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1. Functions of one random variable

There are three main methods to find the distribution of a function of one or
more random variables. These are to use the CDF, to transform the pdf
directly or to use moment generating functions. We shall study these in turn
and along the way find some results which are useful for statistics.
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1.1 Method of distribution functions
I shall give an example before discussing the general method.

Example 1: Suppose the random variable Y has a pdf

[ 3y’ 0<y<1
fr(y) = S

L 0, otherwise.

Suppose we want to find the pdf of U = 2Y + 3. The range of U 1s
3 <U<5. Now

FU(u):IP’(USM):IP(ZY—I—3§L¢):IP>(Y§ u;3>

Therefore

u—3 ? 2 u—3
P — dy = 3v2dy =
(Y§ 5 ) /0 fr(y)dy /0 y“dy ( 5




and

Chapter 3 Functions and Transformations of Random Variables
- Functions of one random variable

L Method of distribution functions

Then the CDF of U 1s given by

(0, if
FU(M) =

= (u—S

u>>5
ar, | (u—3)*, if
Ju(u) = ol

3<u<s

otherwise.
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The general method works as follows.:

1. Identify the domain of ¥ and U.

2. Write Fy(u) = P(U < u), the cdf of U, in terms of Fy(y), the
cumulative distribution function of Y.

3. Differentiate Fy(u) to obtain the pdf of U, fy(u).

The cdf method is useful for dealing with the squares of random variables.
Suppose U = X?, then

Fy(u) = P(U<u)
= P(X* <u)
= P(= fé < Vu)
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So if we differentiate both sides with respect to u we find

Al (5 ) + v (572

(vu) —I-fx(—\/m)

Ju(u)

s O

So, for example if

(=i —1<x<1
fx(x) = «
0, elsewhere.
If U = X? then
fu(u) = Y(Vu) + fx(—v/u)
s (v |

2\1& <f2+1+—\/i+1)

1
= — 0<u<Il.

2\/u
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Example 2:

As a more important example suppose Z ~ N(0, 1).
Find the distribution of U = Z2.
Solution: Z ~ N(0, 1) so that

1 x?
fz(x) = mexp (—5> — 00 < X < 400
Then if U = Z>
folw) = 5= (i) + (Vi)
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Example 3:

Suppose that Y ~ U(0, 1). Find the distribution of U = g(¥Y) = —In(Y).

Solution: The CDF of Y ~

Fy(y) =

U(0, 1) is given by

(0, if y<O0

Ly, if 0<y<l

The domain (domain is the region where the pdf is non-zero) for
Y ~U(0,1)is Ry = {y: 0 <y < 1}, thus, because u = — Iny, it follows
that the domain for U is Ry = {u : u > 0}. The cdf of U is:

FU(M) —

P(U<u)=P(—InY < u)
P(InY > u)
P(Y>e™)=1-P(Y <e™)
1 —Fy(e™)
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Because Fy(y) = yfor0 < y < 1 ie. for u > 0, we have

FU(u) =1- Fy(e_“) —1—e"
Taking derivatives, we get, for u > 0,

d d
= —F = — 1 — e U == —u
folw) = g Fulu) = 2o (1—e™) =e
Summarizing,
(e, if u>0
Ju(u) = <
\ 0’

elsewhere
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The Gamma distribution

Definition

We say the random variable X has a Gamma distribution with parameters
a > 0and 8 > 0, which we shall write as Y ~ Gamma(a, 3) if

B Baxa—l
- I(a)

fx(x) exp (—fx) , 0<x<+00

where N
['a) = / > Lexp (—t) dt
0

1s the Gamma function.

Now we can see that

I'(1) = A+OO exp (—t)dt =1

Also if we integrate I'(«) by parts we see that
INa)=(a— 1 I'(a—1) (1)
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The Chi-Square distribution

Notice that as relation (1), we have I'(2) =1 x I'(1) =1,
['3) =2xTI'(2) =2,I'(4) =3 x I'(3) = 6 and so on so that if n is an
integer

['(n)=(n—1)!

Exercise: Show thatT'(1) = /7

Definition

v 1

We say that a random variable X with a Gamma(%5, 5 ) distribution where v/
1s an integer has a Chi-Square distribution with v degrees of freedom and we
write it as X ~ 2. v is the Greek letter nu.

We showed in A"Example 2 that the square of a standard normal
distribution had pdf
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We can rewrite this, using the results above as

/2 —1/2 u
(1/?(1/2) P (‘5) ’

and so U has a Gamma(1/2,1/2) or x7 distribution.
So we have proved the following theorem.

