md‘””‘i/ T 2

3z _i 23 _ 300 —27)>2
e/ﬁd$_—2/(9 %) "2 (—2x)dx = 5 I +c

dr =sin"!(lnz) +c

1 _ ()
° /x\/l — / V1?2 — (ma)?
1 1 V3 IR
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Inverse Trigonometeric

6233 1 26250 1 62$
e/e4m+16x 2/42+(22w)2m 2xd N (4)+C

1 e 1 e®
(7] /—dw = dr = = sec™! (—) + c.
Ve2r — 36 e®y/(e*)? — (6)2 6 6

Exercises

Solve the foIIowing integrals :
o / T +sin™
V1-— :U2

e/x—l—l
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Hyperbolic Functions

Definition (The hyperbolic sine function)

It is denoted by sinh z and it is defined as sinhz = 81_26_35

@ The domain of sinh z is R and the range of sinh x is R.
@ It is an odd function and sinh(0) =0
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Hyperbolic Functions

Definition (The hyperbolic cosine function)

It is denoted by cosh z and it is defined as coshz = —8”'26%

Notes
© The domain of coshz is R and the range of coshz is [1, o0].

@ It is an even function and cosh(0) =1
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Hyperbolic Functions

© The hyperbolic tangent function is denoted by tanh z and it is

sinh z et —e

defined as tanhz = = for every x € R
coshz e*+e*

@ The hyperbolic cotangent function is denoted by coth z and it is

. h X x
defined as cothz = @ = © Te for every x € R — {0}
sinhx e* —e™?

© The hyperbolic secant function is denoted by sech x and it is defined
1

as sech x = = for every x € R
coshz e —e™®

@ The hyperbolic cosecant function is denoted by csch x and it is

. 1 2
defined as csch x = e p— for every x € R — {0}
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Hyperbolic Functions

@ cosh? x — sinh?® z =1 for every z € R

Q 1 — tanh® x = sech® x for every x € R
© coth? x — 1 = csch? x for every x € R — {0}
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Hyperbolic Functions

Derivatives of the hyperbolic functions

d
@ —sinhz = coshz,
dx

@ — coshz =sinhz,
dx

Q@ —tanh x = sech® z
dx
d

Q@ —cothx = —csch® z
dx

@ —sech x = —sech x tanh x
dx

Q@ —csch x = —csch x coth ©
dx
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Hyperbolic Functions

Derivatives of the hyperbolic functions

© - sinh(f(x)) = cosh(f(x)) /(@)

© - cosh(f(x)) = sinh(f(2)f'(v)

© tanh (f(x)) = sech? (f(2))f'(+)

O coth (f(w)) = ~csch? (f(z)f'(2)

@ sech ((x) = —sech (f(x)) tanh (f(@))'(@)
© csch (f(w) = —esch (f()) coth (J(2)f' (@)
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Hyperbolic Functions

Q Find the value of f(0) if f(x) = In[cosh(3x)].
f(0) = In[cosh(0)] =In(1) = 0.
@ Find the value of f/(0) if f(z) = In|1 + sinh(z)|.

1oy - cosh(z) ;i cosh(0) 1
f(x)_Hsi—nh(x)_)f(O)_ T+ sinh(0) 140
© Find f/(:L’).if f(:c) _ GSinh(x).
f(x) = 5™ @ cosh(z).
Q Find f'(z) if f(z) = tan™"(sinh(x)).
fl(z) = cosh(a) = cosh(z) = L = sech(x).

1+ (sinh(z))2  (cosh(x))?  cosh(x)
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Hyperbolic Functions

Integration of the hyperbolic functions

(1) /sinhx dx = cosh x + c,
(2] /smh (x)dx = cosh(f(z)) + ¢
Q /cosh:v dx = sinh z + ¢,
(4] /cosh (z)dx = sinh(f(z)) + ¢
(5] /secth dr =tanhz + ¢

o /sech2 (x)dz = tanh(f(x)) + ¢
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Hyperbolic Functions

Integration of the hyperbolic functions

Q /csch2:c dr = —cothz + ¢

Q /cschz(f(x))f'(x)dx = —coth(f(z)) + ¢
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Hyperbolic Functions

1 1
o /acz coshz® dx = 3 /coshac3 (322)dx = gsinhac3 +c

Q /(em — e ®)sech?(e® + e *)dx = tanh(e” + e %) + ¢

sinh x sinh z 1 sinhz
——do = | ———dz = d
e / 1+ sinh?z . / cosh? z v / cosh z cosh z v

