
12. Deflections of Beams and Shafts
*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

• Assumptions: 
– beam is initially straight, 
– is elastically deformed by the loads, such that 

the slope and deflection of the elastic curve are 
very small andvery small, and 

– deformations are caused by bending.
Theorem 1
• The angle between the tangents at any two pts on 

the elastic curve equals the area under the M/EI
diagram between these two ptsdiagram between these two pts.
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12. Deflections of Beams and Shafts
*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Theorem 2
• The vertical deviation of the tangent at a pt (A) on 

the elastic curve w.r.t. the tangent extended from 
another pt (B) equals the moment of the area 
under the ME/I diagram between these two pts g p
(A and B). 

• This moment is computed about pt (A) where the 
vertical deviation (t ) is to be determinedvertical deviation (tA/B) is to be determined.
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12. Deflections of Beams and Shafts
*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis
M/EI Diagram
• Determine the support reactions and draw the 

beam’s M/EI diagram.
• If the beam is loaded with concentrated forces the• If the beam is loaded with concentrated forces, the 

M/EI diagram will consist of a series of straight 
line segments, and the areas and their moments 
required for the moment area theorems will berequired for the moment-area theorems will be 
relatively easy to compute.

• If the loading consists of a series of distributed g
loads, the M/EI diagram will consist of parabolic or 
perhaps higher-order curves, and we use the table 
on the inside front cover to locate the area and
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12. Deflections of Beams and Shafts
*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis
Elastic curve
• Draw an exaggerated view of the beam’s elastic 

curve.
• Recall that pts of zero slope and zero• Recall that pts of zero slope and zero 

displacement always occur at a fixed support, and 
zero displacement occurs at all pin and roller 
supportssupports.

• If it is difficult to draw the general shape of the 
elastic curve, use the moment (M/EI) diagram., ( ) g

• Realize that when the beam is subjected to a +ve 
moment, the beam bends concave up, whereas 
-ve moment bends the beam concave down
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12. Deflections of Beams and Shafts
*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis
Elastic curve
• An inflection pt or change in curvature occurs 

when the moment if the beam (or M/EI) is zero.
• The unknown displacement and slope to be• The unknown displacement and slope to be 

determined should be indicated on the curve.
• Since moment-area theorems apply only between 

two tangents, attention should be given as to 
which tangents should be constructed so that the 
angles or deviations between them will lead to the g
solution of the problem.

• The tangents at the supports should be 
considered since the beam usually has zero
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considered, since the beam usually has zero 
displacement and/or zero slope at the supports.



12. Deflections of Beams and Shafts
*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis
Moment-area theorems
• Apply Theorem 1 to determine the angle between 

any two tangents on the elastic curve and 
Theorem 2 to determine the tangential deviationTheorem 2 to determine the tangential deviation.

• The algebraic sign of the answer can be checked 
from the angle or deviation indicated on the elastic 
curvecurve.

• A positive θB/A represents a counterclockwise 
rotation of the tangent at B w.r.t. tangent at A, and g g ,
a +ve tB/A indicates that pt B on the elastic curve 
lies above the extended tangent from pt A.
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12. Deflections of Beams and Shafts
EXAMPLE 12.7
Determine the slope of the beam shown at pts B and 
C. EI is constant.
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12. Deflections of Beams and Shafts
EXAMPLE 12.7 (SOLN)
M/EI diagram: See below.
Elastic curve:Elastic curve:
The force P causes the beam to deflect as shown. 

©2005 Pearson Education South Asia Pte Ltd 10



12. Deflections of Beams and Shafts
EXAMPLE 12.7 (SOLN)
Elastic curve:
The tangents at B and C are indicated since we areThe tangents at B and C are indicated since we are 
required to find B and C. Also, the tangent at the 
support (A) is shown. This tangent has a known zero 
slope. By construction, the angle between tan A and 
tan B, θB/A, is equivalent to θB, or

ACCABB θθθθ == and
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12. Deflections of Beams and Shafts
EXAMPLE 12.7 (SOLN)
Moment-area theorem:
Applying Theorem 1, θB/A is equal to the area underApplying Theorem 1, θB/A is equal to the area under 
the M/EI diagram between pts A and B, that is,
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12. Deflections of Beams and Shafts
EXAMPLE 12.7 (SOLN)

