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Functions of one random variable

1. Functions of one random variable

There are three main methods to find the distribution of a function of one or
more random variables. These are to use the CDF, to transform the pdf
directly or to use moment generating functions. We shall study these in turn
and along the way find some results which are useful for statistics.
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1.1 Method of distribution functions
I shall give an example before discussing the general method.

Example 1: Suppose the random variable Y has a pdf

fY(y) =

8
<

:

3y2, 0 < y < 1

0, otherwise.

Suppose we want to find the pdf of U = 2Y + 3. The range of U is
3 < U < 5. Now

FU(u) = P(U  u) = P(2Y + 3  u) = P
✓

Y  u � 3
2

◆
.

Therefore

P
✓

Y  u � 3
2

◆
=

Z u�3
2

0
fY(y)dy =

Z u�3
2

0
3y2dy =

✓
u � 3

2

◆3
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Then the CDF of U is given by

FU(u) =

8
>>>><

>>>>:

0, if u < 3

� u�3
2

�3
, if 3  u  5

1, if u > 5

and

fU(u) =
dFU

du

8
<

:

3
8 (u � 3)2 , if 3  u  5

0, otherwise.
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The general method works as follows.:

1. Identify the domain of Y and U.
2. Write FU(u) = P(U  u), the cdf of U, in terms of FY(y), the

cumulative distribution function of Y .
3. Differentiate FU(u) to obtain the pdf of U, fU(u).

The cdf method is useful for dealing with the squares of random variables.
Suppose U = X2, then

FU(u) = P(U  u)
= P(X2  u)
= P(�

p
u  X 

p
u)

=

Z p
u

�
p

u
fX(x)dx

= FX(
p

u)� FX(�
p

u)
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So if we differentiate both sides with respect to u we find

fU(u) = fX(
p

u)
✓

1
2
p

u

◆
+ fX(�

p
u)
✓

1
2
p

u

◆

=
1

2
p

u
�
fX(

p
u) + fX(�

p
u)
�

So, for example if

fX(x) =

8
<

:

x+1
2 , if � 1  x  1

0, elsewhere.

If U = X2 then

fU(u) =
1

2
p

u
�
fX(

p
u) + fX(�

p
u)
�

=
1

2
p

u

✓p
u + 1
2

+
�
p

u + 1
2

◆

=
1

2
p

u
0  u  1.
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Example 2:

As a more important example suppose Z s N(0, 1).
Find the distribution of U = Z2.
Solution: Z s N(0, 1) so that

fZ(x) =
1p
2⇡

exp
✓
�x2

2

◆
�1 < x < +1

Then if U = Z2

fU(u) =
1

2
p

u
�
fX(

p
u) + fX(�

p
u)
�

=
1

2
p

u

✓
1p
2⇡

exp
⇣
�u

2

⌘
+

1p
2⇡

exp
⇣
�u

2

⌘◆

=
1p
2⇡u

exp
⇣
�u

2

⌘
, u > 0.
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Example 3:
Suppose that Y s U(0, 1). Find the distribution of U = g(Y) = � ln(Y).
Solution: The CDF of Y s U(0, 1) is given by

FY(y) =

8
>>>><

>>>>:

0, if y  0

y, if 0 < y  1

1, if y � 1

The domain (domain is the region where the pdf is non-zero) for
Y s U(0, 1) is RY = {y : 0 < y < 1}, thus, because u = � ln y, it follows
that the domain for U is RU = {u : u > 0}. The cdf of U is:

FU(u) = P(U  u) = P(� ln Y  u)
= P(ln Y > u)
= P(Y > e�u) = 1 � P(Y  e�u)

= 1 � FY(e�u)
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Because FY(y) = y for 0 < y < 1 ie. for u > 0, we have

FU(u) = 1 � FY(e�u) = 1 � e�u

Taking derivatives, we get, for u > 0,

fU(u) =
d
du

FU(u) =
d
du
�
1 � e�u� = e�u

Summarizing,

fU(u) =

8
<

:

e�u, if u > 0

0, elsewhere
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The Gamma distribution
Definition
We say the random variable X has a Gamma distribution with parameters
↵ > 0 and � > 0, which we shall write as Y s Gamma(↵,�) if

fX(x) =
�↵x↵�1

�(↵)
exp (��x) , 0  x < +1

where

�(↵) =

Z +1

0
t↵�1 exp (�t) dt

is the Gamma function.

