## Thermodynamics: An Engineering Approach Seventh Edition in SI Units <br> Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011

## Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Objectives

- Examine the moving boundary work or $P d V$ work commonly encountered in reciprocating devices such as automotive engines and compressors.
- Identify the first law of thermodynamics as simply a statement of the conservation of energy principle for closed (fixed mass) systems.
- Develop the general energy balance applied to closed systems.
- Define the specific heat at constant volume and the specific heat at constant pressure.
- Relate the specific heats to the calculation of the changes in internal energy and enthalpy of ideal gases.
- Describe incompressible substances and determine the changes in their internal energy and enthalpy.
- Solve energy balance problems for closed (fixed mass) systems that involve heat and work interactions for general pure substances, ideal gases, and incompressible substances.


## MOVING BOUNDARY WORK

Moving boundary work ( $P$ dV work):
The expansion and compression work in a piston-cylinder device.

$$
\delta W_{b}=F d s=P A d s=P d V
$$

$$
W_{b}=\int_{1}^{2} P d V \quad(\mathrm{~kJ})
$$

Quasi-equilibrium process:
A process during which the system remains nearly in equilibrium at all times.
$W_{b}$ is positive $\rightarrow$ for expansion
$W_{b}$ is negative $\rightarrow$ for compression

The work associated with a moving boundary is called boundary work.

A gas does a differential amount of work $\delta W_{b}$ as it forces the piston to move by a differential amount $d s$.



FIGURE 4-3
The area under the process curve on a $P-V$ diagram represents the boundary work.

Area $=A=\int_{1}^{2} d A=\int_{1}^{2} P d V$
The area under the process curve on a P-V diagram is equal, in magnitude, to the work done during a quasi-equilibrium expansion or compression process of a closed system. during a process path followed as

The boundary work done depends on the well as the end states.


FIGURE 4-5
The net work done during a cycle is the difference between the work done
by the system and the work done on the system.

## Polytropic, Isothermal, and Isobaric processes

$P=C V^{-n}$ Polytropic process: $C, n$ (polytropic exponent) constants

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-n} d V=C \frac{V_{2}^{-n+1}-V_{1}^{-n+1}}{-n+1}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n} \text { Polytropic } \text { process }
$$

$$
W_{b}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n} \text { Polytropic and for ideal gas }
$$

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-1} d V=P \vee \ln \left(\frac{V_{2}}{V_{1}}\right) \begin{aligned}
& \text { When } n=1 \\
& \text { (isothermal process) }
\end{aligned}
$$

$$
W_{b}=\int_{1}^{2} P d V=P_{0} \int_{1}^{2} d V=P_{0}\left(V_{2}-V_{1}\right) \text { Constant pressure process }
$$

What is the boundary work for a constantvolume process?

Schematic and $P$-V diagram for a polytropic process.



## ENERGY BALANCE FOR CLOSED SYSTEMS

| $E_{\text {in }}-E_{\text {out }}$ | $\Delta E_{\text {system }}$ | (kJ) |
| :---: | :---: | :---: |
| Net energy transfer by heat, work, and mas | Change in internal, kinetic, potential, etc., energies |  |
| $\dot{E}_{\text {in }}-\dot{E}_{\text {out }}$ | $d E_{\text {sysem }} / d t$ |  |
| by heat, work, and mass | kinetict popenialile el |  |

> Energy balance in the rate form

The total quantities are related to the quantities per unit time is

$$
\begin{aligned}
& Q=\dot{Q} \Delta t, \quad W=\dot{W} \Delta t, \quad \text { and } \quad \Delta E=(d E / d t) \Delta t \quad(\mathrm{~kJ}) \\
& e_{\text {in }}-e_{\text {out }}=\Delta e_{\text {system }} \quad(\mathrm{kJ} / \mathrm{kg}) \begin{array}{l}
\text { Energy balance per } \\
\text { unit mass basis }
\end{array} \\
& \delta E_{\text {in }}-\delta E_{\text {out }}=d E_{\text {system }} \quad \text { or } \quad \delta e_{\text {in }}-\delta e_{\text {out }}=d e_{\text {system }}^{\text {Energy balance in }} \begin{array}{l}
\text { differential form }
\end{array} \\
& W_{\text {net,out }}=Q_{\text {net,in }} \text { or } \quad \dot{W}_{\text {net,out }}=\dot{Q}_{\text {net,in }} \begin{array}{l}
\text { Energy balance } \\
\text { for a cycle }
\end{array}
\end{aligned}
$$

$$
Q_{\text {net, in }}-W_{\text {net,out }}=\Delta E_{\text {system }} \quad \text { or } \quad Q-W=\Delta E
$$

$$
\begin{aligned}
& Q=Q_{\text {net, in }}=Q_{\text {in }}-Q_{\text {out }} \\
& W=W_{\text {net,out }}=W_{\text {out }}-W_{\text {in }}
\end{aligned}
$$

Energy balance when sign convention is used: (i.e., heat input and work output are positive; heat output and work input are negative).


