14. Energy Methods

CHAPTER OBJECTIVES

* Apply energy methods to
solve problems involving
deflection

e Discuss work and strain
energy, and development of
the principle of conservation
of energy

e Use principle of conservation of energy to
determine stress and deflection of a member
subjected to impact

* Develop the method of virtual work and
Castigliano’s theorem
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14. Energy Methods

CHAPTER OBJECTIVES

e Use method of virtual and
Castigliano’s theorem to
determine displacement and
slope at pts on structural
members and mechanical
elements
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14. Energy Methods

CHAPTER OUTLINE

1. External Work and Strain Energy

2. Elastic Strain Energy for Various Types of
Loading

Conservation of Energy

Impact Loading

*Principle of Virtual Work

*Method of Virtual Forces Applied to Trusses
*Method of Virtual Forces Applied to Beams
*Castigliano’s Theorem
*Castigliano’s Theorem Applied to Trusses

10. *Castigliano’s Theorem Applied to Beams
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a force:

o Aforce does work when it
undergoes a displacement dx

In same direction as the force. . T4
* Work done is a scalar, defined Pl W
as dU, = F dx. N

o |f total displacement is x, work becomes
X
U, = jo Fdx  (14-1)
« As magnitude of F is gradually increased from zero

to limiting value F = P, final displacement of end of
bar becomes A.
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a force: ”

 For linear-elastic behavior of material,
F = (P/A)x. Substitute into Egn 14-1

ue:;m (14-2)

P

Work done is the average force magnitude (P/2) times the total displacement A

s

/

y

A A

e Suppose that P is already applied to the bar and
another force P’ is now applied, so end of bar Is

further displaced by an amount A’

 Work done by P (not P’) is then
U's=PA'
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a force:

« When a force P is applied to the bar, followed by
the force P’, total work done by both forces is

represented by the area of the entire triangle In
graph shown. P

prl /
P
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a couple moment:

* A couple moment M does work when it undergoes
a rotational displacement d@ along its line of action.

* Work done is defined as dU, = Mdé. If total angle of
rotational displacement is @ radians, then work

0
uezjo M do (14 - 4)

 |f the body has linear-elastic behavior, and its

magnitude increases gradually from zero at /=0

to M at &, then work is 1
U =§M9 (14-5)
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Work of a couple moment:

 However, If couple moment already applied to the
body and other loadings further rotate the body by
an amount ¢, then work done is

U',= M@
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:

 When loads are applied to a body and causes
deformation, the external work done by the loads
will be converted into internal work called strain

energy. This Is provided no energy Is converted
Into other forms.

Normal stress
* Avolume element subjected to normal stress o,

* Force created on top and bottom faces Is
dF, = o, dA = o, dx dy.
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:

Normal stress ) ‘

* This force Is increased gradually from Jé/
zero to dF, while element undergoes d:

displacement d4, = &, dz. v |
* Work done is dU; = 0.5dF, d4, = 0.5][ ¢, dx dy]¢, dz.

e Since volume of element is dV = dx dy dz, we have

dU. =;02 e, dV (14-6)

* Note that dU; Iis always positive.
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Normal stress

* |In general, for a body subjected to a uniaxial
normal stress o, acting in a specified direction,
strain energy in the body Is then

U, L—dv (14-7)

 |f material behaves linear-elastically, then Hooke’s
law applies and we express it as

2
O
U, ‘Lﬁdv (14-8)
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Shear stress

e Shear stress cause element to deform such that
shear force dF = z(dx dy) acts on top face of
element.

e Resultant displacement if ydz relative to bottom
face.

* Vertical faces only rotate, thus shear forces on
these faces do no work.

12
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Shear stress

 Hence, strain energy stored in the element is

dU. =;rde (14-9)

* [ntegrating over body’s entire volume to obtain
strain energy stored in it

R _
U, L v (14-10)
e Shear strain energy Is always positive.
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Shear stress
o Apply Hooke’s law y= 4G,

2
_
U, ‘L%dv (14-11)
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Mutilaxial stress

« Total strain energy in the body Is therefore

10 E +1U & +1G &
5 OxEx T, Oyey T, 0287
U: = dv 14-12
= . . . (14-12)
T ifxy7/xy T 57y27/yz T Ez'xz?/xz
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14. Energy Methods

14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy:
Mutilaxial stress

* Eliminate the strains using generalized form of
Hooke’s law given by Egns 10-18 and 10-19. After
substituting and combining terms, we have

L2 02 +07)

-~ %(Gxdy + 00, + 040, ) dv (14-13)

&
|l
2—1

1 ( 2 2 2)
+ T+ T
oG VY yZ XZ
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14. Energy Methods
14.1 EXTERNAL WORK AND STRAIN ENERGY

Strain energy: \
Mutilaxial stress

 If only principal stresses oy, o5, 0;
act on the element, this eqn /
reduces to a simpler form, )

.