= /sech ztanhx dx = —sech x + ¢

o / 1 / coshx
sech xv/4 — sinh® z V/(2)? — (sinh z)?

inh
= sin_l(sm2 a:) +c
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The Inverse Hyperbolic Functions

The inverse hyperbolic sine function is denoted by sinh™! and it is defined
asy =sinh 'z < 2 = sinhy, where z € R and y € R

The inverse hyperbolic cosine function is denoted by cosh™! and it is
defined as y = cosh™! 2 < x = coshy, where z € [1,00) and y € [0, c0)

Definition
The inverse hyperbolic tangent function is denoted by tanh~! and it is
defined as y = tanh ™! 2 < z = tanhy, where z € [-1,1] and y € R
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The Inverse Hyperbolic Functions

The inverse hyperbolic cotangent function is denoted by coth™! and it is
defined as y = coth™' z < x = cothy, where |z| > 1 and y € R.

The inverse hyperbolic secant function is denoted by sech™' and it is
defined as y = sech™'x < = = sech y, where x € [0,1] and y € [0, 00)

Definition

The inverse hyperbolic cosecant function is denoted by csch™! and it is
defined as y = csch™ 'z < = = csch y, where x € R and y € R — {0}
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The Inverse Hyperbolic Functions

Derivatives of the inverse hyperbolic functions

SRl T P
dx V1+2?
° % sinh™! f(z) = \/%
° %cosh_lﬁ = ﬁ where z > 1
- % cosh~! f(z) = # v [ = 0
° %tamh’lx = ﬁ where |z| > 1
° %tanh_l f(z) = % where|f(z)| > 1
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The Inverse Hyperbolic Functions

Derivatives of the inverse hyperbolic functions

d _
o %coth_lxz 1

where |z| > 1

— 2
(2] %coth_lf(x) = % where |f(z)] > 1
(s} %sech_laz = :E\/l_—i—xQ where 0 < z < 1
o %sech‘lf(:v) = _1fl_(”z)f(x))2 where 0 < f(z) < 1
) %csch_lw - W% wiee =0

—f'(z)

d 1 B
o Ecsch flz) = , where f(z) # 0

[f (@) V1 + (f(2))?
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The Inverse Hyperbolic Functions

O Find f'(z) if f(x) = tanh~! 327
3

flla) = =2 —
V1I+ (/)2 2v/zV14x
@ Find f/(x) if f(z) = sech™!(cos 2z)?

(
() —(—2sin2z) 2sin 2z
xXr) = =
cos2z4/1 — (cos2x)?  cos2xV1 — cos? 2z

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 70/113



The Inverse Hyperbolic Functions

Integration of the inverse hyperbolic functions

° /ﬁdm = sinh_l(g) +c

° %dm = sinh_l(@) +c

° /ﬁdm = cosh_l(g) +c¢, (x> a)
f'(z)

dx = cosh_l(@) +¢, (f(z) >a)

* I VTor-a

1 1 _1,%
o /mdfﬂ— atanh (a)+C(|$| <a)

° /%dw — 2tanh1(%x)) +c (|f(z)] <a)
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The Inverse Hyperbolic Functions

Integration of the inverse hyperbolic functions

° /x\/ﬁdm’z—%sech_l(g)—i—c, (0<z<a)
1 . f(®)
de = —=sech ™ (m—22) + ¢,
| Ty e
0<f ) )
° /mdm’z—%csch {4 ¢ (x#0)
f’() 1 f(@)
e =—geseh (E ) b, (1) £0
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The Inverse Hyperbolic Functions

e’ e’ 1
o /mdiﬂ = /mdl’ = tanh (6x) +c

1
S S NP N YV SN
° /\/Ex/md 2/ (2)2+(\/5)2d
:2sinh—1(§)+c

1 e
Q /—d:p = [ ———dz = —csch™ (%) + ¢
V14 e ery/1 + e2» (¢
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Method of Partial fractions

Definition: linear factor
A linear factor is a polynomial of degree 1. It has the form az + b where

a,beRand a # 0.
Such x,3z, and 22 — 7

Definition: irreducible quadratic

An irreducible quadratic is a polynomial of degree 2. It has the form
ax?® + bx + ¢, where a,b,c € R and b? — 4ac < 0.

Such z2 +9 and 2? + = + 1.
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Method of Partial fractions

What is the Partial Fraction?

It is re-expressing a rational function (a ratio of polynomial function ) as a
sum of simpler fraction.

Let h(z) = P(x) apz” +a1z" 1+ +a—n—1z+a,

Q) poam 4+ bam 4 4 by 1T+ by
function, where P(x),Q(x) are polynomials, we have two cases:

© degree P(x) < degree Q(x) use method of partial fractions.