Now we can see that

�(1) =
Z +1

0
exp (�t) dt = 1

Also if we integrate �(↵) by parts we see that

�(↵) = (↵� 1)�(↵� 1) (1)
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The Chi-Square distribution
Notice that as relation (1), we have �(2) = 1 ⇥ �(1) = 1,
�(3) = 2 ⇥ �(2) = 2, �(4) = 3 ⇥ �(3) = 6 and so on so that if n is an
integer

�(n) = (n � 1)!

Exercise: Show that �( 1
2 ) =

p
⇡

Definition
We say that a random variable X with a Gamma( ⌫2 ,

1
2 ) distribution where ⌫

is an integer has a Chi-Square distribution with ⌫ degrees of freedom and we
write it as X s �2

⌫ . ⌫ is the Greek letter nu.

We showed in Â¨Example 2 that the square of a standard normal
distribution had pdf

fU(u) =
1p
2⇡u

exp
⇣
�u

2

⌘
, u > 0.
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We can rewrite this, using the results above as

fU(u) =
(1/2)1/2 u�1/2

�(1/2)
exp
⇣
�u

2

⌘
, u > 0.

and so U has a Gamma(1/2, 1/2) or �2
1 distribution.

So we have proved the following theorem.

Theorem
If the random variable Z s N(0, 1) then Z2 s �2

1.
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1.2 Method of direct transformation

Theorem
Let Y be a continuous random variable with probability density function fY
and support I, where I = [a, b]. Let g : I ! R be a continuous monotonic
function with inverse function g�1 : J ! I where J = g(I). Then the
probability density function fU of U = g(Y) satisfies

fU(u) =

8
<

:

fY
�
g�1(u)

� �� d
du g�1(u)

�� , if u 2 J

0, otherwise.
(2)
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Steps of the pdf technique::

1. Verify that the transformation u = g(y) is continuous and one-to-one
over RY .

2. Find the domains of Y and U.
3. Find the inverse transformation y = g�1(u) and its derivative (with

respect to u).
4. Use the formula (2) above for fU(u).

Example 4: Suppose Y has the density

fY(Y) =

8
<

:

✓
y✓+1 , if y > 1

0, otherwise,

where ✓ is a positive parameter. This is an example of a Pareto distribution.
Find the density of U = ln Y .
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Solution:

RY is the domain (domain is the region where the pdf is non-zero) for Y , then
RY = {y : y > 1}. As the domain of U (the domain on which the density is
non-zero) is RU = {u : u > 0}. The inverse transformation is y = exp(u)
and d

du exp(u) = exp(u). Therefore

fU(u) =
✓

(exp(u))✓+1 ⇥ exp(u)

= ✓ exp(�u✓) u > 0,

and so U has an exponential distribution.
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2. More-to-one transformation
Here we discuss transformations involving two random variable Y1, Y2. The
bivariate transformation is

U1 = g1(Y1, Y2)

U2 = g2(Y1, Y2)

Assuming that Y1 and Y2 are jointly continuous random variables, we will
discuss the one-to-one transformation first. Starting with the joint
distribution of Y = (Y1, Y2), our goal is to derive the joint distribution of
U = (U1,U2).
Suppose that Y = (Y1, Y2) is a continuous random vector with joint pdf
fY1Y2(y1, y2). Let g : R2 ! R2 be a continuous one-to-one vector-valued
mapping from RY1Y2 to RU1U2 where U1 = g1(Y1, Y2) and U2 = g2(Y1, Y2)
and where RY1Y2 and RU1U2 denote the two-dimensional domain of
Y = (Y1, Y2) and U = (U1,U2), respectively. If g�1

1 (u1, u2) and g�1
2 (u1, u2)

have continuous partial derivatives with respect to both u1 and u2, and the
Jacobian J where, with ”det” denoting ”determinant”,
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J = det