\

(b)

i(O']_Z-|-()'22—|-O'32)
Ui =] | *F dv  (14-14)
—%(0102 + 0,03 + 0103)
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Axial load:
e Consider a bar of variable

and slightly tapered fxagﬂw

X-section, subjected to i
axial load coincident with bar’s centroidal axis.

e |nternal axial force at section located from one end
IS N.

e |f x-sectional area at this section is A, then normal
stress o= N/A.

 Apply Egn 14-8, we have
U; X dVv =
L 2E L 2EA2
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Axial load:

e Choose element or differential slice having volume
dV = Adx, general formula for strain energy in bar is

Ui = | ag X (14-15)

e For a prismatic bar of constant x-sectional area A,
length L and constant axial load N, integrating Eqn
14-15 gives

N 4L

U= — 14-16
= o AE (14-16)
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14. Energy Methods

EXAMPLE 14.1

Choose one of the 2 high-strength steel bolts to
support a tensile loading. Determine the greatest
amount of elastic strain energy that each bolt can
absorb. Bolt A has a diameter of 20 mm for 50 mm of
its length and root diameter of 18 mm within 6 mm
threaded region. Bolt B P ,
has the same diameter (A (A
throughout its 56 mm o
length and can be taken ~J e

& mm

as 18 mm. For both cases, | 5, _; %.
neglect extra material that . _

f“'_*
makes up the thread. 18 mm

Take E, = 210(10%) MPa, o, = 310 MPa.
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14. Energy Methods

EXAMPLE 14.1 (SOLN)

Bolt A:

For bolt subjected to maximum tension, o, will occur
within the 6-mm region. This tension Is

Prax = oy A=310 N/mmzlﬂ(18 mm/2)2J
= 78886 N = 78.89 kN
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14. Energy Methods

EXAMPLE 14.1 (SOLN)

Bolt A:
Apply Egn 14-16 to each region of the bolt,
< NZL
' 42AE

(78.89x10% Nf (50 mm)
" 22(20 mm/2)? |[210010% ) N/mm?|

(78.89x10° Nf (6 mm)
" 2[z(18 mm/2)2][21000% ) Nimm?]
= 2707.8 N-mm =2.708 N-m = 2.708 ]
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14. Energy Methods

EXAMPLE 14.1 (SOLN)

Bolt B:
From calculation above, it can also support a
maximum tension force of P, = 78.89 kN. Thus,

CNAL (78. 89x103 Nf(s6mm)
T2AE 2l7(18 mm/2) H210(103)N/mm J
~3261.0 N-mm=3.26 N-m =3.26 J

By comparison, bolt B can absorb 20% more elastic
energy than bolt A, even though it has a smaller x-
section along its shank.

23
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14. Energy Methods

14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Bending moment:

—or the axisymmetric
peam shown.

nternal moment M,

normal stress acting on element a distance y from

neutral axis is o= My/lI.

If volume of element is dV = dA dx, where dA Is

area of exposed face and dx its Iength, elastic

strain energy in beam Is )
Ui = |, 2E|2 jy dA) dx

24
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Bending moment:

 Realize that area integral represents the moment
of inertia of beam about neutral axis, thus

_J‘LI\/IZdX

= 14-7
=1, o (14-7)
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14. Energy Methods

EXAMPLE 14.2

Determine the elastic strain energy due to bending of
the cantilevered beam if beam Is subjected to
uniform distributed load w. El is constant.

