
Architectural Models

Most concepts are
drawn from Chapter 2
© Pearson Education

Dr. Gannouni Sofien

Some ideas from Chapter 1
© Pearson Education

2

Presentation Outline

Introduction
Architectural Models

Software Layers
System Architectures

Client-Server
Clients and a Single Sever, Multiple Servers, Proxy Servers with
Cachers, Peer Model

Alternative Client-Sever models driven by:
Mobile code, mobile agents, network computers, thin clients, mobile
devices and spontaneous networking

Design Challenges/Requirements
Fundamental Models – formal description

Interaction, failure, and Security models.
Summary

3

Lecture Overview (I)

An Architectural model of a distributed system
is concerned with the placement of its parts
and relationship between them. Examples:

Client-Server (CS) and peer process models.
CS can be modified by:

The partitioning of data/replication at cooperative
servers
The caching of data by proxy servers or clients
The use of mobile code and mobile agents
The requirements to add or remove mobile devices.

4

Lecture Overview (II)

Fundamental Models are concerned with a formal
description of the properties that are common in all
of the architectural models.
Models addressing time synchronization, message
delays, failures, security issues are addressed are:

Interaction Model – deals with performance and the
difficulty of setting of time limits in a distributed system.
Failure Model – specification of the faults that can be
exhibited by processes
Secure Model – discusses possible threats to processes
and communication channels.

Architectural Models

Software Layers
System Architectures
Interfaces and Objects
Design Requirements

6

Architectural Models – Intro [1]

The architecture of a system is its structure in terms
of separately specified components.

Its goal is to meet present and likely future demands.
Major concerns are make the system reliable, manageable,
adaptable, and cost-effective.

Architectural Model:
Simplifies and abstracts the functions of individual
components
The placement of the components across a network of
computers – define patterns for the distribution of data and
workloads
The interrelationship between the components – ie.,
functional roles and the patterns of communication
between them.

7

Architectural Models – Intro [2]

Architectural Model - simplifies and abstracts
the functions of individual components:

An initial simplification is achieved by classifying
processes as:

Server processes
Client processes
Peer processes

Cooperate and communicate in a symmetric manner to
perform a task.

8

Software Architecture and Layers

The term software architecture refereed:
Originally to the structure of software as layers or modules in a single computer.
More recently in terms of services offered and requested between processes in the
same or different computers.

Breaking up the complexity of systems by designing them through layers and
services

Layer: a group of related functional components
Service: functionality provided to the next layer.

Layer 1

Layer 2

Layer N

(services offered to above layer)

…

9

Software and hardware service layers in
distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

10

Platform

The lowest hardware and software layers are often
referred to as a platform for distributed systems and
applications.
These low-level layers provide services to the layers
above them, which are implemented independently
in each computer.
Major Examples

Intel x86/Windows
Intel x86/Linux
Intel x86/Solaris
SPARC/SunOS
PowePC/MacOS

11

Middleware

A layer of software whose purpose is to mask heterogeneity
present in distributed systems and to provide a convenient
programming model to application developers.
Major Examples:

Sun RPC (Remote Procedure Calls)
OMG CORBA (Common Request Broker Architecture)
Microsoft D-COM (Distributed Components Object Model)
Sun Java RMI
Modern Middleware:

Melbourne Gridbus – for Grid computing
ANL Globus – a Grid toolkit
IBM WebSphere
Microsoft .NET
Sun J2EE

12

System Architecture

The most evident aspect of DS design is the
division of responsibilities between system
components (applications, servers, and other
processes) and the placement of the
components on computers in the network.
It has major implication for:

Performance, reliability, and security of the
resulting system.

13

System Architecture Models

Client / Server Architecture Models
Meta-Computing model
Global Computing Model
Grid Computing
P2P Model

14

Client Server Basic Model:
Clients invoke individual servers

Client process interact with individual server processes in a separate computer in
order to access data or resource. The server in turn may use services of other
servers.
Example:

A Web Server is often a client of file server.
Browser search engine -> crawlers other web servers.

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

15

Clients and Servers

The Server is a process that perform tasks on
demand by exchanging messages with the
clients.
The Server is a resource manager and as such
they provide:

Encapsulation:
Provide a useful service interface (a set of operations)
to the resources that meet the client’s needs

Concurrent processing:
Achieving concurrency transparency.

Protection:
Resources require protection from illegitimate
accesses.
Read, Write and Execution Permissions.

16

Clients and Servers

General interaction between a client and a server.