�����

@
@u1

g�1
1 (u1, u2)

@
@u2

g�1
1 (u1, u2)

@
@u1

g�1
2 (u1, u2)

@
@u2

g�1
2 (u1, u2)

�����

then

fU1U2(u1, u2) =

8
<

:

fY1Y2

�
g�1

1 (u1, u2), g�1
2 (u1, u2)

�
|J|, if (u1, u2) 2 RU1U2

0, elsewhere.
(3)

RECALL: The determinant of a 2 ⇥ 2 matrix, e.g.,

det
����
a b
c d

���� = ad � bc
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Steps of the pdf technique:

1. Find fY1Y2(y1, y2), the joint distribution of Y1 and Y2. This may be given
in the problem. If Y1 and Y2 are independent, then
fY1Y2(y1, y2) = fY1(y1)fY2(Y)2).

2. Find RU1U2 , the domain of U = (U1,U2).
3. Find the inverse transformations y1 = g�1

1 u1, u2 and y2 = g�1
2 u1, u2.

4. Find the Jacobian J, of the inverse transformation.
5. Use the formula (3) above to find fU1U2(u1, u2) the joint distribution of

U1 and U2.

NOTE: If desired, marginal distributions fU1(u1) and fU2(u2) can be found
by integrating the joint distribution fU1U2(u1, u2).
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Example 5:

Suppose that Y1 and Y2 have joint pdf

fY1Y2(y1, y2) = exp (� (y1 + y2)) y1 � 0, y2 � 0

Consider the transformation u1 = y1 and u2 = y1 + y2.
1. Find fU1U2 the pdf of U1 and U1.
2. Find the marginal distribution of U1.
3. Find the marginal distribution of U2.
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Solution:

1. The transformation u1 = y1 and u2 = y1 + y2 has the inverse y1 = u1
and y2 = u2 � u1. Therefore, RU1U2 = {(u1, u2) : 0  u1  u2  +1}.
The Jacobian is

J = det
����

1 0
�1 1

���� = 1

Since, the joint pdf of U1 and U2 is given by

fU1U2(u1, u2) = 1 ⇥ exp (�u2) 0  u1  u2  +1

2. If we want the pdf of U2 = Y1 + Y2 we must find the marginal pdf of
U2 by integrating out U1.

fU2(u2) =

Z u2

0
exp (�u2) du1 = u2 exp (�u2) 0  u2  +1
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3. The moment generating functions

Definition

1. The moment generating function of a random variable X, written as
MX(t) is defined by

MX(t) = E (exp (tX)) (4)

and is defined for t in a region about 0, �h < t < h for some h.
2. The moment generating function of a random variable

Y = U(X1,X2, . . . ,Xn), written as MY(t) is defined by

MY(t) = E (exp (tY)) = E (exp (tU(X1,X2, . . . ,Xn)))
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Example 6:

Let X1 and X2 be independent random variables with uniform distributions
on {1, 2, 3, 4}. Let Y = X1 + X2, find the moment-generating function of Y .
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First note that MX(0) = 1. Differentiating MX(t) in (4) with respect to t
assuming X is continuous we have

M0
X(t) =

d
dt

Z
exp(tx)f (x)dx

=

Z
x exp(tx)f (x)dx

M0
X(0) =

Z
xf (x)dx

= E(X)
Similarly

M”X(t) =
d2

dt2

Z
exp(tx)f (x)dx

=

Z
x2 exp(tx)f (x)dx

M”X(0) =

Z
x2f (x)dx

= E(X2)
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Theorem

V(X) = M00
X (0)� (M0

X(0))
2
.

The uncentred moments of X are generated from this function by

E (Xn) = M(n)
X (0) =

dn

dtn MX(t) |t=0

Example 7: Suppose X is a discrete binomial random variable with
probability mass function

f (x) =
✓

n
x

◆
px (1 � p)n�x , x = 0, 1, 2 . . . , n

1. Find the moment generating function of X.
2. Compute the variance of X.
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Example 8:

Suppose X has a Gamma distribution, Gamma(↵,�).
1. Prove that the mgf of X is given by

MX(t) =
✓

�

� � t

◆↵

2. Compute the mean of X.
3. Compute the variance of X.
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The following theorem, tells us why we can use the mgf to find the
distributions of transformed variables.

