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Double integral

Definition 1.1 (Riemann sum)

Let f be a function of two variables that is defined on a region R and let
P = {Rk} be an inner partition of R. A Riemann sum of f for P is any
sum of the form ∑

k

f(uk, vk)∆Ak

where (uk, vk) is a point in Rk and ∆Ak is the area of Rk. The
summation extends over all the subregions R1, R2, . . . , Rn of P .
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Double integral

Definition 1.2

Let f be a function of two variables that is defined on a region R. The

double integral of f over R, denoted by

∫∫
R
f(x, y) dA, is

∫∫
R

f(x, y) dA = lim
∥p∥→0

∑
k

f(uk, vk)∆Ak,

provided the limit exists.
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Double integral

Example 1.1∫∫
R
cos(x2y + 1) dA for the rectangle R with −1 ≤ x ≤ 1 and 0 ≤ y ≤ π

2

using Riemann sums with regular partitions of each side of the rectangle
and evaluation points where each coordinate is as small as possible.
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Double integral

Solution

For positive integers n and m, let the regular partitions be

−1 = x0 < x1 < x2 < · · · < xn, ∆x =
2

n

0 = y0 < y1 < y2 < · · · < ym, ∆x =
π

2m
These regular partitions divide the rectangle R into mn subrectangles each
of area ∆x∆y. The vertices of each subrectangle are of the form
(xi−1, yj−1), (xi−1, yj), (xi, yj−1), (xi, yj) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, so
the point with the smallest coordinates is (xi−1, yj−1). To add up the
terms of the Riemann sum in a systematic way, we first fix a value of i and
sum over the rectangles that lie above the subinterval [xi−1, xi] This gives
the sum

m∑
j=1

f(xi−1, yj−1)∆x∆y =

m∑
j=1

cos(x2i−1yj−1 + 1)
2

n

π

2m
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Double integral

Next we add up these sums as i varies from 1 to n, which yields a
Riemann sum I given by

n∑
i=1

 m∑
j=1

cos(x2i−1yj−1 + 1)
2

n

π

2m

 =
π

nm

n∑
i=1

 m∑
j=1

cos(x2i−1yj−1 + 1)


n m I

10 10 0.996659

30 20 0.974834

50 30 0.959850
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Double integral

Definition 1.3

Let f be a continuous function of two variables such that f(x, y) is
nonnegative for every (x, y) in a region R. The volume V of the solid
that lies under the graph of z = f(x, y) and over R is

V =

∫∫
R

f(x, y) dA
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Double integral

Theorem 1.1

1

∫∫
R

cf(x, y) dA = c

∫∫
R

f(x, y) dA, for every real number c.

2

∫∫
R

[f(x, y) + g(x, y)] dA =

∫∫
R

f(x, y) +

∫∫
R

g(x, y) dA

3 If R is the union of two nonoverlapping regions R1, and R2,∫∫
R

f(x, y) dA =

∫∫
R1

f(x, y) +

∫∫
R2

f(x, y) dA

4 If f(x, y) ≥ 0 throughout R, then

∫∫
R

f(x, y) dA ≥ 0
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Double integral

To evaluate the double integral, we begin by the case when the function f
is continuous on a closed rectangular region R of the type illustrated in
Figure 1.1

figure 1.1: Rectangular region R
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Double integral

It is shown in advanced calculus that the double integral

∫∫
R

f(x, y) dA

can be evaluated by using an iterated integral of the following type:

Definition 1.4

1

∫ b

a

∫ c

b
f(x, y) dy dx =

∫ b

a

[∫ c

b
f(x, y) dy

]
dx

2

∫ c

b

∫ b

a
f(x, y) dx dy =

∫ c

b

[∫ b

a
f(x, y) dx

]
dy

Example 1.2

Evaluate

∫ 4

1

∫ 2

−1
(2x+ 6x2y) dy dx.
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Double integral

Solution∫ 4

1

∫ 2

−1
(2x+ 6x2y) dy dx =

∫ 4

1

[
2xy + 6x2

y2

2

]2
−1

dx

=

∫ 4

1

[
(4x+ 12x2)− (−2x+ 3x2)

]
dx

=

∫ 4

1
(6x+ 9x2)dx

=
[
3x2 + 3x3

]4
1
= 234
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Double integral

Example 1.3

Evaluate

∫ 2

−1

∫ 4

1
(2x+ 6x2y) dx dy.