AERRREERRERRN

L

(a)
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14. Energy Methods

EXAMPLE 14.2 (SOLN)

Establish the x coordinate with origin at
the left side. Thus, internal momentis  ——--{----

@JrZMNA:o; |\/|+WX()2()=O | ]il )M

2
M = —W[XJ (b)
2

Applying Egn 14-17 yields

U — LI\/Ide_ L-—W(XZ/Z)]Z dX_W2 L 4 9
= e b e ek
wAL
' 40E1
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14. Energy Methods

EXAMPLE 14.2 (SOLN)

For x coordinate with origin on the

the right side and extending +ve ‘l

to the left. Thus, In this case v
&

@4— ZMNA:O;
WL2_

~-M —WX(X\-I—WL(X)— =0 ©
2) 2

wL? {xz\

= e —_— = == =

2)

Applying Egn 14-17, we obtain the same resullt.

M=——+wLx—-w

28
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Transverse shear: ~.

» Consider prismatic beam with /<m. >.ﬂ</[
axis of symmetry about they o l“m
axis.

e Internal shear V at section x results in shear stress
acting on the volume element, having length dx
and area dA, i1s 7= VQ/It.

e Substitute into Egn 14-11,

2 2
U=V jg dA)dx
0 2G1%| 5t?
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Transverse shear:

 Realize that integral in parentheses is evaluated
over beam’s x-sectional area.

* To simplify, we define the form factor for shear as

A Q°
fo = 2 jAtsz (14-18)

 Form factor Is dimensionless and unigue for each
specific x-sectional area.

e Substitute Eqn 14-18 into above eqn,
o IL fV “dx
" Jo 2cA
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14. Energy Methods
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14. Energy Methods

EXAMPLE 14.4

Determine the strain energy in cantilevered beam
due to shear if beam has a square x-section and Is
subjected to a uniform distributed load w. El and G is

constant.

32
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14. Energy Methods

EXAMPLE 14.4 (SOLN)

From free-body diagram of L
arbitrary section, we have A S

T™'F, =0, V-wx=0 Il)M
t Z y : 'Jl
V = —wx v
Since x-section Is square, (b)

form factor f, = 6/5 and therefore Eqn 14-19 becomes

~——
[ | =

N fLB5(-wx)Pdx  3wf (L o
(U')S_Jo 2GA _5G—Ajox X
_W2L3

5GA

(Ui),
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14. Energy Methods

EXAMPLE 14.4 (SOLN)

Using results of Example 14.2, with A = a2, | = 1/12a%,
ratio of shear to bending strain energy is

Ui,  wL®/5Ga’ Z(ajz E

Ui), w2L5/40E(L12)a* 3\L) G
Since G=E/2(1 + v)and v< 0.5 (sec 10.6), then as
an upper bound, E = 3G, so that

Ui _ 2@2
Ui), \L
For L = 5a, contributions due to shear strain energy is
only 8% of bending strain energy. Thus, shear strain

energy Is usually neglected in engineering analysis.
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Torsional moment:
+ Consider slightly tapered shaft.~ o . 7

» Section of shaft taken
distance x from one end
subjected to internal torque T.

 On arbitrary element of length dx and area dA,
stress is 7= TplJ.

o Strain energy stored Iin shaft is

L T2 (
Ui =, 2GJ2

Ipz dA\ dx
LA )

35
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14. Energy Methods

14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Torsional moment:
e Since area integral represents the polar moment of
Inertia J for shaft at section,
2
L
U, = [-T7x
0 2GJ
« Most common case occurs when shaft has
constant x-sectional area and applied torque Is
constant, integrating T /)
Eqn 14-21 gives LD

ey

(14 - 21)

CTAL L

.
H'“m_‘ \
"'\-\._\H‘-
-
o =
. 1
- — e
I ‘
o e
ZGJ 5 a .
""'\..,}__.-' =
-

(14-22) «
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14. Energy Methods

14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

Torsional moment:

 |f x-section is of other shapes than circular or
tubular, Egn 14-22 is modified.

 For example, for a rectangular shaft with
dimensions h > b, T2
U; = 3 (14 -23)
2Cb~°hG

3 A \'
c =016 333601 D (14 - 24)
16 | 3 h" 120

37
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14. Energy Methods

EXAMPLE 14.5

Tubular shaft fixed at the wall and subjected to two
torgues as shown. Determine the strain energy
stored in shaft due to this loading. G = 75 GPa.

40 N-m
#0 mm%
15 mm—"
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14. Energy Methods

EXAMPLE 14.5 (SOLN)

Using method of sections, internal torque first
determined within the two regions of shaft where it is
constant. Although torques are in opposite directions,
this will not affect the value of strain energy, since
torque Is squared in Egn 14-22.