Ju(u) =

Theorem
If the random variable Z ~ N(0, 1) then Z* ~ x7.

u > 0.
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1.2 Method of direct transformation

Theorem

Let Y be a continuous random variable with probability density function fy
and support I, where [ = |a,b|. Let g : I — R be a continuous monotonic
function with inverse function g=' : J — I where J = g(I). Then the
probability density function fy of U = g(Y) satisfies

fr (g7 W) | £ W), if  wed
Ju(u) = < (2)

0, otherwise.

\
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Steps of the pdf technique::

1. Verify that the transformation u = g(y) is continuous and one-to-one
over Ry.

2. Find the domains of Y and U.

3. Find the inverse transformation y = g~ !(u) and its derivative (with
respect to u).

4. Use the formula (2) above for f;(u).
Example 4: Suppose Y has the density

fr(Y) = <

. 0, otherwise,

where 6 is a positive parameter. This is an example of a Pareto distribution.
Find the density of U = InY.



Chapter 3 Functions and Transformations of Random Variables
L Functions of one random variable

L Method of direct transformation

Solution:

Ry 1s the domain (domain is the region where the pdf is non-zero) for Y, then
Ry = {y:y > 1}. As the domain of U (the domain on which the density is
non-zero) is Ry = {u : u > 0}. The inverse transformation is y = exp(u)
and < exp(u) = exp(u). Therefore

0
Tt = expuy P

= Oexp(—ub) u >0,

and so U has an exponential distribution.
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2. More-to-one transtformation

Here we discuss transformations involving two random variable Y;, Y>. The
bivariate transformation is

U = gi(Y1,Ys)
U = g1, 1)

Assuming that Y; and Y, are jointly continuous random variables, we will
discuss the one-to-one transformation first. Starting with the joint
distribution of Y = (Y1, Y3), our goal is to derive the joint distribution of
U= (U, U,).

Suppose that Y = (Y7, Y3) is a continuous random vector with joint pdf
fr,v,(y1,2). Let g : R? — R? be a continuous one-to-one vector-valued
mapping from Ry,y, to Ry,y, where U; = g1(Y1,Y2) and U, = g,(Y1, Y3)
and where Ry,y, and Ry, y, denote the two-dimensional domain of

Y= (Y1,Y;) and U = (U;, U,), respectively. Ifgl_l(ul, u;) and gz_l(ul, u;)
have continuous partial derivatives with respect to both u; and u,, and the
Jacobian J where, with ’det” denoting ”“determinant”,
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B
e —
o —1
e Ui, u
J = det |1 (11:10)
Du; 82 (ur,uz)
then

o ,—1

D, 81 (w1, up)
0 5,1
8u2g2

(I/ll, u2)
fo,u, (U1, u2) = 4

[ frr (g7 (w1, u2), g
\ 0,

1
2

(ul,u2)> J|, if (u1,uz) € Ry,y,
RECALL: The determinant of a 2 x 2 matrix, e.g.,

elsewhere.

(3)
a b
. d‘ = ad — bc

PN G
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Steps of the pdf technique:

1. Find fy,y, (y1,y2), the joint distribution of Y; and Y,. This may be given
in the problem. If Y; and Y, are independent, then

Sriv (071, 32) = fri 01)fv, (Y)2).
Find Ry, y,, the domain of U = (Uy, U,).

Find the inverse transformations y; = gl_lul, up and y, = g, lul, Us.

Find the Jacobian J, of the inverse transformation.

SRRV

. Use the formula (3) above to find fy, y, (41, uy) the joint distribution of
U 1 and U2.

NOTE: If desired, marginal distributions fy;, (11) and fy, (1) can be found
by integrating the joint distribution fy, ¢, (u1, uz).
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Example 35:

Suppose that Y and Y, have joint pdf

friv,(1,¥2) = exp (— (y1 +¥2)) y1i >0,y >0

Consider the transformation u; = y; and u, = y; + y».
1. Find fy,y, the pdf of U; and Uj.
2. Find the marginal distribution of Uj.
3. Find the marginal distribution of U,.
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Solution:

I. The transformation u; = y; and u, = y; + y; has the inverse y; = u
and y, = uy — u;y. Therefore, Ry,y, = {(u1,uz) : 0 < uy < up < 4o00}.

The Jacobian is
1 O

J = det 1

-
Since, the joint pdf of U; and U, is given by
fu,u, (U, uy) =1 x exp (—uy) 0<u <up <+

2. If we want the pdf of U, = Y| + Y, we must find the marginal pdf of
U, by integrating out U;.

Uy
fu,(up) = / exp (—uz) duy = uy exp (—uy) 0<u <+
0
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3. The moment generating functions

Definition

1. The moment generating function of a random variable X, written as
My (t) is defined by
Mx(t) = E (exp (1X)) (4)
and is defined for ¢ in a region about 0, —h < ¢t < h for some h.

