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In this chapter we describe the numerical methods for the approximation of functions

We sometimes know the value of a function f(x) at a set of points (say, zp < x1 < T9+++ < Tp,)

but we do not have an analytic expression for f(x)
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The task now is to estimate f(z) for an arbitrary point x by, drawing a smooth curve through

the data points ;. v

If the desired z is between the largest and smallest of the data point, then the problem is called interpolation;

it = is outside that range. it is called eztrapolation.
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Theorem 4.1 (Weierstrass Approximation Theorem)

If f(z) is a continuous function in the closed interval [a,b] then for every € > 0 there exists a
polynomial p,(z), where the value of n depends on the value of €, such that for all z in [a,b],

[f(z) — pa(z)] <e (4.2)
Consequently, any continuous function can be approrimated to any accuracy by a polynomial of
high enough degree. °
2
The general form of a nth-degree polynomial is pn(z) = ap + a1z + azz” + - -+ + apz”

where n denotes the degree of the polynomial; and ag, a1, ..., a, are constants coefficients.

Polynomial Interpolation

Suppose we have given a set of (n + 1) data points relating a dependent variables f(x) to an
independent variable x as follows

£ ‘ In iy H
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Lagrange Interpolating Polynomials

It is one of the popular and well known interpolation method to approximate the functions at an

arbitrary point z.

Linear Lagrange Interpolating Polynomial

¥

Rl

e %

Let us consider the construction of a linear polynomial pi(z) passing through two data points

(zg, f(xg)) and (x1, f(x1)).
f(z) = p1(z) = Lo(z) f(z0) + Li(z) f (1), (4.5)

where
£—

Lo(x) = ——— and Ly(z) = = i (4.6)

To — T1 T1 — Lo

Note that when x = xq, then Lg(xg) =1 and Li(zg) = 0. Similarly, when z = x1, then Lg(x1) = 0
and Li(xy) = 1. The polynomial (4.5) is known as linear Lagrange interpolating polynomial and
(4.6) is called the Lagrange coefficient polynomials.
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Quadratic Lagrange Interpolating Polynomial

When pa(x) passes through three points (zg, f(z0)), (1, f(z1)) and (za, f(x2)), we have quadratic
Lagrange polynomial as follows

f(z) = pa(x) = Lo(2) f(20) + L1(x) f (21) + La2(x) f(22), (4.7)

where the Lagrange coeflicients are define as follows:

(z — z1)(z — z2)
(zo — z1)(@0 — @2)’

Lo(z) =

o _ (@—z0)@— 1)
Li(z) = EREr AT E—— (4.8)

(¢ — zo)(z — 1)
(z2 — z0)(z2 — 1)

La(x)

Example 4.5 Consider the following table:

(a) Construct quadratic Lagrange polynomial pa(x) = az? + bz + ¢ to approrimate f(z).
(b) Use the polynomial in part (a) to interpolate f(x) at x = 4.
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Solution. (a) Obviously, a quadratic polynomial can be determined so that it passes through the
three points. Consider the quadratic Lagrange interpolating polynomial as follows:

p2(x) = Lo(@) f(z0) + L1(2)f (1) + La(x) f (22), (4.20)
or
pz2(x) = 2Lg(x) + 4L1(x) + 19L2(x). (4.21)
The Lagrange coefficients can be calculate as follows:
(z — x1)(x — x2) 1
Lo(z) = x* — 10x + 21
(@) (g — x1) (0 — T2) 21( )
(z — xp)(x — x2) 1
Liz) = et
1(®) (z1 — x0) (21 — 72) (= %),
Bl o= o RO ) Lpa g

(2 — ) (2 — :1:1) 28
Putting these values of the Lagrange coefficients in (4.21), we have

pa(x) = (37':1" — 55z + 168),

(with a = 37/84,b = —55/84, ¢ = 2) which is the required quadratic Lagrange polynomial.
(b) Now take x = 4 in the above polynomial, we obtain

pa(4) = [37( )2 — 55(4) + 168] = 6.4286,
which is the required estimate value of f(4).
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Example 4.4 Let f(x) = = + —, with points o0 = 1,21 = 1.5,22 = 2.5 and x3 = 3. Find the
T

quadratic Lagrange polynomial for the approzimation of f(2.7). Also, find the relative error.

Solution. Consider the guadratic Lagrange interpolating polynomial as follows:

flz) = pa(z) = Lo(z) f(zo) + La(z) f(z1) + La(z) f(z2).

Sinece the given interpolating point 1s * = 2.7, therefore, the best three points for the gquadratic
polynomial should be as follows:

xp = 1.5, f(xg) =2.1667, x1 =2.5, f(r1) =29, =m0 =23., f(z2) = 3.3333.
So using these values, we have

f(z) = palz) = 2.1667Lo(x) + 2.9L1(x) + 3.3333La(z),

where
_ (z—=25)(x-3) 1 _EEs .
L@ = G5 asas-g 1= 27
_ (z—15)(x-3) 1 e 5
L@ = G5 iseEs—g  —os@ *rtid)
Loy () (z-15)(@—-25) 1 (22 — 4z + 3.75).

(3—1.5)(3—2.5) 0.75
Using these Lagrange coefficients in the polynomial and after simplifying, gives

flz) = pa(x) = 0.0880922 + 0.37762 + 1.4003,

which is the required quadratic polynomial, and f(2.7) 2= po(2.7) = 3.0679. The relative error is

|f(2.7) — p2(2.7)]  [3.0704 — 3.0679)|
| f(2.7)] B 3.0704]

= 0.0008. .
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Nth Degree Lagrange Interpolating Polynomial

To generalize the concept of the Lagrange interpolation. consider the construction of a polynomial
pn(x) of degree at most n that passes through (n + 1) distinct points (zg, f(x0)), ..., (Zn, f(zn))

and satisfy the interpolation conditions pn(zk) = [z ) k=0,1,2,...,n

Assume that there exists polynomial Ly(z) (k= 0,1,2,...,n) of degree n having the property

