
14. Energy Methods
CHAPTER OBJECTIVES
• Apply energy methods to 

solve problems involving g
deflection

• Discuss work and strain 
energy, and development of 
the principle of conservation 
of energof energy

• Use principle of conservation of energy to 
d t i t d d fl ti f bdetermine stress and deflection of a member 
subjected to impact

• Develop the method of virtual work and
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• Develop the method of virtual work and 
Castigliano’s theorem



14. Energy Methods
CHAPTER OBJECTIVES

• Use method of virtual and 
Castigliano’s theorem toCastigliano s theorem to 
determine displacement and 
slope at pts on structural 
members and mechanical 
elements
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14. Energy Methods
CHAPTER OUTLINE
1. External Work and Strain Energy
2. Elastic Strain Energy for Various Types of2. Elastic Strain Energy for Various Types of 

Loading
3. Conservation of Energygy
4. Impact Loading
5. *Principle of Virtual Work5. Principle of Virtual Work
6. *Method of Virtual Forces Applied to Trusses
7 *Method of Virtual Forces Applied to Beams7. Method of Virtual Forces Applied to Beams
8. *Castigliano’s Theorem
9 *Castigliano’s Theorem Applied to Trusses
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9. Castigliano s Theorem Applied to Trusses
10. *Castigliano’s Theorem Applied to Beams



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a force:
• A force does work when itA force does work when it 

undergoes a displacement dx
in same direction as the force.

• Work done is a scalar, defined 
as dUe = F dx.

• If total displacement is x, work becomes
( )1-14

0∫=
x

e dxFU
• As magnitude of F is gradually increased from zero 

to limiting value F = P, final displacement of end of 

0∫
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bar becomes ∆.



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a force:

( )1

• For linear-elastic behavior of material,
F = (P/∆)x. Substitute into Eqn 14-1

( )2-14
2
1 ∆= PUe

Work done is the average force magnitude (P/2) times the total displacement ∆

• Suppose that P is already applied to the bar and 

Work done is the average force magnitude (P/2) times the total displacement  ∆

another force P’ is now applied, so end of bar is 
further displaced by an amount ∆’.
W k d b ( t ’) i th
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• Work done by P (not P’) is then
( )3-14'' ∆= PU e



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a force:
• When a force P is applied to the bar, followed byWhen a force P is applied to the bar, followed by 

the force P’, total work done by both forces is 
represented by the area of the entire triangle in 
graph shown.
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a couple moment:
• A couple moment M does work when it undergoesA couple moment M does work when it undergoes 

a rotational displacement dθ along its line of action.
• Work done is defined as dUe = Mdθ. If total angle of 

( )414∫
θ

θdMU

e g
rotational displacement is θ radians, then work

( )4-14
0∫= θdMUe

• If the body has linear-elastic behavior, and its y ,
magnitude increases gradually from zero at θ = 0 
to M at θ, then work is

( )5141 θMU
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( )5-14
2

θMUe =



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a couple moment:
• However, if couple moment already applied to theHowever, if couple moment already applied to the 

body and other loadings further rotate the body by 
an amount θ’, then work done is

'' θMU e =
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
• When loads are applied to a body and causesWhen loads are applied to a body and causes 

deformation, the external work done by the loads 
will be converted into internal work called strain 
energy. This is provided no energy is converted 
into other forms.

Normal stress
• A volume element subjected to normal stress σz.
• Force created on top and bottom faces is 

dFz = σz dA = σz dx dy.
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Normal stressNormal stress
• This force is increased gradually from 

zero to dFz while element undergoes z g
displacement d∆z = εz dz.

• Work done is dUi = 0.5dFz d∆z = 0.5[σz dx dy]εz dz.i z z [ z y] z

• Since volume of element is dV = dx dy dz, we have

( )6141 dVdU εσ=

• Note that dUi is always positive.

( )6-14
2

dVdU zzi εσ=
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Note that dUi is always positive.



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Normal stressNormal stress
• In general, for a body subjected to a uniaxial 

normal stress σ, acting in a specified direction, , g p ,
strain energy in the body is then

( )714dVU ∫=
σε

• If material behaves linear-elastically, then Hooke’s 

( )7-14
2

dVU
Vi ∫=

y,
law applies and we express it as

2

∫
σ
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( )8-14
2

dV
E

U
Vi ∫=
σ



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Shear stressShear stress
• Shear stress cause element to deform such that 

shear force dF = τ(dx dy) acts on top face of ( y) p
element.