@ degree P(x) > degree () use long division of polynomials, then use
method of partial fractions.

be a rational
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Method of Partial fractions

How do we create partial functions?

Q If we can write Q(x) as a linear factors
bot™ + b1z + b1+ b= (z—a)", a €R, meN

AO Al m—1
ooy =l N
(:U—a)m+($—a)m_1+ T o S

@ If we can write Q(x) as a irreducible quadratic factors
box™ + b1z™ L + -+ b1 + by, = (az? + bz + )", a,b,cEN
and b? — 4ac < 0
Then:

h(z) =

Then: h(z) =

Byz + Cy Bixz + Cq o B, 1z +Cph_q
(ax? + bz +c)*  (ax? + bz + c)n 1 ar? +br+c

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228) 77/113



Method of Partial fractions

Some time we can write Q(x) as a product of linear factors and irreducible

quadratics.
Then A 4 A
h _ 0 1 . m—1
(z) (x—a)m+(x—a)m_1+ e
Byz + Cy Bz + Cy  Baaaz+Cp
(ax? +bx +c)  (ax? +bxr +c)n1 ar? +bx +c
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Method of Partial fractions (Examples)

. . . z—3
Determine the partial fraction for:

3 A p "

T —

(x—2)(x+2) :v—2+x+2 * (z+2)+ Bl -2)
r=-2=-5=-4B= B ="

r=2=-1=44= A=
So. x—3 -1 . 5
(-2 +2) 4x—-2) 4(z+2)
Now Integrate:

-3
Determine/§2_4d:p

/ﬁdw B / [4(x_—1 2y " 4(x5—i— 2)

-1 5
:—Tln’x—2‘—|—11n’x+2‘—l—c

dx
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Method of Partial fractions (Examples)

r—3
Determi d
eerm|ne/m2+4x x
Note that degree P(x) < degree Q(x)
x—3 z—3 A B
22 +4x x(x+4) :c+a:+4 v (z+4)+ Bz
r=-4=-T=-4B=DB=1
r=0=-3=4A= A=
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Method of Partial fractions (Examples)

Now we can write:

©-3 _ -3, 1
—dr 4z Az +4)

/dz—l—/ x7+4)d

:—Zln|m|—|—£ln|m+4|+0

IFs

7
1 47
_nfetdfr

1n|$|%
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Method of Partial fractions (Examples)

2
e —2
Determine | ——d
! / 3+ 322 4+ 22 v

Note that degree P(x) < degree Q(x)
r? -2 2 —2 A B C

x3—|—3x2+2x_:p(aj+2)(:p—|—1)_E+x7—|—2+:v—i—1
=22 -2=A(x+2)(x+1)+ Bz(z + 1) + Cz(z + 2)
r=0=-2=2A=A=-1
r=—-2=2=2B=0b0=1
r=—-1=-1=-C=c=1
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Method of Partial fractions (Examples)

Now we can write:

x2 =2 -1 1 1

3 +3224 2 x +x+2+x+1'

2 -2 -1 1 1
—————dr = | —d d
/x3+3x2+2x$ /x x+/x—|—2 $+/ac+1

=—lnjz|+Injz+2|+In|lz+1]+¢
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Method of Partial fractions (Examples)

Determi e/m3—2m2+x+1
rmin
ot + 522 +4
Note that degree P(x) < degree Q(x).

We can write: % + 522 4+ 4 = (22 4+ 4)(22 + 1)

=22+ +1 B Az +b

Cx+ D
x4+ 522 +4

T4t e
=22 -2+ 2+ 1= (Az+ B)(22 + 1)+ (Cz + D)(2? + 4)

=(A+C)2* + (B+ D)x? + (A+4C)x + (B +4D)
A=1, B=-3, C=0, D=1
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Method of Partial fractions (Examples)

Now we can write:

x3—2x2+x+17x—3+ 1
rd 45244 2244 2241

3_22 1 _ 1
/ac x4+ x+ d:z::/[x 3 |z

x4+ 522 +4 x2—|—4+x2+1

1 3
:§1n|:c2+4\—itanflg+tan*1x+c
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Method of Partial fractions (Examples)

2
3
Determine f7+da:
e —x—2
Note that degree P(x) > degree Q(x)

Here Divide First

2+ 3 r+5
7:1_’_7
2 —z—-2 2 —z—2

T+5 T+5 A B

2—2-2 (z—2)(z+1) x—2+x+1
m+5:A(x—i—l)—i—B(x—Q)x:2:>7:3A:>A:%
r=-1=4=-3B=B=
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Method of Partial fractions (Examples)