Solution∫ 2

−1

∫ 4

1
(2x+ 6x2y) dx dy =

∫ 2

−1

[
x2 + 2x3y

]4
1
dy

=

∫ 2

−1
[(16 + 128y)− (1 + 2y)] dy

=

∫ 2

−1
(15 + 126y)dy

=
[
15y + 63y2

]2
−1

= 234
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Double integral

The fact that the iterated integrals in Examples 1.2 and 1.3 are equal is no
accident. If f is continuous, then the two iterated integrals defined in
definition 1.4 are always equal. We say that the order of integration is
immaterial.
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Double integral

An iterated double integral may be defined (in definition 1.5) over an Rx

or Ry region of the type shown in the Figure 1.2.

figure 1.2: Rx and Ry
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Double integral

Definition 1.5

1

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =

∫ b

a

[∫ g2(x)

g1(x)
f(x, y) dy

]
dx

2

∫ c

b

∫ h2(y)

h1(y)
f(x, y) dx dy =

∫ c

b

[∫ h2(y)

h1(y)
f(x, y) dx

]
dy
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Double integral

Example 1.4

Evaluate the following integrals

1

∫ 2

0

∫ 2x

x2

(x3 + 4y) dy dx

2

∫ 3

1

∫ y2

π
6

2y cosx dx dy
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Double integral

Solution

1

∫ 2

0

∫ 2x

x2

(x3 + 4y) dy dx =

∫ 2

0

[
yx3 + 2y2

]2x
x2 dx

=

∫ 2

0

[
(2x4 + 8x2)− (x5 + 2x4)

]
dx

=

∫ 2

0
(−x5 + 8x2)dx =

[
8x3

3
− x6

6

]2
0

=
32

3

2

∫ 3

1

∫ y2

π
6

2y cosx dx dy =

∫ 3

1
2y [sinx]y

2

π
6
dy

=

∫ 3

1
2y(sin y2 − 1

2
)dy

=

∫ 3

1
(2y sin y2 − y)dy =

[
− cos y2 − y2

2

]3
1

= (− cos 9− 9

2
) + (cos 1 +

1

2
) ≈ −2.55
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Double integral

Theorem 1.2 (Evaluation Theorem for Double Integrals)

1 Let R be the Rx region shown in the left of Figure 1.2. If f is
continuous on R, then∫∫
R

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx

2 Let R be the Ry region shown in the right of Figure 1.2. If f is
continuous on R, then∫∫
R

f(x, y) dA =

∫ c

b

∫ h2(y)

h1(y)
f(x, y) dx dy

For more complicated regions, we divide R into Rx or Ry subregions,
apply Theorem 1.2 to each, and add the values of the resulting integrals.
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Double integral

Example 1.5

Let R be the region in the xy-plane bounded by the graphs of y = x2 and

y = 2x. Evaluate

∫∫
R

(x3 + 4y) dA when

1 R = Rx.

2 R = Ry.

figure 1.3: Rx and Ry region for R
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Double integral

Solution

The region R is sketched in Figure 1.3. Note that R is both an Rx region
and an Ry region.

1 Let us regard R as an Rx region having lower boundary y = x2 and
upper boundary y = 2x, with 0 ≤ x ≤ 2 drawn We have a vertical
line segment between these boundaries to indicate that the first
integration is with respect to y (from the lower boundary to the upper
boundary). By Theorem 1.2,∫∫

R

(x3 + 4y) dA =

∫ 2

0

∫ 2x

x2

(x3 + 4y) dy dx

From Example 1.4, we know that the last integral equals to
32

3
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Double integral

The region R is sketched in Figure 1.3. Note that R is both an Rx region
and an Ry region.