• Resultant displacement if γ dz relative to bottom p γ
face.

• Vertical faces only rotate, thus shear forces on 
these faces do no work.
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Shear stressShear stress
• Hence, strain energy stored in the element is

( )9141 dVdU

• Integrating over body’s entire volume to obtain

( )9-14
2

dVdUi τγ=

• Integrating over body s entire volume to obtain 
strain energy stored in it

∫
τγ

• Shear strain energy is always positive

( )10-14
2

dVU
Vi ∫=
τγ
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• Shear strain energy is always positive.



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Shear stressShear stress
• Apply Hooke’s law γ = τ/G,

2

∫
τ ( )11-14
2

dV
G

U
Vi ∫=
τ
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Mutilaxial stressMutilaxial stress
• Total strain energy in the body is therefore

111 ⎤⎡

( )12-14
111

2
1

2
1

2
1

dVU
V

zzyyxx
i ∫

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ ++

=
εσεσεσ

2
1

2
1

2
1

xzxzyzyzxyxy ⎥
⎦

⎢
⎣

+++ γτγτγτ
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Mutilaxial stressMutilaxial stress
• Eliminate the strains using generalized form of 

Hooke’s law given by Eqns 10-18 and 10-19. After g y q
substituting and combining terms, we have

( )1 222 ⎤⎡ ( )
( ) ( )

2
1 222

zyx

∫ ⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ ++

υ

σσσ

( )

( )
( )13-14

1 222

dV
E

U
V zxzyyxi ∫

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢ ++−= σσσσσσυ
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( )
2
1 222
G xzyzxy ⎥

⎦
⎢
⎣

+++ τττ



14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Mutilaxial stressMutilaxial stress
• If only principal stresses σ1, σ2, σ3

act on the element, this eqn , q
reduces to a simpler form,

( )1 222 ⎤⎡ ( )
( )14-142

1 2
3

2
2

2
1

dVEU
Vi ∫

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ ++

=
υ

σσσ

( )313221E
V∫ ⎥

⎦
⎢
⎣

++− σσσσσσυ
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Axial load:
• Consider a bar of variableConsider a bar of variable 

and slightly tapered 
x-section, subjected to 
axial load coincident with bar’s centroidal axis.

• Internal axial force at section located from one end 
is N.

• If x-sectional area at this section is A, then normal 
t N/Astress σ = N/A.

• Apply Eqn 14-8, we have
N

∫∫
22σ
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dV
EA
NdV

E
U

VV
x

i ∫∫ == 222
σ



14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Axial load:
• Choose element or differential slice having volumeChoose element or differential slice having volume 

dV = Adx, general formula for strain energy in bar is
2NL

∫ ( )15-14
20

dx
AE

NU
L

i ∫=

• For a prismatic bar of constant x-sectional area A, 
length L and constant axial load N, integrating Eqn g , g g q
14-15 gives

( )16-14
2LNUi =
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( )1614
2AE

Ui



14. Energy Methods
EXAMPLE 14.1
Choose one of the 2 high-strength steel bolts to 
support a tensile loading. Determine the greatest 
amount of elastic strain energy that each bolt can 
absorb. Bolt A has a diameter of 20 mm for 50 mm of 
its length and root diameter of 18 mm within 6 mmits length and root diameter of 18 mm within 6 mm 
threaded region. Bolt B
has the same diameterhas the same diameter 
throughout its 56 mm 
length and can be taken 
as 18 mm. For both cases, 
neglect extra material that 

k th th d
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makes up the thread. 
Take Est = 210(103) MPa, σY = 310 MPa.