0 for k ]
Lilz;) = { e : ij (4.12)

and

i Li(x) = 1. (4.13)
k=0

The polynomial p,(x) is given by
f(z) mpp(z) = Lo(z)f(xo) + Li(x)f(z1) + -+ + Li—1(z) f(2i-1)

+ Li(z)f(@i) + - + La(x) f(za) = ZLk(T)f(Tk) (4.14)
k=0

T

(@ —zg)(@—x1) (B~ 331 ) (@ —3?i+1)"'(3?—3?n)_ H (ﬂr—ﬂrk

(@i — mo) (i — x1) -+~ (@i — @i1) (@i — Tig1) -+~ (Wi — Tn) oy \Ti — Tk

Li(x) = ) i # k.

the Lagrange interpolation formula of degree n

f(z) = py(z) = Z“Hn( )(.ri), i k.
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Uniqueness of Lagrange Interpolating Polynomial

To show the uniqueness of the interpolating polynomial p, (z), we suppose that in addition to the
polynomial p, (z) the interpolation problem has another solution ¢, (z) of degree < n whose graph
passes through (i, v:), ¢ = 0,1,....n. Then define

rula) = pa(o) - 1a(2),

of the degree not greater than n. Since

ra(Zi) = Pu(xi) — gn(x:) = fzi) — fx:) = 0,

the polynomial r,(z) vanishes at n + 1 point. But by using the following well known result from
the theory of equations: "If a polynomial of degree n vanishes at n + 1 distinct points, then the
polynomial is identically zero”. Hence r,(z) vanishes identically, or equivalently, p,(x) = gn(x).

Error Formula of Lagrange Polynomial
All can be said with certainty is that f(z)—p,(z) = 0atz = xg, 21, ..., T,.
However, it is sometimes possible to obtain a bound on the error f(z) — p,(z) at an intermediate

point z using the following theorem.
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Theorem 4.2 (Error Formula of Nth Degree Lagrange Polynomial)

If f(x) has (n+1) derivatives on interval I and if it is approximated by a polynomial p,,(x) passing
through (n + 1) data points on I, then the error E, is given by

Fon(z))

Ep=4{zg)—pnlz) = (n+1)!

(I - :TD)(T - Il) T (T - ﬂjn)r H(T) el, (430)

where p,(x) is Lagrange interpolating polynomial (4.14) and a unknown point n(zx) € (xg,x,).

Error Formulas of Linear, Quadratic and Cubic Lagrange Polynomials

f(n(x))

By = f(z) - mla) = —5

where pq(z) is the linear Lagrange polynomial (4.5) and a unknown point n(z) € (xg, 71).

_ £ (n(a))
= (@) ~ pa(a) =

where p2(x) is the quadratic Lagrange polynomial (4.7) and a unknown point n(x) € (g, z2).

(x - o)z —z1), nl@)€l,

=z —axg)(x — 1) (x —x2), n(x) €,

L 17\ .
= @) —pa(e) = LD (o) @ an)(w — an)(a — ). m(@) € 1,

where p3(x) is the cubic Lagrange polynomial (4.9) and a unknown point n(x) € (xq,x3).
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Example 4.16 Construct the Lagrange interpolating polynomial of degree 2 for f(r) = rxlnx+e™*
on the interval [2,4] with the points xop = 2.0, x1 = 3.0, x2 = 4.0. Find a bound for the absolute

error.

Solution. Thus, the following table is given:

r | 20 3.0 4.0
f(x) ]| 1.5216 3.3456 5.5635

Consider a gquadratic Lagrange interpolating polynomial as
f(z) = pa2(zx) = Lo(z) f(zo) + L1(z) f(x1) + La(z) f(x2),

f(x) = palx) = Lo(x) f(2) + Li(x) f(3) + La(x) f(4).

f(z) = pa(x) = 1.5216Lo(x) + 3.3456 L1 () + 5.5635La(x).

We construet the basic Lagrange polynomials:

(2 —3)(z—4) (2 — Tz +12)

Lo(z) = (2—3)(2—4) 5 :
_ (z—2)(z—4) (22 —62+8)
L) = G=3E-1 1 "
2 r
Lo(z) — (z —2)(z —3) (= —-J’J_-"—|—6].

(4—2)(4—3) 2
Putting these values of the Lagrange coefficients in (4.31), we have
f(x) = pa(z) = 0.19702> + 0.8392z — 0.9447,

which is the required quadratic polynomaial. The error is given by

F3 ()

flz) —pa(x) = 31

(x —xo)(x — z1) (2 — 22).
Polynomial Interpolation and
Approximation
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f(z)=zhlhz+e™ and fO(z)= —— e
and the marimum of the third derivative is at 2, so

1
(3) — (3) _ I Y -
[ ()] = M = max [f(x)] = max [——5 —e™| = 0.3853.

Nezt we bound |g(z)|, where g(z) = (2 —2)(xz — 3)(z —4). To find the mazrimum of |g(x)|, we need
to take the derivative:

glx) = z® — 922 + 26z — 24, g'(z)= 3z — 18z + 26 = 0. gives pp = 3.5774, pa = 2.4226,
arnd
lg(z)| = |g(3.5774)| = | — 0.3849| = 0.3849 and |g(z)| = |g(2.4226| = |0.3849| = 0.3849.

Thus, obtaining the error bound:

_ |f® ()] 0.3853

f(z) = p2(2)| = ==z —20)(z —=1)(z — 23| < (0.3849) = 2.47 x 1072,

which is desired bound for the absolute error. °

Polynomial Interpolation and
Approximation
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Example 4.17 Use the gquadratic Lagrange interpolating polynomial lby selecting the best three
points from {—2,0,1,2,2.5} on the function defined by f(x) = (x + 1)F to estimate the cube root

3
of 5 (that is, {a]% ) and compute an error bound and absolute error.

