Chapter 2: Application of the definite integral

Table of contents

(1) Area Between Curves.
(2) Volume Of A Solid Revolution
(3) Volume Of A Solid Revolution (Cylindrical shells method)

Table of contents

(1) Area Between Curves.

(2) Volume Of A Solid Revolution

(3) Volume Of A Solid Revolution (Cylindrical shells method)

Area Between Curves.

In this section we are going to look at finding the area between two curves.

QUESTION:

How we can determine the area between $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$

Theorem 1.1 (Area Between Curves)

Let $f(x)$ and $g(x)$ be continuous functions defind on $[a, b]$ where $f(x) \geq g(x)$ for all x in $[a, b]$.
The area of the region bounded by the curves $y=f(x), \quad y=g(x)$ and the lines $x=a$ and $x=b$ is

$$
\int_{a}^{b}[f(x)-g(x)] d x
$$

Area Between Curves.

$A=\int_{a}^{b}$ (upper function) - (lower function) $d x, \quad a \leq x \leq b$

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

The steps to calculate the area between curves

(1) Find the intersection points between the curves.
(2) determine the upper function and the lower function.
(3) Calculate the integral:
$A=\int_{a}^{b}$ (upper function) - (lower function) $d x$
Which give us the required area.

Area Between Two Curves (Example)

Example 1.1

Find the area enclosed between the graphs $y=x$ and $y=x^{2}-2$.

Solution

(1) Points of intersection between $y=x^{2}-2$ and $y=x$ is:

$$
\begin{aligned}
& x^{2}-2=x \Rightarrow x^{2}-x-2=0 \Rightarrow(x+1)(x-2)=0 \\
& \Rightarrow x=-1 \text { and } x=2
\end{aligned}
$$

(2) Note that upper function is $y=x$ and lower function is $y=x^{2}-2$ Note that $y=x^{2}-2$ is a parabola opens upward with vertex $(0,-2)$, and $y=x$ is a straight line passing through the origin.
(3) $A=\int_{-1}^{2} x-\left(x^{2}-2\right) d x=\int_{-1}^{2} x-x^{2}+2 d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}+2 x\right]_{-1}^{2}=\frac{27}{6}$

Area Between Two Curves (Example)

Example 1.2

Find the area enclosed between the graphs $y=e^{x}, y=x^{2}-1, x=-1$, and $x=1$

Area Between Two Curves (Example)

Solution

Note that upper function is $y=e^{x}$ and lower function is $y=x^{2}-1$
$\begin{aligned} A=\int_{-1}^{1} e^{x}-\left(x^{2}-1\right) d x=\int_{-1}^{1} e^{x}-x^{2}+1 d x & =\left[e^{x}-\frac{1}{3} x^{3}+x\right]_{-1}^{1} \\ & =e-\frac{1}{e}+\frac{4}{3}\end{aligned}$

Area Between Two Curves (Example)

Example 1.3

Compute the area oh the region bounded by the curves $y=x^{3}$ and $y=3 x-2$

Area Between Two Curves (Example)

(1) Points of intersection between $y=x^{3}$ and $y=3 x-2$

$$
\begin{aligned}
& x^{3}-3 x+2=0 \Rightarrow(x-1)\left(x^{2}+x-2\right)=0 \\
& \Rightarrow x=-2 \text { and } x=1
\end{aligned}
$$

(2) Note that upper function is $y=x^{3}$ and lower function is $y=3 x-2$
(3) $A=\int_{-2}^{1} x^{3}-(3 x-2) d x=\int_{-2}^{1} x^{3}-3 x+2 d x$

$$
\begin{gathered}
=\left[\frac{x^{4}}{4}-\frac{3}{2} x^{2}+2 x\right]_{-2}^{1} \\
=\frac{3}{4}+6=\frac{27}{4}
\end{gathered}
$$

Area Between Two Curves (Example)

Example 1.4

Find the area enclosed between the graphs
$f(x)=x^{2}$ and $g(x)=x$ between $x=0$, and $x=2$.

Area Between Two Curves (Example)

(1) we see that the two graphs intersect at $(0,0)$ and $(1,1)$.
(2) In the interval $[0,1]$, we have $g(x)=x \geq f(x)=x^{2}$, and in the interval $[1,2]$, we have $f(x)=x^{2} \geq g(x)=x$
(3) Therefore the desired area is:

$$
\begin{aligned}
& A=\int_{0}^{1}\left(x-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-x\right) d x \\
&=\left[\frac{x^{2}}{2}-\frac{x^{3}}{0}\right]_{0}^{1}+\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{2} \\
&= \frac{1}{6}+\frac{5}{6}=1
\end{aligned}
$$

Table of contents

(1) Area Between Curves.
(2) Volume Of A Solid Revolution

(3) Volume Of A Solid Revolution (Cylindrical shells method)

Volume Of A Solid Revolution (The Disk Method)

Suppose we have a curve $y=f(x)$

Imagine that the part of the curve between the ordinates $x=a$ and $x=b$ is rotated about the x -axis through 360 degree.