2 Let us regard R as an Ry region having lower boundary x =
y

2
and

upper boundary x =
√
y, with 2 ≤ y ≤ 4. The horizontal line

segment in Figure 1.3 extends from the left boundary to the right
boundary, indicating that the first integral is with respect to x. By
Theorem 1.2 (2)∫∫
R

(x3 + 4y) dA =

∫ 4

2

∫ √
y

y
2

(x3 + 4y) dx dy

=

∫ 4

2

[
x4

4
+ 4xy

]√y

y
2

dy

=

∫ 4

2

[
(
y2

4
+ 4y

3
2 )− (

y4

64
+ 2y2)

]
dy =

32

3
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Double integral

Example 1.6

Let R be the region bounded by the graphs of the equations y =
√
x,

y =
√
3x− 18 and y = 0. If f is an arbitrary continuous function on R,

express the double integral

∫∫
R

f(x, y) dA in terms of iterated integrals

using only

1 R = Rx.

2 R = Ry.

Solution

The graphs of the equations y =
√
x and y =

√
3x− 18 are the top halves

of the parabolas y2 = x and y2 = 3x− 18. The region R is sketched in
Figure 1.4
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Double integral

figure 1.4: Rx and Ry region for R

1 If we wish to use only Theorem 1.2 (1), then it is necessary to employ
two iterated integrals, because if 0 ≤ x ≤ 6, the lower boundary of
the region is the graph of y = 0, and if 6 ≤ x ≤ 9, the lower boundary
is the graph of y =

√
3x− 18. If R1, denotes the part of the region R

that lies between x = 0 and x = 6 and if R2 denotes the part between
x = 6 and x = 9, then both R1 and R2 are Rx regions. Hence,
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Double integral

∫∫
R
f(x, y) dA =

∫∫
R1

f(x, y) dA+

∫∫
R2

f(x, y) dA

=

∫ 6

0

∫ √
x

0
f(x, y) dy dx+

∫ 9

6

∫ √
x

√
3x−18

f(x, y) dy dx

2 To use Theorem 1.2 (2), we must solve each of the given equations for

x in terms of y, obtaining x = y2 and x =
1

3
y2 + 6, with 0 ≤ y ≤ 3

Only one iterated integral is required in this case, since R is an Ry

region. Thus,∫∫
R
f(x, y) dA =

∫ 3

0

∫ 1
3
y2+6

x2

f(x, y) dx dy
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Double integral

Remark 1.1

Generally the choice. of the order of integration dy dx or dx dy depends
on the form of f(x, y) and the region R. Sometimes it is extremely
difficult, or even impossible to evaluate a given iterated double integral.
However, by reversing the order of integration from dy dx to dx dy, or vice
versa, it may be possible to find an equivalent iterated double integral that
can be easily evaluated. This technique is illustrated in the next example.

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 28 / 63



Double integral

Example 1.7

Given

∫ 4

0

∫ 2

√
y
y cosx5 dx dy, reverse the order of integration and evaluate

the resulting integral.

figure 1.5: graph
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Double integral

Solution

The given order of integration, dx dy, indicates that the region is an R
region. As illustrated in Figure 1.5, the left and right boundaries are the
graphs of the equations x =

√
y and x = 2 respectively, with 0 ≤ y ≤ 4.