“a

: . . L . 3
Solution. Since the given function is a cube root of (x+1), so by taking x+1 = —, we have v = —,

therefore, the best points for the quadratic polynomial are rg = 0,21 = 1, and x2 = 2. Consider a
quadratic Lagrange interpolating polynomial as

f(z) = pa(z) = Lo(2) f(zo) + L1(z) f(z1) + La(z) f (z2), (4.32)

and at x = 0.5, gives
F(0.5) ~ pa(0.5) = (1)/3Lg(0.5) + (2)/3L1(0.5) + (3)/3Ly(0.5). (4.33)
The Lagrange coefficients can be calculate as follows:

Lo(0.5) = (Otgiggg':f) = 0.375,

wios) - B8y

(0.5 —0)(0.5 — 1) B .
2-0e_1 —0.125.

Ly(0.5) =

Putting these values of the Lagrange coefficients in (4.33), we have

£(0.5) = p2(0.5) = (1)1/3(0.375) + (2)1/3(0.75) — (3)/3(0.125) = 1.1396,

1/3
which is the required approximation of the (5) :

Polynomial Interpolation and Approximation o _ " Dr. Mohamed Abdelwahed
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To compute an error bound for the approzimation of the given function in the interval [0,2], u

use the following quadratic error formula

:T
@) ~pata)] = LI )@ )@ — ).
As
FO (@) < M = max | (),
A 1 9 10
F@)=3@+)7", ff@)=-5e+D75, O@)= 2@+,
% 10
- g BB a i
M = e+ 17| = 37
Hence
10/27

£(0.5) — p2(0.5)] < (0.5 — 0)(0.5 —1)(0.5 — 2)],

and it gives

10(0.375)
162

which s desired error bound. Also, we have the absolute error is given as

| £(0.5) — p2(0.5)| < = 0.0232,

£(0.5) — p2(0.5)| = |(1.5)Y/3 — 1.1396| = |1.1447 — 1.1396| = 0.0051,

Polynomial Interpolation and Approximation Dr. Mohamed Abdelwahed
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Example 4.18 Consider f(z) = sinz and its values are known at five points {0,0.2,0.4,0.6,0.8}.
If the approrimation of sin0.28 by four degree Lagrange interpolating polynomial is 0.2763591, then
compute the error bound and the absolute error for the approrimation.

Solution. To compute an error bound for the approrimation of the given function in the interval
[0,0.8], we use the following error formula for Lagrange polynomial degree four

B n(z
7@ - @) = LT o g)(z — 22) (&~ 22) (& — 23)( — ),
£(2) — pala)] < 71(@ — 20)(z — 22)(z — 22) (& — 3)(ar — ).
Since - .
5 _ 5 _ _
)l = M = max [f*(z)] = max |ecosz|=

1
|£(0.28)—pa(0.28)] < 7550.28(0.28—0.2)(0.28—0.4)(0.28—0.6)(0.28—0.6)(0.28—0.8)| < 3.7 107,

which is desired error bound. Also, we have to compute absolute error as
|£(0.28) — p4(0.28)] = | sin 0.28 — p4(0.28)| = |0.2763556 — 0.2763591| = 3.5 x 107°,

which is desired result. .

Polynomial Interpolation and
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1
Example 4.13 Let f(x) = — be defined in the interval [2,4] and 9 = 2, r1 = 2.5, 19 = 4.
T

Compute the value of the unknown point n in the error formula of quadratic Lagrange interpolating
polynomial for the approrimation of f(3) using the given points xg, 1, T9.

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

p2(x) = Lo(x) f(xo) + L1(x) f(x1) + Lo(x) f(x2),

At the given values of xg = 2,11 = 2.5, 19 = 4, we have, f(2) =1/2, f(2.5) = 1/2.5 and f(4) = 1/4,

so using r = 3, we have

f(3) = pa(3) = (1/2)Lo(3) + (1/2.5)L1(3) + (1/5) La(3).

(3-25)(3-4) 1 . 3-2)3-4) 4  (3-2)3-25) 1
Lo(®) = 2-25)(2-4) 2 L@) = (25-2)25-4) 3 L2(3) = (4—2)(4—25) 6

F3) = p2(3) = (1/2)(=1/2) + (1/2.5)(4/3) + (1/4)(1/6) = 0.325,

which is the required approrimation of f(3) by the quadratic interpolating polynomial.
The error is

£(3) — p2(3) = 1/3 — 0.325 = 0.0083.



Since the error formula of the quadratic Lagrange polynomial is

I

(1)
3!

E = f(z) —pa(x) = (r —xo)(x — x1)(x —x2), mel,

and the third derivative of f is, f'(n) = —=1/%%,  f"(n) =2/%*, f"(n) = —6/n*. Thus

(3—2)(3—2.5)(3— 4)) (—6) 0.5
6 (m*) ot

and solving for n, we get, n* = 60.2410, 7n? = 7.7615, n = 2.7859 € (2,4), required value of the

unknown point . °

0.0083 = £(3) — po(3) = (



Theorem 4.3 (Error Bounds for Lagrange Interpolation at Equally Spaced Points)

Assume that f(x) is defined on the interval [a,b], which contains equally spaced points zj. = xo+ hk.
Additionally, assume that f(x) and the derivatives of f(x) up to the order (n +1), are continuous
and bounded on the special intervals [xo,x1], [xo,x2] and [zo, x3], respectively; that is

FP ) ()| < M for @ <z < zp,

for n =1,2,3. Then error bounds for linear, quadratic and cubic polynomials are:

hZ
|E(x)|] < gﬂf for o < r<r,
h'i
< —M for Tg < T < x9,
9v/3
hfl
Ez(z)| < ﬂM for  xg <z < 3.
Continue in the similar manner for the interval [xg,x,], forn=1,2,... n, we have

1 M  (b—a\"" M
|b"'(m)‘£4( ( n ) _mh”“: for zo <z <,

the general error bound formula. ®
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Example 4.20 Find an error bound if f(x) = sinz is approximated by an interpolation polynomial
with ten equally spaced data points in [0, 1.6875].

Solution. Givenn =9 and a = 0,b = 1.6875,

Note that f")(z) = +sinz for even n and f™ (z) = £ cos z for odd n, so we have a uniform bound

on f(")(z) for all n. That is |f™(z)| < 1 for all 2 and for all n.