2. The moment generating function of a random variable
Y =U(X,X5,...,X,), written as My(¢) is defined by

My (1) = E (exp (1Y) = E (exp (tU(X1, Xa, - . ., X,))))
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Example 6:

Let X; and X, be independent random variables with uniform distributions
on{l1,2,3,4}. Let Y = X; + X5, find the moment-generating function of Y.
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First note that Mx(0) = 1. Differentiating Mx/(t) in (4) with respect to ¢
assuming X 1s continuous we have

d

My(r) = — | exp(ex)f(x)dx

— / xexp(tx)f (x)dx

My (0) = /xf(x)dx
~ E()
Similarly

d2
M’x(t) = g exp(tx)f (x)dx

— / x> exp(tx)f (x)dx

/ X°f (x)dx

= E(X?)

M” x(0)
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Theorem

V(X) = My (0) — (My(0))” .

The uncentred moments of X are generated from this function by

n n am
E (X") = My (0) = —-Mx(1) |10

Example 7: Suppose X is a discrete binomial random variable with
probability mass function

1. Find the moment generating function of X.

2. Compute the variance of X.
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Example 8:

Suppose X has a Gamma distribution, Gamma(c, 3)
1. Prove that the mgf of X 1s given by

/8 (@8
Mx(t) = | ——
€0 (B iy
2. Compute the mean of X.
3. Compute the variance of X.
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The following theorem, tells us why we can use the mgf to find the
distributions of transformed variables.

Theorem
f Xy and X, are random variables and My, (t) = My, (t) then X\ and X, have

the same distribution.
Example 9: Suppose Z ~ N(0,1) and Y = Z>.
1. Find the mgf of Z.
2. Find the mgf of Y.
3. Find the mgf of x?.
4. Deduce the pdf of Y.
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Theorem
Suppose X1, Xa, . . ., X, are independent rvs with mgf Mx,(t),i=1,...,n.

LetY = ZX,- then
i=1

My(t) = HMXi(f)

Example 10: Let X;, X5, ..., X,, denote the outcomes of n Bernoulli trials,

each with probability of success p. Let Y = Z X;.
i=1
I. find the mgfof X;,i=1,...,n.
2. Prove that the mgf of Y is given by

n

My (1) = H (g +pe') = (g + pe')".

3. Deduce the pdf of Y.
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Theorem

Suppose X1,X,, ..., X, are independent, normally distributed with mean
E(X;) = p; and variance V(X;) = o?. Let Z; = Xl%l“l sothatZ,,2,, ...,7Z,
are independent and each has a N(0, 1) distribution. Then Y. Z? has a x>
distribution.

Proof: We have seen before that each Z? has a x7 distribution. So
Mp(e) = (1-20)7""

LetY =Y Z?. Then
My (1) = HMZiZ(t)
i=1

1 1\
p— p— 2
(1— 21"/ (é - f)

but this is the mgf of a Gamma(n/2,1/2) random variable, that is a x>
random variable.
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Characteristic function

The characteristic function of a random variable g(X), defined as

4+ o0

et (1) = Elexp (itg(X))) = | exp(igx)) S (0

— OO

where f(x) is the density for X.
Features of characteristic function:

» The CF always exists. This follows from the equality
e'™ = cos(tx) + isin(zx), and both the real and complex parts of the
integrand are bounded functions.

» Consider a symmetric density function, with f(—x) = f(x) (symmetric
around zero). Then resulting ¢(¢) is real-valued, and symmetric around
ZEero.

» The CF completely determines the distribution of X (every cdf has a
unique characteristic function).
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» Let X have characteristic function ¢x(¢). Then Y = aX + b has
characteristic function ¢y (1) = e ¢x(at)

» X and Y, independent, with characteristic functions ®x(z) and ¢y (7) .

Then ¢x1+v(t) = ox(1)éx (7).

> qu(()) = 1.
+o0

» For a given characteristic function ¢x(z) such that / |ox (2)|dt < o0
©.@)

the corresponding density fx(x) is given by the inverse Fourier
transform, which 1s

|

fx(x) = —/ Oy (1) exp(—itx)dt

27 ) oo
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» Characteristic function also summarizes the moments of a random
variable. Specially, note that the h-th derivative of ¢x(7) is

+0o0
P = [ ) explitg(a) (o) 5
Hence, assuming the h-th moment, denoted '“Z(X) — E (g(X))" exists, it
1s equal to
(h) (0)
'ug(X) lh

Hence, assuming that the required moments exist, we can use Taylor’s
theorem to expand the characteristic function around ¢t = 0O to get:

it (it)? (i)k
ox(1) =1+ T:LL;(X) Y Mg(x) T T 7%(;{) +o(r")
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» Cauchy distribution, cont’d: The characteristic function for the Cauchy
distribution 1s

¢x(1) = exp(—|t])

This 1s not differentiable at + = 0, which by equation (5) is saying that
its mean does not exist. Hence, the expansion of the characteristic
function 1n this case 1s invalid.