Note that R is also an Rx region whose lower and upper boundaries are
given by y = 0 and y = x2 respectively, with 0 ≤ x ≤ 2. Hence by
Theorem 1.2 (1) the integral can be evaluated as follows:∫ 4

0

∫ 2

√
y
y cosx5 dx dy =

∫∫
R
y cosx5 dA =

∫ 2

0

∫ x2

0
y cosx5 dy dx

=

∫ 2

0

[
y2

2
cosx5

]x2

0

dx =

∫ 2

0

(
x4

2
cosx5

)
dx

=
1

10

∫ 2

0

(
5x4 cosx5

)
dx =

1

10

[
sinx5

]2
0

=
sin(32)

10
≈ 0.055
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Area and Volume

Volume

Previously, we saw that, if f(x, y) ≥ 0 and f is continuous, then the
volume of the solid that lies under the graph of z = f(x, y) and over a
region R in the xy-plane, is given by

V =

∫∫
R

f(x, y) dA

Area

In the volume formula, if we take f(x, y) = 1, we find the area of the
region R given by ∫∫

R

dA
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Area and Volume

Definition 2.1

If R = Rx = {(x, y) ∈ R2|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}, then∫∫
R

dA =

∫ b

a

∫ g2(x)

g1(x)
dy dx =

∫ b

a
[g2(x)− g1(x)] dx

figure 2.1: R = Rx
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Area and Volume

Definition 2.2

If R = Rx = {(x, y) ∈ R2|c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}, then∫∫
R

dA =

∫ d

c

∫ h2(y)

h1(y)
dx dy =

∫ d

c
[h2(y)− h1(y)] dy

figure 2.2: R = Ry
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Area and Volume

Example 2.1

Consider the triangle T =
{
(x, y) ∈ [0, 1]2|x+ y ≤ 1

}
. We have:

Area(T ) =

∫ 1

0

(∫ 1−x

0
1dy

)
dx =

∫ 1

0
(1− x)dx =

1

2
.
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Area and Volume

Example 2.2

An artificially created lake is bordered on one side by a straight dam. The
shape of the lake’s surface is that of a region in the xy-plane bounded by
the graphs of 2y = 16− x2 and x+ 2y = 4. Find the area A of the
surface of the lake.
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Area and Volume

Solution

we sketch the region and a typical rectangle of area dy dx, as in Figure
2.3. We solve the equations for y in terms of x, and we label the

boundaries of the region y = 2− x

2
and y = 8− x2

2
.

figure 2.3:
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Area and Volume

A =

∫ 4

−3

∫ 8−x2

2

2−x
2

dy dx =

∫ 4

−3
[y]

8−x2

2

2−x
2

dx

=

∫ 4

−3

[(
8− x2

2

)
−
(
2− x

2

)]
dx

=

∫ 4

−3

(
6 +

x

2
− x2

2

)
dx

=

[
+
x2

4
− x3

6

]4
−3

=
343

12
≈ 28.6
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Area and Volume

Example 2.3

If the depth of the lake described in Example 2.2 at the point (x, y) is
given by f(x, y) = x2 + y, find the volume of water in the lake.
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Area and Volume

Solution

Since the depth is nonnegative for all points in the region, the volume V
of water is the double integral over the region of the depth function. Thus
we have

V =

∫ 4

−3

∫ 8−x2

2

2−x
2

f(x, y) dy dx

=

∫ 4

−3

∫ 8−x2

2

2−x
2

(x2 + y) dy dx

=

∫ 4

−3

[
xy +

y2

2

]8−x2

2

2−x
2

dx =∫ 4

−3

{
x2
(
8− x2

2

)
+

1

2

(
8− x2

2

)2

−
[
x2
(
2− x

2

)
+

1

2

(
2− x

2

)2]}
dx
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Area and Volume

V =

∫ 4

−3

(
−3

8
x4 +

1

2
x3 +

15

8
x2 + x+ 30

)
dx

=

[
− 3

40
x5 +

1

8
x4 +

5

8
x3 +

1

2
x2 + 30x

]4
−3

=
7889

40
= 197.225
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Area and Volume

Example 2.4

Find the area A of the region in the xy-plane bounded by the graphs of
x = y3, x+ y = 2, and y = 0.