FIGURE 4-11
For a cycle $\Delta E=0$, thus $Q=W$.


Various forms of the first-law relation for closed systems when sign convention is used.

The first law cannot be proven mathematically, but no process in nature is known to have violated the first law, and this should be taken as sufficient proof.

## Energy balance for a constant-pressure expansion or compression process

General analysis for a closed system undergoing a quasi-equilibrium constant-pressure process. $Q$ is to the system and $W$ is from the system.

$$
\underbrace{E_{\mathrm{in}}-E_{\mathrm{out}}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array}}=\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, kinetic, } \\
\text { potential, etc., energies }
\end{array}}
$$

$$
\begin{aligned}
Q-W & =\Delta U+\Delta K E^{7}+\Delta P E^{0} \\
Q-W_{\text {other }}-W_{b} & =U_{2}-U_{1}
\end{aligned}
$$

$$
Q-W_{\text {other }}-P_{0}\left(V_{2}-V_{1}\right)=U_{2}-U_{1}
$$

$$
Q-W_{\text {other }}=\left(U_{2}+P_{2} V_{2}\right)-\left(U_{1}+P_{1} V_{1}\right)
$$

$$
H=U+P V
$$

$$
Q-W_{\text {other }}=H_{2}-H_{1}
$$

For a constant-pressure expansion or compression process:

## $\Delta U+W_{b}=\Delta H$

An example of constant-pressure process

$$
\begin{aligned}
W_{e, \text { in }}-Q_{\mathrm{out}}-W_{b} & =\Delta U \\
W_{e, \text { in }}-Q_{\text {out }} & =\Delta H=m\left(h_{2}-h_{1}\right)
\end{aligned}
$$




$$
\begin{array}{r}
\Delta H \\
Q-W_{\text {other }}-W_{b}=\Delta U \\
Q-W_{\text {other }}=\Delta H
\end{array}
$$

## FIGURE 4-14

For a closed system undergoing a quasi-equilibrium, $P=$ constant process, $\Delta U+W_{b}=\Delta H$. Note that this relation is NOT valid for closed systems processes during which pressure DOES NOT remain constant.


FIGURE 4-16
Expansion against a vacuum involves no work and thus no energy transfer.

## SPECIFIC HEATS

Specific heat at constant volume, $c_{v}$ : The energy required to raise the temperature of the unit mass of a substance by one degree as the volume is maintained constant.

Specific heat at constant pressure, $c_{p}$ : The energy required to raise the temperature of the unit mass of a substance by one degree as the pressure is maintained constant.


FIGURE 4-18
Specific heat is the energy required to raise the temperature of a unit mass of a substance by one degree in a specified way.

4.5 kJ


## FIGURE 4-17

It takes different amounts of energy to raise the temperature of different substances by the same amount.


0.718 kJ

0.855 kJ

FIGURE 4-21
The specific heat of a substance changes with temperature.

- The equations in the figure are valid for any substance undergoing any process.
- $c_{v}$ and $c_{p}$ are properties.
- $c_{\nu}$ is related to the changes in internal energy and $c_{p}$ to the changes in enthalpy.
- A common unit for specific heats is $\mathrm{kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ or $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$. Are these units identical?


## True or False? <br> $c_{p}$ is always greater than $c_{v}$

$$
c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

$=$ the chage in internal energy with temperature at constant volume

$$
c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

$=$ the chage in enthalpy with temperature at constant pressure

Formal definitions of $c_{v}$ and $c_{p}$.

## INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF IDEAL GASES



FIGURE 4-22
Schematic of the experimental apparatus used by Joule.

Joule showed using this experimental apparatus that $u=u(T)$


For ideal gases, $u, h, c_{v}$, and $c_{p}$ vary with temperature only.

- At low pressures, all real gases approach ideal-gas behavior, and therefore their specific heats depend on temperature only.
- The specific heats of real gases at low pressures are called ideal-gas specific heats, or zero-pressure specific heats, and are often denoted $c_{p 0}$ and $c_{v 0}$.

- $u$ and $h$ data for a number of gases have been tabulated.
These tables are obtained by choosing an arbitrary reference point and performing the integrations by treating state 1 as the reference state.

| Air |  |  |
| :---: | :---: | :---: |
| $T, \mathrm{~K}$ | $u, \mathrm{~kJ} / \mathrm{kg}$ | $h, \mathrm{~kJ} / \mathrm{kg}$ |
| 0 | 0 | 0 |
| . | . | . |
| 300 | 214.07 | 300.19 |
| 310 | 221.25 | 310.24 | tables, 0 K is chosen as the reference temperature.