Theorem
f X1 and X2 are random variables and MX1(t) = MX2(t) then X1 and X2 have
the same distribution.

Example 9: Suppose Z s N(0, 1) and Y = Z2.
1. Find the mgf of Z.
2. Find the mgf of Y .
3. Find the mgf of �2

1.
4. Deduce the pdf of Y .
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Theorem
Suppose X1,X2, . . . ,Xn are independent rvs with mgf MXi(t), i = 1, . . . , n.

Let Y =
nX

i=1

Xi then

MY(t) =
nY

i=1

MXi(t)

Example 10: Let X1,X2, . . . ,Xn denote the outcomes of n Bernoulli trials,

each with probability of success p. Let Y =
nX

i=1

Xi.

1. find the mgf of Xi, i = 1, . . . , n.
2. Prove that the mgf of Y is given by

MY(t) =
nY

i=1

(q + pet) = (q + pet)
n
.

3. Deduce the pdf of Y .
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Theorem
Suppose X1,X2, . . . ,Xn are independent, normally distributed with mean
E(Xi) = µi and variance V(Xi) = �2

i . Let Zi =
Xi�µi
�i

so that Z1, Z2, . . . , Zn

are independent and each has a N(0, 1) distribution. Then
P

i Z2
i has a �2

n
distribution.

Proof: We have seen before that each Z2
i has a �2

1 distribution. So

MZ2
i
(t) = (1 � 2t)�1/2

Let Y =
P

Z2
i . Then

MY(t) =
nY

i=1

MZ2
i
(t)

=
1

(1 � 2t)n/2 =

 
1
2

1
2 � t

! n
2

but this is the mgf of a Gamma(n/2, 1/2) random variable, that is a �2
n

random variable.
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Characteristic function

The characteristic function of a random variable g(X), defined as

�g(X)(t) = E(exp (itg(X))) =
Z +1

�1
exp (itg(x)) f (x)dx

where f (x) is the density for X.
Features of characteristic function:

I The CF always exists. This follows from the equality
eitx = cos(tx) + i sin(tx), and both the real and complex parts of the
integrand are bounded functions.

I Consider a symmetric density function, with f (�x) = f (x) (symmetric
around zero). Then resulting �(t) is real-valued, and symmetric around
zero.

I The CF completely determines the distribution of X (every cdf has a
unique characteristic function).
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I Let X have characteristic function �X(t). Then Y = aX + b has
characteristic function �Y(t) = eibt�X(at)

I X and Y , independent, with characteristic functions �X(t) and �Y(t) .
Then �X+Y(t) = �X(t)�X(t).

I �X(0) = 1.

I For a given characteristic function �X(t) such that
Z +1

�1
|�X(t)|dt < 1

the corresponding density fX(x) is given by the inverse Fourier
transform, which is

fX(x) =
1

2⇡

Z +1

�1
�X(t) exp(�itx)dt
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I Characteristic function also summarizes the moments of a random
variable. Specially, note that the h-th derivative of �X(t) is

�(h)
X (t) =

Z +1

�1
ihg(x)h exp(itg(x))fX(x)dx (5)

Hence, assuming the h-th moment, denoted µh
g(X) = E (g(X))h exists, it

is equal to

µh
g(X) =

�(h)
X (0)

ih

Hence, assuming that the required moments exist, we can use Taylor’s
theorem to expand the characteristic function around t = 0 to get:

�X(t) = 1 +
it
1
µ1

g(X) +
(it)2

2!
µ2

g(X) + · · ·+ (it)k

k!
µk

g(X) + o(tk)
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I Cauchy distribution, cont’d: The characteristic function for the Cauchy
distribution is

�X(t) = exp(�|t|)

This is not differentiable at t = 0, which by equation (5) is saying that
its mean does not exist. Hence, the expansion of the characteristic
function in this case is invalid.