14. Energy Methods
EXAMPLE 14.1 (SOLN)
Bolt A:
For bolt subjected to maximum tension, σY will occurFor bolt subjected to maximum tension, σY will occur 
within the 6-mm region. This tension is

( )[ ]2mm18N/mm310 22
max == πσ AP Y ( )[ ]

kN89.78N78886
max

==
Y
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14. Energy Methods
EXAMPLE 14.1 (SOLN)

Bolt A:
Apply Eqn 14-16 to each region of the boltApply Eqn 14-16 to each region of the bolt, 

2

2
=∑ AE

LNUi

( ) ( )
[ ] ( )[ ]

mm50N1089.78

2

232

23×=

AE

( )[ ] ( )[ ]
( ) ( )mm6N108978

N/mm102102/mm202
23

232

×

π

( ) ( )
( )[ ] ( )[ ]

J7082N7082N82707
N/mm102102/mm182

mm6N1089.78
232

×+
π
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J708.2mN708.2mmN8.2707 =⋅=⋅=



14. Energy Methods
EXAMPLE 14.1 (SOLN)

Bolt B:
From calculation above it can also support aFrom calculation above, it can also support a 
maximum tension force of Pmax = 78.89 kN. Thus,

( )232 ( ) ( )
( )[ ] ( )[ ]N/mm102102/mm182

mm56N1089.78
2 232

232 ×
==

πAE
LNUi

By comparison bolt B can absorb 20% more elastic

[ ] ( )[ ]
J26.3mN26.3mmN0.3261 =⋅=⋅=

By comparison, bolt B can absorb 20% more elastic 
energy than bolt A, even though it has a smaller x-
section along its shank.
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section along its shank.



14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Bending moment:
• For the axisymmetricFor the axisymmetric 

beam shown.
• Internal moment M, ,

normal stress acting on element a distance y from 
neutral axis is σ = My/I.

• If volume of element is dV = dA dx, where dA is 
area of exposed face and dx its length, elastic 
t i i b istrain energy in beam is

dxdAy
EI
MU

L
i ∫ ∫ ⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

0
2

2

2

2
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Bending moment:
• Realize that area integral represents the momentRealize that area integral represents the moment 

of inertia of beam about neutral axis, thus

( )
2

∫
L dxM ( )7-14

20∫=
L

i EI
dxMU
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14. Energy Methods
EXAMPLE 14.2
Determine the elastic strain energy due to bending of 
the cantilevered beam if beam is subjected to 
uniform distributed load w. EI is constant.
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14. Energy Methods
EXAMPLE 14.2 (SOLN)

Establish the x coordinate with origin at 
the left side. Thus, internal moment isthe left side. Thus, internal moment is

⎞⎛

=⎟
⎠
⎞

⎜
⎝
⎛+=+ ∑ 0
2

;0

2

xwxMM NA

Applying Eqn 14-17 yields
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2

2xwM

Applying Eqn 14-17 yields

( )[ ] dwdxxwdxMU
L LL 2/ 4

2222 −
∫ ∫∫

( )[ ]

Lw

dxx
EIEIEI

Ui 822
52

0 0
4

0
=== ∫ ∫∫
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EI
LwUi 40
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14. Energy Methods
EXAMPLE 14.2 (SOLN)

For x coordinate with origin on the 
the right side and extending +vethe right side and extending ve 
to the left. Thus, in this case

=+ ∑ ;0M NA

=−+
⎠
⎞

⎜
⎝
⎛−−

+ ∑
0

2
)(

2

;0
2wLxwLxwxM

M NA

⎞
⎜
⎜
⎛

−+−=

⎠
⎜
⎝ 2

)(
2

22 xwwLxwLM

Applying Eqn 14-17 we obtain the same result

⎠
⎜
⎜
⎝

+=
22

wwLxM
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Applying Eqn 14-17, we obtain the same result.



14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Transverse shear:
• Consider prismatic beam withConsider prismatic beam with 

axis of symmetry  about the y
axis.

• Internal shear V at section x results in shear stress 
acting on the volume element, having length dx
and area dA, is τ = VQ/It.

• Substitute into Eqn 14-11,

dxdA
t
Q

GI
VU

L
i ∫ ∫ ⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

0

2

22

2

2
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⎜
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Transverse shear:
• Realize that integral in parentheses is evaluatedRealize that integral in parentheses is evaluated 

over beam’s x-sectional area.
• To simplify, we define the form factor for shear asp y,

( )81-142

2

2 ∫=
As dA

t
Q

I
Af

• Form factor is dimensionless and unique for each 
specific x-sectional area.

t

p
• Substitute Eqn 14-18 into above eqn,

2L dVf
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( )19-14
20

2

∫=
L s

i GA
dxVfU



14. Energy Methods
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14. Energy Methods
EXAMPLE 14.4
Determine the strain energy in cantilevered beam 
due to shear if beam has a square x-section and is  
subjected to a uniform distributed load w. EI and G is 
constant.
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14. Energy Methods
EXAMPLE 14.4 (SOLN)