Internal energy and enthalpy change when specific heat is taken constant at an average value

$$
\begin{align*}
& u_{2}-u_{1}=c_{v, \mathrm{avg}}\left(T_{2}-T_{1}\right) \\
& h_{2}-h_{1}=c_{p, \mathrm{avg}}\left(T_{2}-T_{1}\right) \tag{kJ/kg}
\end{align*}
$$



$$
\begin{aligned}
\Delta u & =c_{\vee} \Delta T \\
& =7.18 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$



$$
\begin{aligned}
\Delta u & =c_{v} \Delta T \\
& =7.18 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$



## FIGURE 4-26

For small temperature intervals, the specific heats may be assumed to vary linearly with temperature.

## FIGURE 4-27

The relation $\Delta u=c_{\mathrm{v}} \Delta T$ is valid for any kind of process, constant-volume or not.

## Three ways of calculating $\Delta u$ and $\Delta h$

1. By using the tabulated $u$ and $h$ data. This is the easiest and most accurate way when tables are readily available.
2. By using the $c_{\nu}$ or $c_{p}$ relations (Table A-2c) as a function of temperature and performing the integrations. This is very inconvenient for hand calculations but quite desirable for computerized calculations. The results obtained are very accurate.
3. By using average specific heats. This is very simple and certainly very convenient when property tables are not available. The results obtained are reasonably accurate if the temperature interval is not very large.


Three ways of calculating $\Delta u$.

## Specific Heat Relations of Ideal Gases

$$
\begin{gathered}
h=u+R T \\
d h=d u+R d T \\
d h=c_{p} d T \text { and } d u=c_{v} d T
\end{gathered}
$$

$$
\}
$$

The relationship between $c_{p}, c_{v}$ and $R$

$$
c_{p}=c_{v}+R \quad(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
$$

On a molar basis

$$
\bar{c}_{p}=\bar{c}_{v}+R_{u} \quad(\mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K})
$$

$$
k=\frac{c_{p}}{c_{v}} \quad \begin{aligned}
& \text { Specific } \\
& \text { heat ratio }
\end{aligned}
$$

- The specific ratio varies with temperature, but this variation is very mild.
- For monatomic gases (helium, argon, etc.), its value is essentially constant at 1.667.
- Many diatomic gases, including air, have a specific heat ratio of about 1.4 at room temperature.


## INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

Incompressible substance: A substance whose specific volume (or density) is constant. Solids and liquids are incompressible substances.


FIGURE 4-33
The specific volumes of incompressible substances remain constant during a process.


FIGURE 4-34
The $c_{v}$ and $c_{p}$ values of incompressible substances are identical and are denoted by $c$.

## Internal Energy Changes

$$
d u=c_{v} d T=c(T) d T
$$

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c(T) d T \quad(\mathrm{~kJ} / \mathrm{kg})
$$

$\Delta u \cong c_{\text {avg }}\left(T_{2}-T_{1}\right) \quad(\mathrm{kJ} / \mathrm{kg})$

## Enthalpy Changes

$$
\begin{aligned}
& h=u+P v \\
& d h=d u+v d P+P d v=d u+v d P \\
& \Delta h=\Delta u+v \Delta P \cong c_{\text {avg }} \Delta T+v \Delta P \quad(\mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

For solids, the term $\vee \Delta P$ is insignificant and thus $\Delta h=\Delta u \cong c_{\text {avg }} \Delta T$. For liquids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters $(\Delta P=0): \Delta h=\Delta u \cong c_{\text {avg }} \Delta T$
2. Constant-temperature processes, as in pumps $(\Delta T=0): \Delta h=\vee \Delta P$
$h_{@ P, T} \cong h_{f @ T}+V_{f @ T}\left(P-P_{\text {sat @ } T}\right)$ The enthalpy of a
Usually a more accurate relation than $h_{@ P, T} \cong h_{f @ T}$

## Summary

- Moving boundary work
$\checkmark W_{b}$ for an isothermal process
$\checkmark W_{b}$ for a constant-pressure process
$\checkmark W_{b}$ for a polytropic process
- Energy balance for closed systems
$\checkmark$ Energy balance for a constant-pressure expansion or compression process
- Specific heats
$\checkmark$ Constant-pressure specific heat, $c_{p}$
$\checkmark$ Constant-volume specific heat, $c_{v}$
- Internal energy, enthalpy, and specific heats of ideal gases
$\checkmark$ Specific heat relations of ideal gases
- Internal energy, enthalpy, and specific heats of incompressible substances (solids and liquids)