PN
p \\ T=40N-m
e 4

(b)

39
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14. Energy Methods

EXAMPLE 14.5 (SOLN)

Polar moment of inertia for shaft is
= ’2’[(0.08 m)* - (0.065 m)4]= 36.30(10_6) m*

Applying Eqn 14-22, we have
5T (40 N-m)2(0.750 m)
ZGJ ~ 2[75010%) Nim?J36.30(10 ¢ ) m
(15 N-m)?(0.300 m)
2{75(109) N/m?]36.30(10°6 ) m*

=233 uJ
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14. Energy Methods

14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

IMPORTANT

o Aforce does work when it moves through a
displacement.

 |f force iIs increased gradually in magnitude from
zero to F, the work is U = (F/2) 4, whereas If force
IS constant when the displacement occurs then
U =F4.

* A couple moment does work when it moves
through a rotation.

e Strain energy Is caused by the internal work of the
normal and shear stresses. It is always a positive
guantity.
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14. Energy Methods
14.2 ELASTIC STRAIN ENERGY FOR VARIOUS TYPES OF LOADING

IMPORTANT

* The strain energy can be related to the resultant
Internal loadings N, V, M, and T.

* As the beam becomes longer, the strain energy
due to bending becomes much larger than strain
energy due to shear.

* For this reason, shear strain energy in beams can
generally be neglected.
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14. Energy Methods

14.3 CONSERVATION OF ENERGY

« Aloading is applied slowly to a body, so that kinetic
energy can be neglected.

* Physically, the external loads tend to deform the
body as they do external work U, as they are
displaced.

e This external work Is transformed into internal work
or strain energy U;, which is stored in the body.

 Thus, assuming material’s elastic limit not
exceeded, conservation of energy for body Is

stated as U, =U. (14_ 25)
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14. Energy Methods

14.3 CONSERVATION OF ENERGY

» Consider a truss subjected 5

to load P. P applied gradually L
thus U, = 0.5PA, where A Is g _.

vertical displacement of truss b
at pt where P Is applied.

 Assume that P develops an axial force N in a
particular member, and strain energy stored Is
U. = N°L/2AE.

e Summing strain energies for all members of the
truss, we write Egn 14-25 as

2
1o, o5 N2L

2 “~IAE
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14. Energy Methods

14.3 CONSERVATION OF ENERGY

 Consider a beam
subjected to load P.
External work Is
U, = 0.5PA.

e Strain energy in beam can be neglected.

« Beam'’s strain energy determined only by the
moment M, thus with Eqn 14-17, Egn 14-25 written
as

l

jO —dx (14-27)
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14. Energy Methods

14.3 CONSERVATION OF ENERGY

e Consider a beam loaded by

a couple moment M,. A =
rotational displacement @is w7

caused. Using Egn 14-5,
external work done is U, = 0.5M,6.

e Thus Eqn 14-25 becomes

M”

M o6 = jo —dx (14 - 28)

* Note that Eqn 14-25 is only applicable for a single
external force or external couple moment acting on
structure or member.
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14. Energy Methods
EXAMPLE 14.6

The three-bar truss Is subjected to a horizontal force
of 20 kN. If x-sectional area of each member Is

100 mm?, determine the horizontal displacement at
pt B. E = 200 GPa.

B

S

B 20 kN

=~ 60° 2 m

(a)
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14. Energy Methods

EXAMPLE 14.6 (SOLN)

Since only a single external force acts on the truss
and required displacement is in same direction as the
force, we use conservation of energy.

Also, the reactive force on truss do no work since
they are not displaced.

Using method of joints, force in each member is
determined as shown on free-body diagrams of pins

at B and C. B-Tzn kN 23,094 kN

-____,-:-'" [} N
00" Npe=23.094kN N = 20kN

Y
Nyg=11.547 kN

(b) ¢,
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14. Energy Methods

EXAMPLE 14.6 (SOLN)

Applying Egn 14-26,

Lo _ N L
2 “2AE
;(20><103 NXAB)h _ (11.547 x2123EN)2(1 m)
+(— 23.094%10° N)Z(Z m) . [— 20(103) N]2(1.732 m)
2 AE 2 AE
94640.0 N -m

(AB)h = AE
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14. Energy Methods

EXAMPLE 14.6 (SOLN)

Substituting in numerical data for A and E and
solving, we get

> (100 mm? J1 m /1000 mm)?200(10° | N/mm?