Volume Of A Solid Revolution (The Disk Method)

Now if we take a cross-section of the solid, parallel to the y-axis, this cross-section will be a circle.

But rather than take a cross-section, let us take a thin disc of thickness δx, with the face of the disc nearest the y-axis at a distance x from the origin.

Volume Of A Solid Revolution (The Disk Method)

The radius of this circular face will then be y . The radius of the other circular face will be $y+\delta y$, where δy is the change in y caused by the small positive increase in $x, \delta x$.

Volume Of A Solid Revolution (The Disk Method)

The volume δV of the disc is then given by the volume of a cylinder, $\pi r^{2} h$, so that

$$
\delta V=\pi r^{2} \delta x
$$

So the volume V of the solid of revolution is given by

$$
V=\lim _{\delta x \rightarrow 0} \sum_{x=a}^{x=b} \delta V=\lim _{\delta x \rightarrow 0} \sum_{x=a}^{x=b} \pi y^{2} \delta x=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Examples

Example 2.1

The curve $y=x^{2}-1$ is rotated about the x-axis through 360 degree. Find the volume of the solid generated when the area contained between the curve and the x-axis is rotated about the x-axis by 360 degree.

$$
\begin{gathered}
V=\pi \int_{a}^{b}[f(x)]^{2} d x=\pi \int_{-1}^{1}\left[x^{2}-1\right]^{2} d x \\
=\pi \int_{-1}^{1}\left(x^{4}-2 x^{2}+1\right) d x \\
=\left[\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x\right]_{-1}^{1}=\frac{16 \pi}{15}
\end{gathered}
$$

The graph of $y=x^{2}-1$

Examples

Example 2.2

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=-x^{2}+x$ and the x -axis about the x -axis.

Using the Disk Method, you can find the volume of the solid of revolution.
$V=\pi \int_{0}^{1}[f(x)]^{2} d x=\pi \int_{0}^{1}\left[\left(-x^{2}+x\right)^{2} d x=\pi \int_{0}^{1}\left(x^{4}-2 x^{3}+x^{2}\right) d x\right.$
$=\pi\left[\frac{x^{5}}{5}-\frac{2 x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1}=\frac{\pi}{30}$

Volume Of A Solid Revolution (The Washer Method)

The Washer Method

Let f and g be continuous and nonnegative on the closed interval [a, b], if $f(x) \geq g(x)$ for all x in the interval, then the volume of the solid formed by revolving the region bounded by the graphs of $f(x)$ and $g(x)(a \leq x \leq b)$, about the x-axis is:
$V=\pi \int_{a}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x$
$f(x)$ is the outer radius and $g(x)$ is the inner radius.

(a)

Solid of revolution with hole

(b)

Examples

Example 2.3

Find the volume of the solid formed by revolving the region bounded by the graphs of $f(x)=\sqrt{25-x^{2}}$ and $g(x)=3$

We sketch the bounding region and the solid of revolution:

(a)

(b)

Examples

First find the points of intersection of f and g, by setting $f(x)$ equal to $g(x)$ and solving for x.
$\sqrt{25-x^{2}}=3 \Rightarrow 25-x^{2}=9 \Rightarrow x^{2}=16 \Rightarrow x= \pm 4$
Using $f(x)$ as the outer radius and $g(x)$ as the inner radius, you can find the volume of the solid as shown.

$$
\begin{aligned}
& V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x=\pi \int_{-4}^{4}\left(\sqrt{25-x^{2}}\right)^{2}-(3)^{2} d x \\
& =\pi \int_{-4}^{4}\left(16-x^{2}\right) d x=\pi\left[16 x-\frac{x^{3}}{3}\right]_{-4}^{4}=\frac{256 \pi}{3}
\end{aligned}
$$

Examples

Example 2.4

Calculate the volume of the solid obtained by rotating the region bounded by the parabola $y=x^{2}$ and the square root function $y=\sqrt{x}$ around the x-axis

We sketch the bounding region and the solid of revolution:

Examples

Both curves intersect at the points $x=0$ and $x=1$. Using the washer method, we have
$V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x=\pi \int_{0}^{1}(\sqrt{x})^{2}-\left(x^{2}\right)^{2} d x$
$=\pi \int_{0}^{1}\left(x-x^{4}\right) d x=\pi\left[\frac{x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{1}=\pi\left[\frac{1}{2}-\frac{1}{5}\right]=\frac{3 \pi}{10}$

Examples

Example 2.5

Find the volume of the solid obtained by rotating the region bounded by two parabolas $y=x^{2}+1$ and $y=3-x^{2}$ about the x-axis.