M= max [f%(z)= max
0<z<1.6875 0<2<1.6875

—sinz| <1, V z € [0,1.6875].

Hence, the interpolation error (use Theorem 4.36) can be bounded by

1 /1.6875
Fg(z)| = |sinx — )| = —
o(a)| = [sine — po(o)] < 5 (5

for all x € [0,1.6875]. .

10
) ~1.34x 1077,
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Example 4.25 (a) Let f(x) = (x+1)In(x+1) be the function defined over the interval [1,2]. Find

the approrimations of (2.9In2.9) using linear, quadratic and cubic Lagrange interpolating polyno-

mials for equally spaced data points defined over the interval [1,2]. Compute the error bounds for

linear, quadratic and cubic Lagrange interpolating polynomials for equally spaced data points. Also,

compute absolute error for each case.

(b) Determine the step size h and the number of points to be used in the tabulation of the given

function f(r\ = (v +1)In(x 4+ 1) in [1,2] so that linear, quadratic and cubic interpolations will be

correct to B x 107"

Solution. (a) For linear Lagrange polynomial, we have h =2 —1 =1, so using r9 = 1,21 = 2 and

r = 1.9, in the linear Lagrange formula, we have
f(1.9) = p1(1.9) = Lo(1.9) f(1) + L1(1.9) f(2) = 1.3863Lp(1.9) + 3.2958L4(1.9).

The Lagrange coefficients can be calculate as follows:

(1.9 —2)
(1-2)

(1.9 —1)

W = 0.9.

Lo(1.9) = =0.1 and L1(1.9)=

Putting these values of the Lagrange coefficients in ({.38), we have
f(1.9) = p1(1.9) = 1.3863(0.1) + 3.2958(0.9) = 3.1049.

Polynomial Interpolation and Approximation Dr. Mohamed Abdelwahed
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Z—1

Now for quadratic Lagrange polynomial, take h = = 0.5, using rg = 1,x1 = 1.5, 20 = 2 and

r = 1.9, in the quadratic Lagrange formula, we have

Lo(1.9)f(1) + L1(1.9) f(1.5) + L2(1.9) f(2)
— 1.3863Lg(1.9) + 2.2907L(1.9) + 3.2958 L5 (1.9). (4.39)

f(1.9) =~ py(1.9)

The Lagrange coefficients can be calculate as follows:

) = GOZLIUO=D _ g4

(1.9 — 1)(1.9 — 2)
Li(19) = (I5-1)(15-2) %

Ly(1.9) = {lég — 3%2_1;)5} — 0.72.

Putting these values of the Lagrange coefficients in (4.39), we have

£(1.9) = pa(1.9) = 1.3863(—0.08) + 2.2907(0.36) + 3.2958(0.72) = 3.0867.
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LZ— 1

= 1/3, so using xg = 1,01 =4/3,19 = 5/3,

r3 =2 and x = 1.9, in the cubic Lagrange formula, we have

For cubic Lagrange polynomial, we have h =

f(1.9) = p3(1.9) = Lo(1.9)f(1) + L1(1.9)f(4/3) + L2(1.9) f(5/3) + L3(1.9) f(2)
— 1.3863Lo(1.9) + 1.9770L1(1.9) + 2.6156 Lo (1.9) + 3.2958 L3(1.9). (4.40)

The Lagrange coefficients can be calculate as follows:

(1.9 —4/3)(1.9 — 5/3)(1.9 — 2)

Lo(1.9) T s~ 0%
) = I o,
) = U,
L3(1.9) = (1'?2__13)(ég__;ﬁél'_g;,;}/ 3) _ 0.5355.

Putting these values of the Lagrange coefficients in (4.40), we have
f(1.9) = p3(1.9) = 1.386(0.0595) + 1.977(—0.2835) + 2.616(0.6885) + 3.296(0.5355) = 3.0881.
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The derivatives of the given function f(x) = (x + 1)In(x + 1) are as follows:

1 1
MEg o5 (4) . —
f(x) BENCESIE fH(x) =

2
(x+1)3°

P =1+ D), ) =,

Now for error bound of linear Lagrange polynomial, we use the formula

Mh?
|1 < ——
)| = il
where h=2—-1=1 and M = 11%13%{2|f ()] = max, I+1‘ =3 So
(1/2)(1)* 1
< - 0 = — =)
|\Eq| < 3 T 0.0625,

the error bound for the linear Lagrange polynomaial.
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L

Stmilarly, for error bound of quadratic Lagrange polynomial, we use the formula

Mh3
E
B2l < 3 Wk
here h=(2—1)/2=1/2 and M = max | f"(x)| = 1 |-l
where h = = an = 1}:13‘::&{2 = 11%13%{2 GErig| 1 0
1/4)(1/2)*  (1/32
< 20 /3 o
93 9v/3
the error bound for the quadratic Lagrange polynomaal.
Finally, for error bound of cubic Lagrange polynomial, we use the formula
Mh*
< 7
sl = =
where h=(2—1)/3=1/3 and M = max |f"¥(z)| = max S N
1<z<? 1<e<2|(x + 1)3 4
|E3| < (1/40/3)° ! — 0.0001,
24 ~ 7776
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the error bound for the cubic Lagrange polynomial. Finally,

1£(1.9) — p1(1.9)] = [3.0877 — 3.1049| = 0.0172,

|£(1.9) — po(1.9)| = [3.0877 — 3.0867| = 0.0010,
|£(1.9) — p3(1.9)| = [3.0877 — 3.0881| = 0.0004,

are respectively, the absolute error for linear, quadratic and cubic polynomials.
(b) Since we know that the upper bound of error in linear polynomial is

M h? 1
|E1| E T and M = E?
therefore,
h? 6
16 <hHx 107", h <0.0089, n=113.
As the upper bound of error in quadratic polynomial is
M h3 1
|Eo| < ——= and M = -,
9v/3 4
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therefore,
h3

<5x%x107% or R®<311.7601 x 10°%, h < 0.0678 and n = 14.7476 =~ 15.
364/3

Finally, as the upper bound of error in cubic polynomial is

MR 1 A4

and M ==, — <5x10°% or h* <480 x 1076,
4’ 06

B3| <

¥

This gives, [h < 0.1480 and n = 6.7560 ~ 7. Thus we need, respectively, 114 points, 16 points
and 8 points for the linear, quadratic and cubic interpolations. °
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Newton’s General Interpolating Formula

Since we noted in the previous section that for a small number of data point one can easily use
the Lagrange formula of the interpolating polynomial. However, for a large number of data points
there will be many multiplication and more significantly, whenever a new data point is added to
an existing set, the interpolating polynomial has to be completely recalculated. Here, we describe
an efficient way of organizing the calculations so as to overcome these disadvantages.