=4.73x10° m=4.73mm —
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14. Energy Methods

EXAMPLE 14.7

Cantilevered beam has a rectangular x-section and
subjected to a load P at its end. Determine the
displacement of the load. El is a constant.

(&)
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14. Energy Methods

EXAMPLE 14.7 (SOLN)

Internal moment and moment in beam as a function

of x are determined using the method of sections.
P

'

! X "'! —_ P

When applying Egn 14-25 we will consider the strain
energy due to shear and bending.
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14. Energy Methods

EXAMPLE 14.7 (SOLN)

Using Egns 14-19 and 14-17, we have
L V2 L M 2

1PA=J‘ AY dX+J‘ M < dx

2 0 2GA 0 2ElI

~ J-L(6/5)(— P)° dx+jL(— Px)? dx
0 2GA 0 2El
_3p° L P 2

(1)

SGA oEl

First term on the right side represents strain energy
due to shear, while the second is due to bending. As
stated in Example 14.4, the shear strain energy In
most beams iIs much smaller than the bending strain
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14. Energy Methods

EXAMPLE 14.7 (SOLN)

To show this is the case, we require
3P°L P2
5 GA 6El
3 P°L P23
— <<
5G(bh) 6E{ 1 (bh?’)}
12

3 22
5G  Eh?

2
Since E < 3G (see Example 14.4) then 0.9 << (hj
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14. Energy Methods

EXAMPLE 14.7 (SOLN)

Hence, if his small and L relatively long, beam
becomes slender and shear strain energy can be
neglected. Shear strain energy Is only important for
short, deep beams. Beams for which L = 5h have
more than 28 times more bending energy than shear
strain energy, so neglecting only incurs an error of
about 3.6%. Egn (1) can be simplified to

213
lppa Pt
2 " 6EI

3

L _PL

~3El

55
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14. Energy Methods

14.4 IMPACT LOADING

e An impact occurs when one
object strikes another, such that b
large forces are developed ﬁ
between the objects during a very ; g —
short period of time. o= |
U, =U;

1
W(h+Anax) = E(kAmax )Amax

W(h+A, )= ;kAzmaX (14 - 29)

2W W
AZmax _TAmax — Z(k)h =0
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14. Energy Methods

14.4 IMPACT LOADING

» Solving and simplifying (A = W/k),

2
Amax = Agt + \/(Ast) +2A4h

h )

Armax = Agt 1+\/1+ 2[ (14 -30)
I At )

* Once A, Is computed, maximum force applied to

the spring is Fooay = KAray (14 -31)
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14. Energy Methods

14.4 IMPACT LOADING

 For a case where the block is ', ,
sliding on a smooth horizontal | WM
surface with known velocity v al
just before it collides with the spring.

e The block’s kinetic energy, 0.5(W/g)2 is
transformed into stored energy in the spring.

U, =U;
(W) 2 1, .
[g) kAmaX

Wo?

Armax = (14-32)

gk

58
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14. Energy Methods
14.4 IMPACT LOADING

* Ratio of equivalent static load P, to the load W is
called the impact factor, n. Since P, = kA, and
W = kA, then from Eqgn. 14-30, we express it as

n=1+ \/uz(hj (14-34)

Asgt

e This factor represents the magnification of a
statically applied load so that it can be treated
dynamically.

e Using Egn 13-34, n can be computed for any
member that has a linear relationship between
load and deflection.
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14. Energy Methods

14.4 IMPACT LOADING

IMPORTANT

* |Impact occurs when a large force Is developed
between two objects which strike one another
during a short period of time.

 We can analyze the effects of impact by assuming
the moving body is rigid, the material of the
stationary body is linearly elastic, no energy Is lost
In the collision, the bodies remain in contact during
collision, and inertia of elastic body is neglected.

 The dynamic load on a body can be treated as a
statically applied load by multiplying the static load
by a magnification factor.
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14. Energy Methods

EXAMPLE 14.8

Aluminum pipe Is used to support a load of 600 kN.
Determine the maximum displacement at the top of

the pipe if load is (a) applied gradually, fooo
and (b) applied suddenly by releasing
it from the top of the pipe at h = 0.

Take E,, = 70(10%) N/mm?2 and assume . : |
that the aluminum behaves elastically. !