Moment-area theorem:
The negative sign indicates that angle measured fromThe negative sign indicates that angle measured from 
tangent at A to tangent at B is clockwise. This checks, 
since beam slopes downward at B.p
Similarly, area under the M/EI diagram between pts A
and C equals θC/A. We haveC/A
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12. Deflections of Beams and Shafts
EXAMPLE 12.8
Determine the displacement of pts B and C of beam 
shown. EI is constant.
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12. Deflections of Beams and Shafts
EXAMPLE 12.8 (SOLN)
M/EI diagram: See below.
Elastic curve:Elastic curve:
The couple moment at C cause the beam to deflect as 
shown. 
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12. Deflections of Beams and Shafts
EXAMPLE 12.8 (SOLN)
Elastic curve:
The required displacements can be related directly toThe required displacements can be related directly to 
deviations between the tangents at B and A and C and 
A. Specifically, ∆B is equal to deviation of tan A from 
tan B,

ACCABB tt =∆=∆
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12. Deflections of Beams and Shafts
EXAMPLE 12.8 (SOLN)
Moment-area theorem:
Applying Theorem 2, tB/A is equal to the moment of theApplying Theorem 2, tB/A is equal to the moment of the 
shaded area under the M/EI diagram between A and B
computed about pt B, since this is the pt where 
tangential deviation is to be determined. Hence,
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12. Deflections of Beams and Shafts
EXAMPLE 12.8 (SOLN)
Moment-area theorem:
Likewise, for tC/A we must determine the moment ofLikewise, for tC/A we must determine the moment of 
the area under the entire M/EI diagram from A to C
about pt C. We have
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Since both answers are –ve, they indicate that pts B

EIEI 22 ⎥⎦⎢⎣ ⎠⎝⎠⎝

, y p
and C lie below the tangent at A. This checks with the 
figure.
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12. Deflections of Beams and Shafts
12.5 METHOD OF SUPERPOSITION

• The differential eqn EI d4ν/dx4 = −w(x) satisfies the 
two necessary requirements for applying the 
principle of superpositionprinciple of superposition

• The load w(x) is linearly related to the deflection 
ν(x)

• The load is assumed not to change significantly 
the original geometry of the beam or shaft.

©2005 Pearson Education South Asia Pte Ltd 23



12. Deflections of Beams and Shafts

©2005 Pearson Education South Asia Pte Ltd 24



12. Deflections of Beams and Shafts
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12. Deflections of Beams and Shafts
EXAMPLE 12.16
Steel bar shown is supported by two springs at its 
ends A and B. Each spring has a stiffness k = 45 kN/m 
and is originally unstretched. If the bar is loaded with a 
force of 3 kN at pt C, determine the vertical 
di l t f th f N l t th i ht f thdisplacement of the force. Neglect the weight of the 
bar and take Est = 200 GPa, I = 4.6875×10-6 m.
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12. Deflections of Beams and Shafts
EXAMPLE 12.16 (SOLN)

End reactions at A and B are 
computed and shown. Eachcomputed and shown. Each 
spring deflects by an amount
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12. Deflections of Beams and Shafts
EXAMPLE 12.16 (SOLN)
If bar is considered rigid, these 
displacements cause it to move 
into positions shown. For this 
case, the vertical displacement 

t C iat C is

( ) ( ) ( ) ( )[ ]m2
1111 −+= BABC υυυυ( ) ( ) ( ) ( )[ ]

[ ]m02820m044402m02220

m3 1111

−+=

+ BABC υυυυ

[ ]

m0370.0

m0282.0m0444.0
3

m0222.0

=

−+=

©2005 Pearson Education South Asia Pte Ltd 28



12. Deflections of Beams and Shafts
EXAMPLE 12.16 (SOLN)
We can find the displacement at C caused by the 
deformation of the bar, by using the table in Appendix y g
C. We have
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12. Deflections of Beams and Shafts
EXAMPLE 12.16 (SOLN)
Adding the two displacement components, we get

( ) m001422.0m0370.0 +=+ Cυ( )
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