Let us consider the nth-degree polynomial p,(x) that agrees with the function f(x) at the distinct
numbers zg,1,...,2,. The divided differences of f(x) with respect to zg,x1,...,x, are derived
to express p,(z) in the form

pn(z) =ap + ai1(x —xo)+ az(r —xo)(x —x1) + -+
i an(m_mﬂ)(ﬂ:_ml)"'(m_mn—l)r (441}

for appropriate constants ag,aq,...,a,.
Now to determine the constants, firstly, by evaluating p,(x) at x4, we have

Pn(xg) = ag = f(zo) (4.42)
Similarly, when p,,(z) is evaluated at x1, then

Pu(x1) = ag + a1(x1 — xg) = f(z1),

which implies that

_ fla1) — fzo) (4.43)

T — X
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Divided Differences

Firstly, we define the Zeroth divided difference at the point z; by

flzi] = f (i), (4.44)

which is simply the value of the function f(z) at z;.

The first-order or first divided difference at the points x; and z;41 can be defined by

flwivd] = floi] _ f@iv) — f(=i)

flzi, zia] = (4.45)
Ti+1 — Ty Ti+1 — Ty
In general, the nth divided difference flr;, x;i1,...,2;4,] is defined by
f[ﬂ:i:! I‘i'}‘l:! it Ii-f'-ﬂ] — f[ anheths L ? £+n:| f[ ShtheL e 1] * (446)

LTitn — L4

By using this definition, (4.42) and (4.43) can be written as

ap = flzol: a1 = flzo,z1];

respectively. Similarly, one can have the values of other constants involving in (4.41) such as

az = flxe,x1,22],
as Tlsta, 1,80 ,53),

B = FlE0581yeennBn].
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Table 4.1: Divided difference table for a function y = f(x)

Zero First Second Third
Divided Divided Divided Divided
k | x;. | Difference | Difference | Difference Difference
0| x| [l
1| @ flzi] flzo, 2]
2 |z2 | flzo floy,@2] | [flwo, z1, 22]
3|23 | [flxg] floa x3] | flz, 22, 23] | flzo, @1, @2, 23]

Linear Newton’s Interpolating Polynomial

The linear Newton’s interpolating polynomial passing through two points (zg, f(x0)) and (21, f(z1))

can be written as

f(z) ~ p1(x) = flzo] + (z — z0) fl2o, T1].

Quadratic Newton’s Interpolating Polynomial

The quadratic Newton’s interpolating polynomial passing through the points (g, f(x0)).
(z1, f(x1)) and (x2, f(x2)) can be written in terms of divided differences as

p2(x) = flzo] + (& — x0) f[x0, T1] + (T — T0)(T — 1) f[T0, T1, T2

This polynomial can also be written as

f(z) = pa(x) = po(x) + (z — zo)(z — 1) f 70, T1, T3],

Polynomial Interpolation and Approximation
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Nth Degree Newton’s Interpolating Polynomial

Repeating this entire process again, ps(x),ps(x) and higher degree interpolating polynomials can
be consecutively obtained in the same way. In general, the interpolating polynomial p,(x) passing
through the points (z;, f(z;))(i =0,1,...,n), can be written in terms of divided differences as

flz) = pn(x) = flxo] + flzo, x1](x — mo) + flro, 71, 22] (7 — o) (2w — 71)
g R f[ﬂ?[]Tﬂil,...TﬂI”}(:}j = -T(})(;T —{.‘Il) — (.T — _']‘_':n_l).: (449)

Theorem 4.4 (Newton’s Interpolating Polynomial)

Suppose that xg, x4, ...,x, are (n+ 1) distinct points in the interval [a,b]. There exists a unique
polynomial p,(z) of degree at most n with the property that

flae) =palE)y Jor' i=01wan
The Newton’s form of this polynomial is
Pn(z) = ag +a1(x — xp) +az(z — zp)(x — 1) + -+ an(z —To) (T — 1) -+ (T — TH_1),

where
ar = flro,x1,22,+ @k, for k=0,1,2,...,n.
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Example 4.29 Consider the following table of date points

r|3 15 6
flz)|1 -3 2 4

Find the third divided difference f[3,1,5,6] and use it to find the Newton’s form of the interpolating
polynomial. Find approximation of f(2).

Solution. The third divided differences for the given data points are listed in Table 4.5. The cubic

Table 4.5: Divided difference table for a function y = f(z)

Zero First, Second Third
Divided Divided Divided Divided
k Tk Difference Difference Difference Difference
0|xzo=3| flzo]=1
1| zi=1| flza] = =8 | Flzez1] =2
2| zg=5| flza]=2 | flx1,22] =5/4 | flxg, z1,22] = —3/8
3|zz3=6| flzs]=14 flxa,z3) =2 | flz1,22,23) = 3/20 | flxg, 1,29, 23] = 7/40

Newton’s interpolating polynomial passing through the given can be written as

pa(x) = flzo]+(x—z0)f [0, 1]+ (x—20) (T —21) f[T0, T1, T2]+ (T —T0) (T —21) (—22) f[T0, 71, T2, T3],

so using Table 4.5, we have

3 7
p3(z) = 1+ 2(z — z0) — g(z — 20)(z — 21) + 5(& — z0)(z — 21)(z —22),

or
1
pa(z) = 4—0[?533 — 78> + 301z — 350].
Thus at £ = 2, we get

f(2) &~ p3(2) = %[7(2)3 —78(2)% + 301(2) — 350] = —1%,
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Example 4.28 Find the Lagrange and the Newton forms of the interpolating polynomial for the
following data
z|0 1 3
flx) | 1 2 3

Write both polynomials in the form a + bx + ex? to verify that they are identical as functions.