Now we can write:

x? +3 7 4
N _
22 —x—2 3(rx—2) 3(x+1)

22 +3
A NS S
/xQ—x—2x /

7 4
:x+§ln‘m—2‘—§ln‘x+l‘+c

LT 4

5w—2) 3@rD)|®
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Method of Partial fractions (Examples)

41
Determine I = dx
srermine / @+ D@+t )
Note that degree P(x) > degree Q(x)

at+1 -9t 20 + 3z +3
(z+1)(z2+2+1) (x+1)(22+x+1)

2
I:/(¢—2) d:c+/( 207 3ut 3

r+1)(224+2+1) v

I 12

BEN AMIRA Aymen (King Saud University)

Integral Calculus (Math 228)



Method of Partial fractions (Examples)

Now for I5 we have de to applied method of partial fraction
20 +3z+3 A Bz +C
(z+D)(z2+x+1) 2+1 T far 1
=202+ 32+3=A@*+x+1)+ (Br+C)(x+1)
= A2’ 4+ Az + A+ Ba?> + Bx +Caox + C

=(A+B)2*+(A+B+C)z+ (A+C)

A+B=2
A+B+C=3
A+C=3

So: A=2, B=0,and C' =1.
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Method of Partial fractions (Examples)

Now we can write:

202 +3x+3 2 1

(x4 1) (22 +2+1) T el Prae+d

212 +3x 43
I=I +1 = —Nd d
1+ 12 /(x ) x+/(z+1)(:ﬂ2+$—|—1) v

2 1
= [@-2de+ [ ——dot [ ——d
/(x ) $+/:c+1 x+/x2+x+1 N
I A

Ja

Iz
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Method of Partial fractions (Examples)

/ 1 g 2 1(2x+1)+c
(z+3)%+3 V3 V3
So, )
41
de=1+J1+ J
/(:c+1)(a:2+x+1) T ;I,_B
2
2 2r + 1
2 -1
=z —2x+2In|r+ 1|+ —tan +c
1 | | 73 ( 73 )
1 J1

Jo

Integral Calculus (Math 228)
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Method of Partial fractions (Examples)

6:1:—1—7
® / x + 2)2

—2z+4
~ / x? 4+ ac—l)zdac

e/x2+2x—3dx
2
T
d
o/ z—1)2(z+1) "
e/x —5x+7x

$2+SC—

o /a: —11x—26d$

2 —2r —8

°/ﬁ
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Half-Angle Substitution

It is used to solve integrals of rational functions involving sinx or cos x

1
/ _ L i / 1 4
24+ cosz 1 —sinx

How to solve an integral using half angle trigonometric substitution?
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Half-Angle Substitution

To solve this type of integral we have to concentrate on:

o u:tang
Q Sinszcosgsing = 25221; = 1??;23 = 1_2'_uu2
() %:%sec2§:%(tan2g+l): ;(u2+1)=>
2
dmzmdu
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Half-Angle Substitution

1 1
Evaluate /—daz and /—,d$
2+ cosx 1 —sinz

1
tosolve | ———dx
24 cosx
2

— 2
we put u = tan% SO COST = TZ27 and dz = mdu
1 2 2
Ry S M
2+ cosx (2+1+u2)(u +1) u® 4+ 3

2ta_1<u>+ Qta_1<tan§>+
=~ tan c= ——tan c
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Half-Angle Substitution

1
To solve /,da:
1 —sinz

2
W put = tan 5, sine = 35y and e = gy
1 2
/_dx:/ 2u oy du
1—sinz 1— s (14 u?)
-2

S R A —
(u—1) tang — 1
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Half-Angle Substitution

Example

How we can integrate using tangent half angle substitution.
1
————dx
/ 3—5sinx
2u 2

We put u = tanf,sinx =———and dz =
2 u? +1 u? +1
Hence, the given integral becomes:

1 = 2
= dr= [ —FL g :/d
/3—5sina:$ /3_5( 2u "= 302 100+ 3"

u2+1
Now, we need to do partial fraction decomposition.
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Half-Angle Substitution

2 B 2 A N B
3u2 —10u+3 (u—3)Bu—1) u—3 3u—1

2=A@Bu—1)+Bu—3)=2=(3A+ B)u— A— 3B

3A+B=0
—A—-3B=2

1 3
A:Z,andB:—Z
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Half-Angle Substitution