We sketch the bounding region and the solid of revolution:

Examples

First we determine the boundaries a and b :
$x^{2}+1=3-x^{2} \Rightarrow 2 x^{2}=2 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1$ Hence the limits of integration are $a=1$ and $b=-1$.
Using the washer method, we find the volume of the solid:

$$
\begin{aligned}
& V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x \\
& =\pi \int_{-1}^{1}\left[\left(3-x^{2}\right)^{2}-\left(x^{2}+1\right)^{2}\right] d x=\pi \int_{-1}^{1}\left(8-8 x^{2}\right) d x \\
& =8 \pi \int_{-1}^{1}\left(1-x^{2}\right) d x=8 \pi\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=\frac{32 \pi}{3}
\end{aligned}
$$

Table of contents

(1) Area Between Curves.

(2) Volume Of A Solid Revolution
(3) Volume Of A Solid Revolution (Cylindrical shells method)

Volume Of A Solid Revolution (Cylindrical shells method)

The method of cylindrical shells
the cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h. Its volume V is calculated by subtracting the volume V_{1} of the inner cylinder from the volume V_{2} of the outer cylinder:

$$
\begin{aligned}
& V=V_{2}-V_{1}=\pi r_{2}^{2} h-\pi r_{1}^{2} h \\
= & \pi\left(r_{2}^{2}-r_{1}^{2}\right) h=\pi\left(r_{2}-r_{1}\right)\left(r_{2}+r_{1}\right) h \\
= & 2 \pi \frac{r_{2}+r_{1}}{2} h\left(r_{2}-r_{1}\right) \Rightarrow V=2 \pi r h \Delta r
\end{aligned}
$$

Volume Of A Solid Revolution (Cylindrical shells method)

let be the solid obtained by rotating about the -axis the region bounded by $y=f(x)$,
where $f(x) \geq 0, y=0, x=a$ and $x=b$, where $b>a \geq 0$.

Volume Of A Solid Revolution (Cylindrical shells method)

We divide the interval into n subintervals $\left[x_{i-1}, x_{i+1}\right]$ of equal width and let $\overline{x_{i}}$ be the midpoint of the i th subinterval. If the rectangle with base [x_{i-1}, x_{i}] and height $f\left(\bar{x}_{i}\right)$ is rotated about the y - axis then the result is a cylindrical shell with average radius \bar{x}_{i} height $f\left(\bar{x}_{i}\right)$ and thickness Δx so its volume is:

$$
V_{i}=(2 \pi) \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

Volume Of A Solid Revolution (Cylindrical shells method)

An approximation to the volume of is given by the sum of the volumes of these shells:

$$
V \approx \sum_{i=1}^{n} V_{i}=\sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

This approximation appears to become better as $n \rightarrow \infty$ But, from the definition of an integral, we know that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x=\int_{a}^{b} 2 \pi x f(x) d x
$$

Volume Of A Solid Revolution (Cylindrical shells method)

The volume of the solid, obtained by rotating about the y-axis the region under the curve $y=f(x)$ from a to \mathbf{b}, is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \text { where } 0 \leq a<b
$$

The best way to remember the last Formula is to think of a typical shell, cut and flattened as in Figure with radius x , circumference $2 \pi x$, height $f(x)$ and thickness Δx or $d x$:

$$
\int_{a}^{b} \underbrace{(2 \pi x)}_{\text {circumference }} \underbrace{[f(x)]}_{\text {height }} d x
$$

Examples

Example 3.1

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$
by the shell method, the volume is

$$
\begin{aligned}
V=\int_{0}^{2}(2 \pi x)\left(2 x^{2}-x^{3}\right) d x & =2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x=2 \pi\left[\frac{x^{4}}{2}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =2 \pi\left(8-\frac{32}{5}\right)=\frac{16}{5} \pi
\end{aligned}
$$

Examples

Example 3.2

Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.

$$
\begin{aligned}
V & =\int_{0}^{1}(2 \pi x)\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{\pi}{6}
\end{aligned}
$$

Examples

Example 3.3

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

For rotation about the x-axis we see that a typical shell has radius y, circumference $2 \pi y$, and height $1-y^{2}$. So the volume is

$$
\begin{aligned}
V & =\int_{0}^{1}(2 \pi y)\left(1-y^{2}\right) d y \\
& =2 \pi \int_{0}^{1}\left(y-y^{3}\right) d y \\
& =2 \pi\left[\frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{1}=\frac{\pi}{2}
\end{aligned}
$$

Examples

Example 3.4

Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$. the region and a cylindrical shell formed by rotation about the line $x=2$. It has radius $2-x$, circumference $2 \pi(2-x)$, and height $x-x^{2}$.
$V=\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x$
$=2 \pi\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1}=\frac{\pi}{2}$

