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Area Between Curves.

In this section we are going to look at finding the area between two curves.

QUESTION:

How we can determine the area between y = f(z) and y = g(x) on the

interval [a, b]

Theorem 1.1 ( Area Between Curves)

Let f(x) and g(x) be continuous functions defind on [a,b] where

f(z) > g(x) for all x in [a,D].

The area of the region bounded by the curves y = f(z), y = g(x) and
the lines x = a and z = b is
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Area Between Curves.

b
A= / (upper function) - (lower function) dx, a<x<b
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The steps to calculate the area between curves

© Find the intersection points between the curves.

@ determine the upper function and the lower function.

© Calculate the integral:
b

A= / (upper function) - (lower function) dx

a
Which give us the required area.
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Area Between Two Curves (Example)

Example 1.1

Find the area enclosed between the graphs y = z and y = 22 — 2.

@ Points of intersection between y = 22 — 2 and y = « is:
?-2=zx=22-2-2=0=(z+1)(z—-2)=0
=z =-—1land z =2

@ Note that upper function is y = x and lower function is y = 2 — 2
Note that y = 22 — 2 is a parabola opens upward with vertex (0, —2),

and y = z is a straight line passing through the origin.

2 2
2 3 2 27
_ 2 _ 2 _ [T _*
eA—/CC (z°—2) dx /m x“+2dx [2 3+2x}_1
=il =il
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Area Between Two Curves (Example)

Example 1.2

Find the area enclosed between the graphs y = €%,y = 2% — 1,2 = —1,
and z =1

y f(x)

2 9(x)
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Area Between Two Curves (Example)

Note that upper function is y = e and lower function is y = 22 — 1
1

1 1
_ _ x _ .2 _ r _ —,..3
A= / (22— 1) dx /e x“+1dx {e 3% +$}_1

-1
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Area Between Two Curves (Example)

Example 1.3

Compute the area oh the region bounded by the curves

y=2x3and y = 3z — 2
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Area Between Two Curves (Example)

@ Points of intersection between y = 2% and y = 3z — 2
23 —-3r4+2=0=(r—1)(z22+2-2)=0
=zx=-2andzx=1
@ Note that upper function is y = 2 and lower function is y = 3z — 2

1 1
o A:/x3—(3x—2) dx:/x3—3x+2da:
~2 ~2
4 1
[,
3 27
= T+6="
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Area Between Two Curves (Example)

Example 1.4

Find the area enclosed between the graphs
f(z) = 22 and g(z) = x between z = 0, and = = 2.

f(x)
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Area Between Two Curves (Example)

71)

9

@ we see that the two graphs intersect at (0,0) and (
x

1
@ In the interval [0, 1], we have g(z) = = > f(z) = 22
and in the interval [1,2], we have f(z) = 22 > g(z) =

9 Thereflore the desired ar2ea is:

2 371 3 272
- - 2 2— = L: _£ z _:'U
A—/(:c a:)da:+/(x x) dx [2 OL—’_[S 2]1
0

1

—_

5
=-4+2=1
66

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Table of contents

9 Volume Of A Solid Revolution

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Volume Of A Solid Revolution (The Disk Method)

Suppose we have a curve y = f(z)

1 y = fk)

Imagine that the part of the curve between the ordinates x = a and z = b
is rotated about the x-axis through 360 degree.
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Volume Of A Solid Revolution (The Disk Method)

Now if we take a cross-section of the solid, parallel to the y-axis, this

cross-section will be a circle.
y =/

But rather than take a cross-section, let us take a thin disc of thickness dx,
with the face of the disc nearest the y-axis at a distance x from the origin.
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Volume Of A Solid Revolution (The Disk Method)

y = fx)

yi iy+dy
E&i

x=a X x=b

The radius of this circular face will then be y. The radius of the other
circular face will be y + 0y, where dy is the change in y caused by the
small positive increase in x, dx.
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Volume Of A Solid Revolution (The Disk Method)

The volume §V of the disc is then given by the volume of a cylinder,
wr2h, so that

oV = nridx

So the volume V of the solid of revolution is given by

z=b z=b b

= i = i 250 = 2
V= Jim. 7a5V M}gogﬂy dx W/[f(x)] dx
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Examples

Example 2.1

The curve y = 22 — 1 is rotated about the x-axis through 360 degree. Find
the volume of the solid generated when the area contained between the
curve and the x-axis is rotated about the x-axis by 360 degree.

b

V:ﬁ/[f(x)]Q daz:ﬂ'/l[an — 1] dzx
-1

a

1
:W/(x4—2x2+1)dx B
“1

The graph of y = 22 — 1

_ x® 223 acl _167r
B ., 15
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Examples

Example 2.2

Find the volume of the solid formed by revolving the region bounded by
the graph of f(x) = —22 +  and the x-axis about the x-axis.

¥ y
A

T y=-x+x
f) =—x*+x

Ax 1 Fe \___,/

Using the Disk Method, you can find the volume of the solid of revolution.

L
2
1
1

h, I,

1 1 1
V:ﬂ'/[f(ﬂj)]2 dx:w/[(—xQ—Fx)Q d$:7r/(l’4—2333+$2) dx
0 L0 0
_ z° 224 z3 _m
—ﬂ?—T+?L 30
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Volume Of A Solid Revolution (The Washer Method)

The Washer Method

Let f and g be continuous and

nonnegative on the closed interval

[a,b], if f(z)> g(x) for all x

in the

interval, then the volume of the solid

formed by revolving the region

bounded by the graphs of f(x) and

g(x) (a <z < b), about the x-axis is:
b

v=r [{ 1P - b | o

f(x) is the outer radius
and g(z) is the inner radius.