Solution. With @y = 0.2y = 1 and o = 3, we obtain the quadratic Lagrange interpolating
polynomial

) ()~ Emm)Emm) o @)@ o @ a)em)

(zg —x1)(mg —x2)” © " (21 — 7p) (21 — 9) m1}+{12—$u](32—$1} (z2)
 @-DE-3),, . @-0@E-3,. (@01
= oo VT aoa-s P o
f(@) = pafe) = 1 + g — g2

The result of the divided difference is listed in Table 4.3.

Since the Newton’s interpolating polynomaial of degree 2 is defined as

Table 4.3: Divided differences table for the Example 4.28.

Zeroth Divided | First Divided | Second Divided
k| = Difference Difference Difference
0 1
11 2 1
1 1
21 3 3 2 8
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f(z) = p2(z) = flzo] + f[zo, z1)(z — xo) + flzo, 1, T2|(2 — T0) (T — 21).
By using Table 4.3, we have Newton’s polynomial

flz)=pa(z) =1+ (1)(z —0) + (—é) (z—0){z—1)=1+ %’.ﬂ— émg,

which show that both polynomials are identical as functions.
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Example 4.33 (a) Construct the divided difference table for the function f(x) = In(z+2) in the
interval 0 < x < 3 for the stepsize h = 1.
(b) Use Newton divided difference interpolation formula to construct the interpolating polynomials
of degree 2 and degree 3 to approrimate In(3.5).
(¢) Compute error bounds for the approrimations in part (b).

Solution. (a) The results of the divided differences are listed in Table 4.9.

(b) Firstly, we construct the second degree polynomial pa(z) by using the quadratic Newton inter-
polation formula as follows

p2(z) = flzo] + flwo, z1](x — zo) + flzo, 21, 22](x — 20)(x — 21),
then with the help of the divided differences Table 4.9, we get
p2(x) = 0.6932 + 0.4055(x — 0) — 0.0589(x — 0)(x — 1),
which implies that pa2(x) = —0.0568z2 + 0.46442 + 0.6932 and p2(1.5) = 1.2620,

with possible actual error f(1.5) — pa(1.5) = 1.2528 — 1.2620 = —0.0072.

Now to construct the cubic interpolatory polynomial ps(x) that fits at all four points. We only have

to add one more term to the polynomial pa(x):

p3(x) = pa(z) + flzo, 1,22, 23)(z — z0)(z — 1) (x — z2),

and this gives

pa(x) = pa(x) +0.0089(x> — 32% + 22) and ps(1.5) = 1.2620 — 0.0033 = 1.2587,
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Table 4.9: Divide differences table for the Example 4.33

Zeroth First Second Third
Divided Divided Divided Divided
k | ;. | Difference | Difference | Difference | Difference
0 0 0.6932
1] 1 1.0986 0.4055
2| 2 1.3863 0.2877 - 0.0589
& | 1.6094 0.2232 - 0.0323 0.0089
with possible actual error  f(1.5) — pa(1.5) = 1.2528 — 1.2587 = —0.0059.

(¢) Now to compute the error bounds for the approzimations in part (b), we use the error formula
(4.30). For the polynomial pa(x), we have

n nl
£@) —pa(a)| = LI )@ — ) — ).
The third derivative of the given function is given as
i 2 i
f(z) = @t2p and |f"(n(z))| = ‘TQ)? for n(z) € (0,2).
2 =4 By =4 4 =4 o =4
Then M = 01%15_1%(2 m =0.25, ,pg [f(1.5)—p2(L.5)] < (?.370)(0.20)/’5 = 0.0156,
| | | O (@) |
the error bound for the cubic polynomial ps(x) is f(z) — p3(z)| = THT —xo)(z — x1) (2 — 2)(2 — 23)|
—6
— d = e ; . 3).
V@)= g ad [FY0@)| = || for m(@) € (0.3
Since 1f(©)]=0375 and [£9)(3)| = 0.0096,
so [0 ()| < max || = 0375 and | f(1.5) — ps(1.5)| < (0.5625)(0.375)/24 = 0.0088,
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Example 4.37 Consider the points xg = 0,21 = 0.4, 29 = 0.7 and for a function f(x), the divided
differences are f[xa] =6, flx1,xs] = 10, flxp, x1, x2] = 50/7. Use linear Newton’s polynomial p1(x)
to find quadratic Newton’s polynomial pa(x) for the approximation of f(0.3).

Solution. First we construct the complete divided differences table for the given data points. Since
we know that the second divided difference is defined as
o . _f[lEI!x?]_f[:ED::L-I] SD_ID_f[:ED?Il]
flro, 1, 29] = — , == g
Solving for f[xg, 1], we have, f[rg,x1] =5. We need to find the values of the zeroth order divided
differences f[xo] and f[x1] which can be obtained by using the first-order divided differences f|xrg, x1]

and f|ry,xa]. Firstly, we find the value of f|r1] as follows

_ _ flxo] = flxy] _ 6 flz] - _
flr1,x9] = 2o —21 10 = 07 — 04’ flr1] =6 —10(0.3) = 3.
The other zeroth divided difference f[xp] can be computed as follows
o [flza] = flxo] 3~ flxo] L B
f[.ff[l.,..{.ﬂ - T — T ’ 3= 04 —0 ’ JF['LU] =3 5(04) = 1.

The completed divided differences table is shown by Table 4.11. We first find the linear Newton's
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Table 4.11: Divided differences table for the Example 4.37.