figure 2.4:
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Area and Volume

Solution∫ 1

0

∫ 2−y

y3
dx dy =

∫ 1

0

[∫ 2−y

y3
dx

]
dy =

∫ 1

0
[x]2−y

y3
dy

=

∫ 1

0
(2− y − y3) dy =

[
2y − y2

2
− y4

4

]1
0

=
5

4
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Area and Volume

Example 2.5

Consider the triangle T =
{
(x, y) ∈ [0, 1]2|x+ y ≤ 1

}
. We have:

Area(T ) =

∫ 1

0

(∫ 1−x

0
1dy

)
dx =

∫ 1

0
(1− x)dx =

1

2
.
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Area and Volume

Example 2.6

Consider the disc D of center 0 and radius 1. Then

Area(D) =

∫ 1

x=−1

(∫ √
1−x2

−
√
1−x2

1dy

)
dx

= 2

∫ 1

x=−1

√
1− x2dx = 2

∫ π
2

−π
2

√
1− sin2(θ) cos(θ)dθ

= 2

∫ π
2

−π
2

cos2(θ)dθ =

∫ π
2

−π
2

(1 + cos(2θ))dθ = π
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Area and Volume

Example 2.7

Consider the domain Ω = {−
√
2 ≤ y ≤

√
2, −2 + y2 ≤ x ≤ 2 + y2}.

x

y

∫∫
Ω
dxdy =

∫ √
2

−
√
2

(∫ 2−y2

−2+y2
1 dx

)
dy

=
16

3

√
2.
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Area and Volume

Example 2.8

The volume of the solid that lies under the graph of the function
f(x, y) = 4x2 + y2 and over the region in the xy−plane bounded by the
polygon with vertices (0, 0), (0, 1) and (2, 1).

V =

∫ 2

0

∫ 1

0
(4x2 + y2)dydx =

34

3
.
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Area and Volume

Example 2.9

The volume of the solid in the first octant bounded by the graphs of
equations
z = 4− x2, x+ y = 2, x = 0, y = 0, z = 0.

(2, 0)

(0, 2)
y = 2− x

V =

∫ 2

0

∫ 2−x

0
(4− x2)dydx =

20

3
.
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Area and Volume

Example 2.10

The volume of the solid in the first octant bounded by the graphs of
equations z = x, x2 + y2 = 16, x = 0, y = 0.

(4, 0)

(0, 4)

V =

∫ 4

0

∫ √
16−x2

0
xdydx =

64

3
.
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Area and Volume

Example 2.11

Find the volume V of the solid in the first octant bounded by the
coordinate planes, the paraboloid z = x2 + y2 + 1 and the plane
2x+ y = 2.

figure 2.5:
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Area and Volume

Solution

V =

∫ 1

0

∫ 2−2x

0
(x2 + y2 + 1) dy dx =

∫ 1

0

[
x2y +

y3

3
+ y

]2−2x

0

dx

=

∫ 1

0

(
−14

3
x3 + 10x2 − 10x+

14

3

)
dx

=

[
−7

6
x4 +

10

3
x3 − 5x2 +

14

3
x

]1
0

=
11

6
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Double Integrals in Polar Coordinates

Definition 3.1

Polar coordinates are defined by x = r cos θ, y = r sin θ. The area of the
shaded region R = {(r, θ) : a ≤ r ≤ b, α ≤ θ ≤ β}.

The integral of a continuous function f(x, y) over a polar rectangle R
given by a ≤ r ≤ b, α ≤ r ≤ β, is∫∫

R
f(x, y) dA =

∫ β

α

∫ b

a
f(r cos θ, r sin θ) r dr dθ
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Double Integrals in Polar Coordinates

Example 3.1

1 Find

∫∫
R
(2x− y) dA if R is the region in the first quadrant bounded

by the circle x2 + y2 = 4 and the lines x = 0 and y = x.