1 2
/,d$:/du
3 —b5sinz 3u2 —10u+3

1 31
:11n|u—3|—1§ln|3u—1|—|—c

1 1 T 1 T
. dr=-lnftan'E 3 - -1 1T
/3—5sinxd$ 1 n | tan 5 3| 1 n |3 tan 5 |+ ¢
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Half-Angle Substitution

sin x
J VB —2cosx+ cosZzx

dx

Put w =cosxr = —du =sinx

sin / —1
dr = —  du
J V5 —2cosx +cosZx J V5 —2u 4 u®
= — / = ! du = — / - l — du
J o (w?—2u+1)+4 J u—1)2+(2)2

= —sinh—?! (?I-; 1) + e

sin .1 feosx—1
dxr = —sinh — | +r
J V5 —2cosr+cosZz
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Improper Integrals

Q If f is continuous on [a,b) and ‘f(x)] — 00 as x — b~ then
b t
/f(:c) dxr = lim /f(a:) dz
t—b—
a a

Q@ If f is continuous on (a,b] and |f(z)| — oo as x — a™ then

b b
/f(:s) dz = lim /f(:v) dz

t—at

If the limit exists (and equals a value L) then the improper integral
converges (to L).
If the limit does not exist then the improper integral diverges.
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Improper Integrals

Rmark

If f is continuous on [a, b] except at a point ¢ € (a,b) and |f(z)| — oo as

T —> ¢ then
t b

/f )dr = lim [ f(z)dx+ lim [ f(z) dzx

t—c— t—ct

If both limits exist (and equals Ly andtLg respectively) then the improper
integral converges (to L; + Lg).

If at least one of the limits does not exist then the improper integral
diverges.
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Improper Integrals

Q If f is continuous on [a, 00) then

/f da:_hm/f

Q Iff is continuous on (—oo, a then

jf(x)dxztgmoo/f

if the limit exists (and equals a value L) then the improper integral
converges (to L).
If the limit does not exist then the improper integral diverges.
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Improper Integrals

If f is continuous on ,00) then for any constant a

—00
7f($)d$:tlillnoo/f dx—i—hm/f

—00
If both limits exist (and equals Ly and L2 respectively) then the improper
integral converges (to L; + Lo).

If at least one of the limits does not exist then the improper integral
diverges.
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Improper Integrals: Examples

oo
(1] /1:_2 dx is an improper integral.
1

Some such integrals can sometimes be computed by replacing infinite
limits with finite values
Vi i 1 1
Yy
/3:_2d:1:=1im 72 de = lim [——} =lim<——+1)
Y—r00 Y—r00 rll Yy—00 Yy
1 1

=1

C

r1 1 ‘

Q /— dr = lim | — dz = lim [ln]w@

T c—00 T c—00 1
1 1

= lim (ln|c| —ln|1|) = 0
Cc—00
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Improper Integrals: Examples

o0
1
Evaluate : /m dx
— 0

First, we split the integral in two.
o] 0 o]

1 1 1
- de= | —— 4 -4
/1+X2 v /1+X2 ngr/1+X2 v

—00 —0o0 0
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Improper Integrals: Examples

Second, we turn each part into a limit.

o ro ro1
[ tr=dm [ e i
—00 c 0
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Improper Integrals: Examples

Finally, we evaluate each part and add up the results.
o0

L dz= tim [tan2]" + tim [tan—'2]°
T = i, [t e] i [en7t ]

= lim [tan_1 0—tan! C] + lim [tan_1 ¢ —tan? 0]

c— 00
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Improper Integrals: Examples

Example

o
1 .
Evaluate /—p dx, where p is a real number.
0
1

We have to consider every possible value of p.

First, forp =1

00 t
1 . 1 . t .
— dx = lim — dr = lim [lnx] = lim ln|t‘ =00
x t=oo | T t—o0 1 b—oo

1 1
so the integral diverges when p = 1.
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Improper Integrals: Examples

Now, for p # 1, the power rule applies:
¢

oo
1 1 1 ¢

— dr=lim | — dz = lim { xlfp}

xP t—o00 xP t—oo L1 —p 1
1 1

1 1 1

= lim | — 7P — =

twoo \ 1 —p 1-p 1-p

This means that for p < 1, the integral diverges, and for p > 1, it

converges and equals
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Improper Integrals: Examples

(e.o]

dx
Evaluate / mdﬂ?

—00

0o 0 b

/ diajd:c = lim /dxdx + lim dixdx
2416 a——oo | 22+ 16 booo ) 2416

—0o0 a 0

1 a 1 b
- - —-1% . - -17
im (O 4tan 4> —l—bh_{n <4tan 1 0)
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