Zeroth Divided | First Divided | Second Divided
k| Difference Difference Difference
0| 0 1
1|04 3 5
2| 0.7 6 10 5—:

polynomial to approximate f(0.3) using Table 4.11 as follows:
f(0.3) = p1(0.3) =14+ (5)(0.3—-0.0) =1+ 1.5=2.5,

and then use it to find quadratic Newton’s polynomial using Table 4.11, we have
50
f(0.3) = pa(0.3) = p1(0.3) + 5(0.3 — 0) + ?(0.3 —0)(0.3 -04) =2.5+1.5—0.2143 = 3.7857,

the approrimation of f(0.3) using quadratic Newton’s polynomaial.
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Theorem 4.5 Let p,(x) be the polynomial of degree at most n that interpolates a function f(x) at
a set of n + 1 distinct points xg,x1,....x,. If x is a point different from the points xg,x1,...,x,,
then

T

Flay—m,l8) = FlEsmi, 00 ,:rn,:;r:]H(:;r: —Zi), (4.55)

7=0
Theorem 4.6 (Divided Differences and Derivatives)

Suppose that f € C"[a,b] and xp,x1,...,7n ave distinct number in [a,b]. Then for some point
n(z) in the interval (a,b) spanned by xg,. ... T, evists with

(12) nlr
flzos g1y e esZn] = w (4.56)

Example 4.37 Let f(x) = xlnz, and the points zp = 1.1,z1 = 1.2,22 = 1.3. Compute the best
approzimate value for unknown point 1n(x) by using the relation (4.56).

Solution. Given f(x) = xIlnz, then

f(1.1) = 1.1In(1.1) = 0.1048,
F(1.2) = 1.2In(1.2) = 0.2188,
F(1.3) = 1.3In(1.3) = 0.3411.

Since the relation (4.56) for the given data points is

£ (n())

Tlon % 85] = i

(4.57)
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To compute the value of the left-hand side of the relation (4.57), we have to find the values of the
first-order divided differences

1) — flx 0.2188 — 0.1048
it ] = f(z1) — f@o) _
1 — In 1.2—1.1

= T 1400);
and

_ f(zg) — f(z1)  0.3411-0.2188
f[ﬂ?l? :}32} — Ty — @1 — 13-12 =.1.2230.

Using these values, we can compute the second-order divided difference as

flxo, @1, m2] = flz1,ma] — flwo, @] _ 1.2230 —1.1400 _

0.4150.
22 — T 1.3~ bl =
Now we calculate the right-hand side of the relation (4.57) for the given points and which gives us
(@) _ 1 fll@) _ 1 flz2) 1
= = 0.4546, = = 0.4167, = = (.3846.
2 2w 2 2m 2 2

We note that the left-hand side of (4.57) is nearly equal to the right-hand side when x1 = 1.2.

Hence the best approximate value of n(x) is 1.2. °
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Properties of Divided Differences

1. Divided difference of a constant is zero. Let f(z) = a, then

f[i??g, 331] e f(:rl) — f(ﬂ"ﬂ) _ i

r1 — To T1 — To

=[],

2. Divided difference of h(x) = af(x), a is constant, is the divided difference of f(z) multiplied
by a. Let h(x) = af(x), then

h(zx1) — h(zq) _ af(z1) —af(xg) _ af('-’ﬂl) == f(-??n)

X1 — Iy L1 — Xy 1 — Xg

hlzo, z1] =

= af[zo, xo].

3. Divided difference obeys linear property.
Let F(x) = afi(z) + bfa(x), then Flzo,z1] = afi[xg, z1] + bfalxe, z1).

4. If pp(x) is a polynomial of degree n, then the divided differences of order n is always constant
and (n+1), (n+ 2),... are identically zero.

5. The divided difference is a symmetric function of its arguments. Thus if (¢p, 1,

siskn) 18 &
permutation of (xg,z1,...,2,), then

f[?fg,h, %L ,tn] == f[:rn, ) ,an],

6. The interpolating polynomial of degree n can be obtained by adding a single term to the
polynomial of degree (n — 1) expressed in the Newton form.

n—1

Pn(ﬂf) - pn—l(ﬂ:) i f[ﬂ:fh A .,.Tn} H(T - 113".}

j=0
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7. The divided difference f[zg,...,z,—1] is the coefficient of 2”1 in the polynomial that inter-
polates (xg, fo); (Z1,f1)s++ s (Bn=1; fa=1)-

8. A sequence of divided differences may be constructed recursively from the formula

fis Fltirss o] = Doy oo5Bn=a]

f[:‘.:ﬂ:!' .o ':ﬂjn -
LIp — L
and the zeroth-order divided difference is defined by
Hed = flz)y 2=0.L....3

(1)
9. flzo,zo) = f'(®o)-  flwo,xo,w0] = f'(20) flwo,zo, 0] = T2 n(.m)
: |

ky

¥

41
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Example 4.40 Let f(x) = e ™ and let g = 0,2y = 1. Using (4.56) and the above divide difference
property 9, caleulate flxo, x1,x0], flzo, w0, z1,21] and flzo, z1,21, 21].

Solution. By using (4.56), we have f[xg,zo] = %f’{:{ru] = f'(zp). Therefore

flzo, 1] — flwo.z0] _ flwo,21] — f’(fﬂﬂ]_

flzo, z1.20] = flxo. z0, 21] =

T1 — T0 T1 — T
— 0.3658 — 1
flzo, 71] = fle = flwo] e 10,1 = —2=—— = —0.632.
r1 — Tn 1—0
—0.632 + 1
Using f'(xg) = —e=™, f'(0) = —1, we obtain, f[0,1,0] = f[0,0,1] = 1—D+ = 0.368. Now to

find the value of the third divided difference which is defined as

f[SE[],I[],El,Il] — f[ID.. II,II] — f[Iu?mD! -Tl]:

T1 — T0
flwo, 20, 21, 21] = f'(x1) — 2f[zo, :r::lL—i- f’[ﬁ:u]_
(1 — o)
0368 -2(—0.632) -1
f10,0,1,1] = TR = —0.014.
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_ S,z 71 — flwo. w0 3]

f[xﬂsmlsmlrlrl] — '

Iy — Ip

(1) /2 = (F(21) — flwo, 21])/ (21 — 20)

flro, z1, 2, 2] =
flzo, zo, 1, 11| =

As f"(1) = e 1 =0.368, f[0,1,1,1] =

Iy — Ip

(21 — m0) f"(w1) — 2f'(x1) + 2f[wo, 71]

2(x1 — x0)?
(1—0)(0.368) — 2(—1) + 2(—0.632)
2(1—0)
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Example 4.41 Let f(z) = In(z+2) and g = 0,2y = 0,290 = 1,23 = 1, find the best approzimation
of In(2.5) by using the Newton’s polynomial.