From free-body diagram of 
arbitrary section, we havearbitrary section, we have

V

wxVFy =−−=↑+ ∑ 0;0

Since x-section is square, 
form factor fs = 6/5 and therefore Eqn 14-19 becomes

wxV −=

form factor fs  6/5 and therefore Eqn 14 19 becomes

( ) ( ) dxx
GA
w

GA
dxwxU

LL
si 5

3
2

56
0

2
2

0

2
=

−
= ∫∫( )

( ) LwU

GAGA

si

si 52
32

00

=

∫∫
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14. Energy Methods
EXAMPLE 14.4 (SOLN)

Using results of Example 14.2, with A = a2, I = 1/12a4, 
ratio of shear to bending strain energy isratio of shear to bending strain energy is

( )
( ) ( ) G

E
L
a

aELw
GaLw

U
U

bi

si
2

452

233

3
2

12140/
5/

⎟
⎠
⎞

⎜
⎝
⎛==

Since G = E/2(1 + ν) and ν ≤ 0.5 (sec 10.6), then as 
an upper bound, E = 3G, so that

( ) ( ) GLaELwU bi 312140/ ⎠⎝

an upper bound, E  3G, so that
( )
( )

2
2 ⎟

⎠
⎞

⎜
⎝
⎛=

L
a

U
U

bi

si

For L = 5a, contributions due to shear strain energy is 
only 8% of bending strain energy. Thus, shear strain

( ) ⎠⎝ LU bi
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only 8% of bending strain energy. Thus, shear strain 
energy is usually neglected in engineering analysis.



14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Torsional moment:
• Consider slightly tapered shaft.Consider slightly tapered shaft.
• Section of shaft taken 

distance x from one end 
subjected to internal torque T.

• On arbitrary element of length dx and area dA, y g
stress is τ = Tρ/J.

• Strain energy stored in shaft is 

dxdA
GJ
TU

L
i ∫ ∫ ⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

0
2

2

2

2
ρ
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⎠
⎜
⎝
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Torsional moment:
• Since area integral represents the polar moment ofSince area integral represents the polar moment of 

inertia J for shaft at section, 

( )
2

∫
L dxT

• Most common case occurs when shaft has

( )21-14
20∫=

L
i GJ

dxTU

Most common case occurs when shaft has 
constant x-sectional area and applied torque is 
constant, integrating 
Eqn 14-21 gives

2LT
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( )22-14
2GJ

LTUi =



14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Torsional moment:
• If x-section is of other shapes than circular orIf x section is of other shapes than circular or 

tubular, Eqn 14-22 is modified.
• For example, for a rectangular shaft with p , g

dimensions h > b, 
( )23-14

2 3

2

hGCb
LTUi =

( )16 43
⎥
⎤

⎢
⎡ ⎞

⎜
⎛ bbhb

2 hGCb

( )24-14
12

1336.3
3

16
16 4 ⎥

⎥
⎦⎢

⎢
⎣

⎟
⎠

⎜
⎜
⎝
−−=

h
b

h
bhbC
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14. Energy Methods
EXAMPLE 14.5
Tubular shaft fixed at the wall and subjected to two 
torques as shown. Determine the strain energy 
stored in shaft due to this loading. G = 75 GPa.
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14. Energy Methods
EXAMPLE 14.5 (SOLN)
Using method of sections, internal torque first 
determined within the two regions of shaft where it is 
constant. Although torques are in opposite directions, 
this will not affect the value of strain energy, since 
torque is squared in Eqn 14 22torque is squared in Eqn 14-22.
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14. Energy Methods
EXAMPLE 14.5 (SOLN)

Polar moment of inertia for shaft is

[ ] ( ) 4644π

Applying Eqn 14 22 we have

( ) ( )[ ] ( ) 4644 m1030.36m065.0m08.0
2

−=−= πJ

Applying Eqn 14-22, we have
( ) ( )
( )[ ] ( )103036N/10752

m750.0mN40
2 4629

22 ⋅
== −∑ GJ

LTUi ( )[ ] ( )
( ) ( )
( )[ ] ( )

m300.0mN15

m1030.36N/m107522
2

4629

⋅
+

−∑ GJi

( )[ ] ( )
J233

m1030.36N/m10752 4629

µ=

+ −
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

IMPORTANT
• A force does work when it moves through a g

displacement.
• If force is increased gradually in magnitude from g y g

zero to F, the work is U = (F/2)∆, whereas if force 
is constant when the displacement occurs then 
U F∆U = F∆.