Plane region

(a)

Solid of revolution
with hole

"

(b)
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Examples

Example 2.3

Find the volume of the solid formed by revolving the region bounded by

the graphs of f(z) = V25 — 22 and g(z) = 3

We sketch the bounding region and the solid of revolution:

Solid of revolution

(a) (b)
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First find the points of intersection of f and g, by setting f(z) equal to
g(z) and solving for z.

V25 —22=3=2-2=9=2*=16=2=+4

Using f(x) as the outer radius and g(x) as the inner radius, you can find
the volume of the solid as shown.

v=r [{ 1P - b } o= / (V25— 22)? — (37 da

a —4

4
31 256
:ﬂ/(16—1‘2)d:v:7r[16w—x] = 2o
—4
4
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Examples

Example 2.4

Calculate the volume of the solid obtained by rotating the region bounded
by the parabola y = 22 and the square root function y = /z around the
T—axis

We sketch the bounding region and the solid of revolution:
y
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Both curves intersect at the points x = 0 and = = 1. Using the washer
method, we have
b
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Examples

Example 2.5

Find the volume of the solid obtained by rotating the region bounded by
two parabolas y = 22 + 1 and y = 3 — 2% about the z—axis.

We sketch the bounding region and the solid of revolution:

=Y
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First we determine the boundaries a and b:
P?+1=3-2’=>22=2=2>=1=z==+1

Hence the limits of integration are ¢ = 1 and b = —1.
Using the washer method, we find the volume of the solid:

Ven /b {171 - o } ao

a
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Volume Of A Solid Revolution (Cylindrical shells method)

The method of cylindrical shells

the cylindrical shell with inner radius 71, outer radius ro , and height h. Its
volume V is calculated by subtracting the volume V; of the inner cylinder
from the volume V5 of the outer cylinder:

V:V2—V1:7rr%h—7rr%h

= m(r3 —r})h = n(ro—r1)(r2 +7r1)h
Ty +T1
2

=27 h(ro—r1) = V = 2nrhAr
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Volume Of A Solid Revolution (Cylindrical shells method)

let be the solid obtained by rotating about the -axis the region bounded by

y = f(),
where f(z) >0, y=0, x =a and z = b, where b > a > 0.

y
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Volume Of A Solid Revolution (Cylindrical shells method)

We divide the interval into n subintervals [x;_1, z;11] of equal width and
let T; be the midpoint of the ¢ th subinterval. If the rectangle with base
[zi—1,x;] and height f(ZT;) is rotated about the y— axis then the result is
a cylindrical shell with average radius T; height f(Z;) and thickness Az so
its volume is:

Vi = @2m)zilf(zi)]Ax
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Volume Of A Solid Revolution (Cylindrical shells method)

An approximation to the volume of is given by the sum of the volumes of
these shells:

=1 =1

This approximation appears to become better as n — oo But, from the
definition of an integral, we know that

n b

Tim 3" 2 (7)) Az = / oz f(z) do
i=1 ;
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Volume Of A Solid Revolution (Cylindrical shells method)

The volume of the solid, obtained by rotating about the y—axis the region
under the curve y = f(z) from a to b, is

b
V= /271'1:f($)d:1} where 0 <a<b

The best way to remember the last Formula is to think of a typical shell,
cut and flattened as in Figure with radius x, circumference 27z, height
f(z) and thickness Az or dx :

[l em [ ax

[ N—;
circumference  height

I«—x | fx) £
|
=== _|‘____ Ax

x x 2mx
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Examples

Example 3.1
Find the volume of the solid obtained by rotating about the y—axis the
region bounded by y = 222 — 23 and y = 0

by the shell method, the volume is

o —
o
8
w
|
8
S
S~—
Q
3
Il
o
3
| — |
v |
|
el

2
V= /(2713:)(2302 —2%) do = 2r
0
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Examples

Example 3.2

Find the volume of the solid obtained by rotating about the y—axis the
region between y = = and y = z°.

y=x
1 \Neepr ™
= 27r/(:132 — %) dx S~ v

height = x — x*

X

Il
[\V]
=)
— O
mﬁ\,
|
ISES
| )
—
) A
=
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Examples

Example 3.3
Use cylindrical shells to find the volume of the solid obtained by rotating
about the z—axis the region under the curve y = \/z from 0 to 1.

For rotation about the x—axis we see that a typical shell has radius y,
circumference 27y , and height 1 — 32 . So the volume is

=

1
V= / 27Ty ]- - ) dy 1 shell height = 1 — y?
0

(y—v°) dy

I

o

3
—

o
[VE

I

[N}

3
— O

1
y__ﬁ] _
2 4 0
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Examples

Example 3.4

Find the volume of the solid obtained by rotating the region bounded by
y = — 22 and y = 0 about the line z = 2.

the region and a cylindrical shell formed by rotation about the line z = 2.
It has radius 2 — x, circumference 27(2 — z), and height x — 2

1 1
V= [2r(2—2)(x—2?) dov =27 [(23 — 322 + 22) dx
0 0

= 2#[%4 — 4+ =1Z
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