Solution. Using f(x) = In(z + 2) and x¢p = 0,21 = 0,29 = 1,23 = 1, the cubic Newton’s
interpolating polynomial has the following form

= flzo]+(z—=0) f[x0, z0]+(z—20) (2 —20) f[20, TO, 21|+ (2—20) (2 —20) (2 —21) f [0, D, 21, 1]

Now we find the second and third-order divided differences as follows:
f10. 1] — f'(0)

£10.0,1] = — = f(1) — f(0) — f'(0) = 1.0986 — 0.6932 — 0.5 = —0.0946.
f10,1,1] = S, 11] : g[u, 1 _ f(1) — f(1) + £(0) = 0.3333 — 1.0986 + 0.6932 = —0.0721,
f10,0,1,1] = f[ﬂ’l’ll] g[ﬂ 0.1 _ —0.0721 + 0.0946 = 0.0225.

p3(0.5) = £(0) + (0.5 — 0)'(0) + (0.5 — 0)(0.5 — 0)£[0,0, 1] + (0.5 — 0)(0.5 — 0)(0.5 — 1)£[0,0, 1 1],
In(2.5) 2 p3(0.5) = In(2)+(0.5)(0.5)4(0.25)(—0.0946)+(—0.1250)(0.0225) = 0.6932+0.25—0.0237—0.0028 = 0.916

b
the required approrimation of In(2.5) and

£(0.5) — p3(0.5)] = |In(2.5) — p3(0.5)| = [0.9163 — 0.9167| = 4.0 x 104,

the possible absolute error in the approrimation. .
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Interpolation with Spline Functions

Definition 4.1 (Spline Function)

Leta=xg <z <a2-++ < 2p =b. A function s: [a,b] — R is a spline or spline function of degree

m with points Tg,T1,..., Ty if

1. A function s is a piecewise polynomial such that, on each subinterval [z, z11], s has degree at

most m.
2. A function s is m — 1 times differentiable everywhere.

Piecewise Linear Interpolation

[t is the one of the simplest piecewise polynomial interpolation for the approximation of the function,

Consider the set of seven data points (o, %0), (z1.¥1), (x2,¥2), (x3.93), (T4, v4), (x5, y5) and (xg, ys) -

If we use a straight line on each subinterval (see Figure 4.4) then we can interpolate the

data with a piecewise linear function, where

(&= zpy1) (x —
sk(z) = pr(z) = (r — o) + ( )

Polynomial Interpolation and Approximation
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or
(Yk+1 — k) .

si(z) = yr + P — T ).
(k41 — Tk)
It gives us
sk(z) = Ak + Br(z — xp), (4.59)
where the values of the coefficients A; and B, are given as
Ak — Yk and Bk = (yk—H — yk) (460)

(Th+1 — xk)

Note that the linear spline must be continuous at given points g, x1,...,x, and

8iEE) = P f6F BE=00y0 0

Example 4.43 Find the linear splines which interpolates the following data

z |1 2 38 4
f(z)]1.0 0.67 050 0.40

Find the approzimation of the function f(x) = at x = 2.9. Compute absolute error.

T+

Solution. Given xg = 1.0,x1 = 2.0, 29 = 3.0, 23 = 4.0, then using (4.60), we have
Ap=y=1.0, A =y1 =0.67, A2 =32 =0.50, A3z = y3 = 0.4,

and

(11 — o) (0.67 —1.0)
By = ———m = ——*~ = —-(.33,
0 (:131 = 5‘3(}) (2[} e 10)
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(y2—y1) _ (0.50 —0.67)

B — — —0.17,
! (9 — x1) (3.0 —2.0)
_ _ =4

B (y3 —32) e (0-40 — 0.50) —0.10.
(x3 — x2) (4.0 — 3.0)

Now using (4.59), the linear splines for three subintervals are define as

so(z) = 10-033(z—1.0)=133—-033z, 1<z<2,
s(z) =14 si(z) = 067—017(x—2.0)=1.01—-0.17z, 2<z <3,
s2(z) = 0.50—0.10(z —3.0)=0.80—0.10z, 3<z <4

The value z = 2.9 lies in the interval [2,3], so
f(2.9) = 51(2.9) = 1.01 — 0.17(2.9) = 0.517.

Also,
1 £(2.9) — 51(2.9)| = |0.513 — 0.517| = 0.004,
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Example 4.44 Find the values of unknoun coefficients a and b so that the following funetion is a
linear spline.

a— x, 0<ax <1,
s(x) =< 3z —b, 1 <ax <2,
2r + 1, 2< <3

Solution. Since the given function is a linear spline, so s must be continuous at the internal points
1 and 2. Continuity at * = 1 implies that

lim s(zx) = lim s(z),
r—+1— r—1+
lima—x = lim 3z —b,
r—1- r—1+
a—1 = 3—b,
and it gives an equation of the from
a—+b=4.
Now continuity at x = 2 implies that
li — |k .
g s = g @)
lim3z—b = lim2z+1,
T2 r—+2+
6—-b = 5,

and it gives b = 1. Using this value of b, we get a = 3, and so

33—, 0<x <1,
s(r) =< 3r—1, 1<x<2,
2r + 1, 2<r <3,
is the linear spline function. .
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