• A couple moment does work when it moves 
th h t tithrough a rotation.

• Strain energy is caused by the internal work of the 
normal and shear stresses It is always a positive
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normal and shear stresses. It is always a positive 
quantity.



14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

IMPORTANT
• The strain energy can be related to the resultant gy

internal loadings N, V, M, and T.
• As the beam becomes longer, the strain energy g gy

due to bending becomes much larger than strain 
energy due to shear.

• For this reason, shear strain energy in beams can 
generally be neglected.
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14. Energy Methods
14.3 CONSERVATION OF ENERGY

• A loading is applied slowly to a body, so that kinetic 
energy can be neglected.gy g

• Physically, the external loads tend to deform the 
body as they do external work Ue as they are 
displaced.

• This external work is transformed into internal work 
or strain energy Ui, which is stored in the body.

• Thus, assuming material’s elastic limit not 
d d ti f f b d iexceeded, conservation of energy for body is 

stated as ( )25-14ie UU =
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14. Energy Methods
14.3 CONSERVATION OF ENERGY

• Consider a truss subjected 
to load P. P applied gradually, 
thus Ue = 0.5P∆, where ∆ is 
vertical displacement of truss 

t t h P i li dat pt where P is applied.
• Assume that P develops an axial force N in a 

partic lar member and strain energ stored isparticular member, and strain energy stored is 
Ui = N2L/2AE.

• Summing strain energies for all members of the

1 2

∑ LN

• Summing strain energies for all members of the 
truss, we write Eqn 14-25 as
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22

1 ∑=∆
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LNP



14. Energy Methods
14.3 CONSERVATION OF ENERGY

• Consider a beam 
subjected to load P. 
External work is 
Ue = 0.5P∆.

• Strain energy in beam can be neglected.
• Beam’s strain energy determined only by the 

1 2

∫
L M

moment M, thus with Eqn 14-17, Eqn 14-25 written 
as

( )27-14
22

1
0∫=∆
L

dx
EI

MP
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14. Energy Methods
14.3 CONSERVATION OF ENERGY

• Consider a beam loaded by 
a couple moment M0. A 0
rotational displacement θ is 
caused. Using Eqn 14-5, 

t l k d i U 0 5M θ

2

external work done is Ue = 0.5M0θ.
• Thus Eqn 14-25 becomes

( )28-14
22

1
0

2

0 ∫=
L

dx
EI

MM θ

• Note that Eqn 14-25 is only applicable for a single 
external force or external couple moment acting on 
t t b
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structure or member.



14. Energy Methods
EXAMPLE 14.6
The three-bar truss is subjected to a horizontal force 
of 20 kN. If x-sectional area of each member is 
100 mm2, determine the horizontal displacement at 
pt B. E = 200 GPa.
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14. Energy Methods
EXAMPLE 14.6 (SOLN)
Since only a single external force acts on the truss 
and required displacement is in same direction as the 
force, we use conservation of energy.
Also, the reactive force on truss do no work since 
th t di l dthey are not displaced.
Using method of joints, force in each member is 
d t i d h f b d di f idetermined as shown on free-body diagrams of pins 
at B and C.
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14. Energy Methods
EXAMPLE 14.6 (SOLN)
Applying Eqn 14-26,

LN1 2

∑

( ) ( ) ( )
AE

LNP

1104111

22
1

23

=∆ ∑

( )( ) ( ) ( )

( ) ( )[ ]
AEhB 2

m1N10547.11N1020
2
1

22

3
3 ×

=∆×

( ) ( ) ( )[ ] ( )
AEAE 2

m732.1N1020
2

m2N10094.23
2323 −

+
×−

+

( )
AEhB

mN0.94640 ⋅
=∆
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14. Energy Methods
EXAMPLE 14.6 (SOLN)
Substituting in numerical data for A and E and 
solving, we get

( ) ( )( ) ( )
⋅=∆

N/mm10200mm1000/m1mm100
mN0.94640

2922hB ( ) ( )
→=×= − mm73.4m1073.4 3
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14. Energy Methods
EXAMPLE 14.7
Cantilevered beam has a rectangular x-section and 
subjected to a load P at its end. Determine the 
displacement of the load. EI is a constant.
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14. Energy Methods
EXAMPLE 14.7 (SOLN)
Internal moment and moment in beam as a function 
of x are determined using the method of sections.