60 mm
(=10 mm-a -
'

240 mm

61
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14. Energy Methods

EXAMPLE 14.8 (SOLN)

(a) When load applied gradually, work done by
weight Is transformed into elastic strain energy In
pipe. Applying conservation of energy,

Ue:Ui
2
1WA _W L

2 U 2AE
WL 600 kN(240 mm)

AE ﬂ{(GO mm)* — (50 mm)2J7O kN/mm?
= 0.5953 mm

st
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14. Energy Methods

EXAMPLE 14.8 (SOLN)

(b) With h = 0, apply Egn 14-30. Hence

Amax = Act 1+\/1+ Z(hj
] Asgt

= 2A¢ = 2(0.5953 mm)
=1.1906 mm

The displacement of the weight is twice as great as
when the load is applied statically. In other words, the
Impact factor is n = 2, Eqn 14-34.
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14. Energy Methods

EXAMPLE 149

W
L h= 50 mm

NS WV

id

-

The A-36 steel beam shown n Fig, 14-27a 15 2 W20 < 58, Dietermine the
maximum bending stress in the beam and the beam’s maximurn deflection

if the weight W = 6000 N is dropped from a height & = 3 mm onto the
beam. £, = 210{10¢) N/mm-.
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14. Energy Methods

We will apply Eq. 14-30. First, however, we must calculate Ay, Using the
table in Appendix T, and the data in Appendix B for the properties of
a W230 x 58, we have

WL* (6000 N[5 mi 1000 mm/m)*
— — 3 : 5 - —= = (L8523 mm
48 ET AR[210{ 107 M oo™ 8730 10%) mm

h
max — ﬁg[l -+ l"., 1 + E(ﬁ_,t)]

T&m
173 =n.355n1m[1+5 1+2|[
Y

dg

A mm

OLES2Y mm

-.'-||:-

) ] = 10124 mm Ans

lhis deflection is caused by an equivalent static load Fi,;. determmed
from Pog = (48ET/LY) Apas.

The nternal moment caused by this load & maximum at the center of the
beam. such that by the method of sections, Fig. 14-27h, M, = Faal/ 4.
Applying the flexure formula to determine the bending stress, we have

Myt Prgle 12EAgyc
R T L*
21210 mm® 2 252 mm/2
_ 12[210(10%) ]"{m.m 10124 |I:nr|.'|:_|J[..'_'|_ mm/2) = 128,58 Nimm  Ans
[(5 m )i 1000 mmm ]
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14. Energy Methods

EXAMPLE 14.10

A railroad car assumed to be rigid and has a mass of
80 Mg Is moving forward at a speed of v=0.2 m/s
when it strikes a steel 200-mm by 200-mm post at A.
If the post Is fixed to the ground at C, determine the
maximum horizontal displacement of its top B due to
the impact. Take E, = 200 GPa.

=102 mfs
. E{E] +mm
_________ ==~ 200 mm
15 H_FI m
R = A} 1.5m

{:l

(a)
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14. Energy Methods

EXAMPLE 14.10 (SOLN)

Kinetic energy of the car Is transformed into internal
bending strain energy only for region AC of the post..
Assume that pt A is displaced (A,). then force P,
that causes this displacement can be determined

from table in Appendix C.
3E1(A A)max Q)

I:)max: 3
L'ac
. 1 - 1

Ue =UiI; EmU :EpmaX(AA)max

67
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14. Energy Methods

EXAMPLE 14.10 (SOLN)

Substitute in numerical data yields
80(103) kg(0.2 m/s)*(1.5 m)’
(A e = 9 2] 1 4
3[200(10 )N/m LZ(O.Z m) }

=0.0116 m=11.6 mm
Using Eqgn (1), force P,.., becomes

3[200(109) N/m* 112(0.2 m)4}(0.0116 m)

max

I:)max —

(1.5m)
= 275.4 kN



14. Energy Methods

EXAMPLE 14.10 (SOLN)

Refer to figure, segment AB of post
remains straight. To determine *’-’*'::;LB
displacement at B, we must first
determine slope at A. Using formula
from table in Appendix C to determine 6,,

we have

(b)

_ PraxLac 275.4{10% | N (1.5 m)?
2El 2[200(109) N/m ]{ (0.2 m) }

=0.01162 rad
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14. Energy Methods

EXAMPLE 14.10 (SOLN)

The maximum displacement at B is thus
(A8 )max = (Aa)max +Oalas
=11.62 mm +(0.01162 rad)1(103)mm
=23.2 mm
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