2 Find

∫∫
R
e−x2−y2 dA if D is the region bounded by the semicircle

x =
√

4− y2 and the y-axis.
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Double Integrals in Polar Coordinates

Definition 3.2

If f is continuous over a polar region of the form

D = {(r, θ) : α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}

then ∫∫
D
f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)
f(r cos θ, r sin θ) r dr dθ.
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Double Integrals in Polar Coordinates

Example 3.2

The volume under the paraboloid
z = f(x, y) = x2 + y2 and above
the disc x2 + y2 < 3.
In polar coordinates, the disc is
parameterized by: x = r cos θ,
y = r sin θ, with r ∈ [0, 3] and
θ ∈ [0, 2π]. Since polar coor-
dinates f(x, y) is transformed to
g(r, θ) = r2. Hence the volume
under the paraboloid z = x2 + y2

and above the disc x2 + y2 < 3 is

V =

∫ 3

0

∫ 2π

0
r2drdθ = 18π.

x

yz
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Double Integrals in Polar Coordinates

Exercise 3.1

Use polar coordinate to evaluate

1

∫ a

0

∫ √
a2−y2

0
ydxdy

2

∫ a

0

∫ √
a2−y2

0
(x2 + y2)

3
2dxdy

3 I =

∫∫
R
x2(x2 + y2)3dA, with R is the region bounded by the

semi-circle y =
√
1− x2 and x-axis.

4 J =

∫∫
R
(x+ y)dA, with R is the region bounded by the circle

x2 + y2 ⩽ 2y.

5 K =

∫∫
R

√
x2 + y2dA, with R is the region bounded by the triangle

with vertices (0, 0), (3, 0) and (3, 3).
BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 57 / 63



Table of contents

1 Double integral

2 Area and Volume

3 Double Integrals in Polar Coordinates

4 Surface Area

BEN AMIRA Aymen (King Saud University) Differential and Integral Calculus (Math 203) 58 / 63



Surface Area

Consider a surface S defined by z = f(x, y), for (x, y) in a closed region
R ∈ R2. We assume that f(x, y) ≥ 0 and f is continuously differentiable.
We assume also that no normal vector to S is parallel to the xy−plane.

(
∂f

∂x
,
∂f

∂y
) ̸= (0, 0) for all (x, y) ∈ R. The surface area of S is

A =

∫∫
R

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2dxdy.
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Surface Area

Example 4.1

Consider the surface z = 1− x2 − y2, for z ⩾ 0.

We have
∂f

∂x
= −2x and

∂f

∂y
= −2y. Then

A =

∫∫
x2+y2<1

√
1 + 4x2 + 4y2dxdy

=

∫ 2π

0

∫ 1

0
r
√
1 + 4r2drdθ

= 2π
1

12

[
(1 + 4r2)

3
2

]1
0
=

π.(5
3
2 − 1)

6
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Surface Area

Example 4.2

Consider the sphere S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2}. The area
of S is the double of the area of the surface of the upper half sphere
S′ = {(x, y, z) ∈ R3 : z =

√
1− x2 − y2}.

We have
∂z

∂x
= − x√

R2 − x2 − y2
and

∂z

∂y
= − y√

R2 − x2 − y2
.

The area is

A = 2

∫∫
x2+y2<R2

√
1 +

x2 + y2

R2 − x2 − y2
dxdy

= 2R

∫ 2π

0

∫ R

0

r√
R2 − r2

drdθ = 4πR2.
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Surface Area

Example 4.3

Consider the surface S = {(x, y, z) ∈ R3 : z = 13− 4x2 − 4y2} on the
domain z = 1, x > 0 and y < 0.

We have
∂z

∂x
= −8x and

∂z

∂y
= −8y. Then the area of S is

A =

∫∫
x2+y2<3,x>0,y<0

√
1 + 16(x2 + y2)dxdy

=

∫ π
2

0

∫ √
3

0

√
1 + 16r2rdrdθ

=
π

2

1

48

[
(1 + 16r2)

3
2

]√3

0
=

π

2
.
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Surface Area

Exercise 4.1

Find the area of the surface S if S is the part of the sphere
x2 + y2 + z2 = 4 that is inside the cylinder x2 + y2 = 2y.
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