When applying Eqn 14-25 we will consider the strain pp y g q
energy due to shear and bending.
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14. Energy Methods
EXAMPLE 14.7 (SOLN)
Using Eqns 14-19 and 14-17, we have

1 22 dxMdxVfP
LL s +=∆ ∫∫

( )( ) ( )56
222

22
00

dxPxdxP
EIGA

P

LL −−

+=∆

∫∫

∫∫
( )( ) ( )

( )3
22

322
00

LPLP
EIGA

+= ∫∫

First term on the right side represents strain energy

( )1
65

3
EI
LP

GA
LP +=

First term on the right side represents strain energy 
due to shear, while the second is due to bending. As 
stated in Example 14.4, the shear strain energy in 
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energy.



14. Energy Methods
EXAMPLE 14.7 (SOLN)

To show this is the case, we require
3223 LPLP

3223
65

3

LPLP
EI
LP

GA
LP
<<

( ) ( )3
12
165

3

bhE

LP
bhG
LP

⎥⎦
⎤

⎢⎣
⎡

<<

2

22
5
3

12

L
G
<<

⎥⎦⎢⎣

Since E ≤ 3G (see Example 14.4) then

25 EhG 2
9.0 ⎟

⎠
⎞

⎜
⎝
⎛<<

h
L
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14. Energy Methods
EXAMPLE 14.7 (SOLN)

Hence, if h is small and L relatively long, beam 
becomes slender and shear strain energy can bebecomes slender and shear strain energy can be 
neglected. Shear strain energy is only important for 
short, deep beams. Beams for which L = 5h have 
more than 28 times more bending energy than shear 
strain energy, so neglecting only incurs an error of 
about 3 6% Eqn (1) can be simplified toabout 3.6%. Eqn (1) can be simplified to

LPP1 32
∆

PL
EI
LPP

62
1

3

=∆
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14. Energy Methods
14.4 IMPACT LOADING

• An impact occurs when one 
object strikes another, such that j
large forces are developed 
between the objects during a very 
h t i d f ti

1
=UU ie

short period of time. 

( ) ( )

1
2
1

maxmaxmax ∆∆=∆+ khW

( ) ( )

2

29-14
2
1 2

maxmax

⎞⎛

∆=∆+

WW

khW
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14. Energy Methods
14.4 IMPACT LOADING

• Solving and simplifying (∆st = W/k),

( ) 22 ∆∆∆∆ h( )

( )0314211

22
max

⎥
⎤

⎢
⎡ ⎞

⎜⎜
⎛

++∆∆

∆+∆+∆=∆ ststst

h

h

• Once ∆ is computed maximum force applied to

( )03-14211max ⎥
⎦

⎢
⎣ ⎠

⎜⎜
⎝ ∆

++∆=∆
st

st

• Once ∆max is computed, maximum force applied to 
the spring is ( )31-14maxmax ∆= kF
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14. Energy Methods
14.4 IMPACT LOADING

• For a case where the block is 
sliding on a smooth horizontal g
surface with known velocity ν
just before it collides with the spring. 

• The block’s kinetic energy, 0.5(W/g)ν2 is 
transformed into stored energy in the spring.

11 22 kW

UU ie

υ ∆=⎞
⎜
⎛

=

( )

22
2

max

W

k
g

υ

υ ∆=
⎠

⎜
⎝
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14. Energy Methods
14.4 IMPACT LOADING

• Ratio of equivalent static load Pmax to the load W is 
called the impact factor, n. Since Pmax = k∆max and max max
W = k∆st, then from Eqn. 14-30, we express it as

⎞
⎜
⎛ h ( )34-14211 ⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

++=
st

hn

• This factor represents the magnification of a 
statically applied load so that it can be treated 
dynamically.

• Using Eqn 13-34, n can be computed for any 

©2005 Pearson Education South Asia Pte Ltd 59

member that has a linear relationship between 
load and deflection.



14. Energy Methods
14.4 IMPACT LOADING

IMPORTANT
• Impact occurs when a large force is developed p g p

between two objects which strike one another 
during a short period of time.

• We can analyze the effects of impact by assuming 
the moving body is rigid, the material of the 
t ti b d i li l l ti i l tstationary body is linearly elastic, no energy is lost 

in the collision, the bodies remain in contact during 
collision and inertia of elastic body is neglectedcollision, and inertia of elastic body is neglected.

• The dynamic load on a body can be treated as a 
statically applied load by multiplying the static load
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statically applied load by multiplying the static load 
by a magnification factor.



14. Energy Methods
EXAMPLE 14.8
Aluminum pipe is used to support a load of 600 kN. 
Determine the maximum displacement at the top of 
the pipe if load is (a) applied gradually, 
and (b) applied suddenly by releasing 
it from the top of the pipe at h = 0it from the top of the pipe at h = 0. 
Take Eal = 70(103) N/mm2 and assume 
that the aluminum behaves elasticallythat the aluminum behaves elastically.
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14. Energy Methods
EXAMPLE 14.8 (SOLN)
(a) When load applied gradually, work done by 
weight is transformed into elastic strain energy in 
pipe. Applying conservation of energy,

=UU ie

22
1 2

=∆
AE

LWW st

ie

( )
( ) ( )[ ] kN/mm70mm50mm60

mm240kN600
22

222==∆
πAE

WL
AE

st ( ) ( )[ ]
mm5953.0

kN/mm70mm50mm60
=

−πAE
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14. Energy Methods
EXAMPLE 14.8 (SOLN)

(b) With h = 0, apply Eqn 14-30. Hence

⎤⎡ ⎞⎛211max ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

++∆=∆
st

st
h

( )
mm1906.1

mm5953.022
=
=∆= st

The displacement of the weight is twice as great as 
when the load is applied statically In other words thewhen the load is applied statically. In other words, the 
impact factor is n = 2, Eqn 14-34.
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14. Energy Methods
EXAMPLE 14.10
A railroad car assumed to be rigid and has a mass of 
80 Mg is moving forward at a speed of ν = 0.2 m/s 
when it strikes a steel 200-mm by 200-mm post at A. 
If the post is fixed to the ground at C, determine the 
maximum horizontal displacement of its top B due tomaximum horizontal displacement of its top B due to 
the impact. Take Est = 200 GPa.
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14. Energy Methods
EXAMPLE 14.10 (SOLN)
Kinetic energy of the car is transformed into internal 
bending strain energy only for region AC of the post.. 
Assume that pt A is displaced (∆A)max, then force Pmax
that causes this displacement can be determined 
from table in Appendix Cfrom table in Appendix C.
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EI
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3
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max

∆
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14. Energy Methods
EXAMPLE 14.10 (SOLN)

Substitute in numerical data yields
( ) ( ) ( )m51m/s20kg1080 323

( ) ( ) ( ) ( )

( )[ ] ( )m2.0
12
1N/m102003

m5.1m/s2.0kg1080
429

3

max

⎥⎦
⎤

⎢⎣
⎡

=∆A

Using Eqn (1) force P becomes
mm6.11m0116.0

12
==

⎥⎦⎢⎣

Using Eqn (1), force Pmax becomes

( )[ ] ( ) ( )m0116.0m2.01N/m102003 429
⎥⎦
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⎢⎣
⎡( )[ ] ( ) ( )
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14. Energy Methods
EXAMPLE 14.10 (SOLN)

Refer to figure, segment AB of post 
remains straight. To determineremains straight. To determine 
displacement at B, we must first 
determine slope at A. Using formula 
from table in Appendix C to determine θA, 
we have

( ) ( )

( )[ ] 1
m5.1N104.275

2 429

232
max

⎤⎡
==

EI
LP AC

Aθ ( )[ ] ( )

rad011620
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=
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14. Energy Methods
EXAMPLE 14.10 (SOLN)

The maximum displacement at B is thus
( ) ( ) +∆=∆ ABAAB Lθ( ) ( )

( ) ( )mm101rad01162.0mm62.11 3
maxmax

+=

+∆=∆ ABAAB Lθ

mm2.23=
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