17

Client/Server Communications:
Interaction schemes

A client/server system relies on
communication, generally involving:

Publisher/Subscriber
Message passing
RPC/RMI
Shared spaces
Message queuing

18

Publish/Subscribe Paradigm

Publish/Subscribe (pub/sub): a powerful
abstraction for building distributed applications

Message-based, anonymous communication
Participants are decoupled

Good solution for highly dynamic, decentralized
systems (e.g., wired environments with huge
numbers of publishers and subscribers, Mobile
networks, P2P etc)
Many research issues, involving several research
areas (e.g., systems, software eng., databases
etc)

19

Publish/Subscribe Interactions

Eugster, P.T., et al., The Many Faces of Publish/Subscribe. ACM
Computing Surveys, 2003. 35(2).

20

Basic Interaction Model

S1

S2

S3

publishers
subscribers

“IBM”

“ACME”

“ACME”

subscription

IBM: -3,75

ACME: +0,15

IBM: +2,51

event

S1: IBM
S2: ACME
S3: ACME

notification service
IBM: -3,75

IBM: +2,51

ACME: +0,15

ACME: +0,15

notification

21

Why decoupling?

Decouple producers and consumers
Remove explicit dependencies
Reduced coordination & synchronization between different
entities

Increase scalability of distributed systems
Create highly dynamic, decentralized systems
Decouple in three dimensions

Space
Time
Synchronization (flow)

22

Space decoupling

no need to hold references or even know
each other

23

Time decoupling

no need to be available at the same time

24

Synchronization decoupling

Control flow is not blocked by the interaction

25

Message Passing

The producer sends messages asynchronously through a communication
channel (previously set up for that purpose).
The consumer receives messages by listening synchronously on that
channel.
Coupled in space, time and sync (consumer side)

26

RPC/RMI

The consumer performs a synchronous call, which is
processed asynchronously by the producer.
Coupled in space, time and sync (consumer side)

27

Shared Spaces

producers insert data asynchronously into the shared
space, while consumers read data synchronously.
Coupled in sync (consumer side)

28

Message Queuing (Pull)

Messages are stored in a FIFO queue.
Producers append messages asynchronously at the end of the
queue,
Consumers dequeue them synchronously at the front of the
queue.
Coupled in sync (consumer side)

29

Generations Of C/S

First Generation: frontal processing
Second Generation: collaborative processing
Third Generation: distributed data &
processing
Internet: to a universal C/S

30

Frontal Processing

Presentation C/S
The Logic of the user’s
interface is
implemented on the
client

Revamping

DB

DBMS

Application

Presentation

DB

DBMS

Application

Presentation

Presentation

Presentation
C/S

Revamping
C/S

31

Collaborative Processing

Stored Procedure
The application is
spread over the client
and the server.

Remote Data
Management

DB

DBMS

Application

Presentation Presentation

Stored Procedure
C/S

Remote DM
C/S

Application Application

DB

DBMS

DB

DBMS

DB

DBMS

RDARPC/RMI

32

Multilevel collaborative processing

Each server
performs a
special task.
A server may
request a
specific task
from an other
server.

DB

DBMS

Presentation Presentation

Application Application

ApplicationApplicationApplicationApplication

Level 2

Level x

The n Tier

The First Tier

33

A service provided by multiple servers

Services may be implemented as several server processes in separate host computers.
Example: Cluster based Web servers and apps such as Google, parallel databases Oracle

Server

Server

Server

Service

Client

Client

34

Distributed Data & Processing

No machine has complete
information on the state of
the system
Failure of one machine
does not ruin the system.
Machines make decisions
based only on local
available information.
No assumption of the
existence of a global
clock.
Symmetric processing

DB

Presentation

Application

DBMS

DB

Interface

Application

DBMS

DB

Presentation

Application

DBMS

35

Internet & New C/S Architectures

HTML
XML

Web Server

ServletsServletsServletsServlets

ServletsServletsServletsJSP, ASP

ServletsServletsServletsHTML/
XML

HTML
XML

Web Server

ServletsServletsServletsServlets

ServletsServletsServletsJSP, ASP

ServletsServletsServletsHTML/
XML

DBMS

JDBC, ADO
ODBC

OLE DB,…

HTML
XML

Web Server

ServletsServletsServletsServlets

ServletsServletsServletsJSP, ASP

ServletsServletsServletsHTML/
XML

DBMS

JDBC, ADO,
ODBC, OLE DB,…

Application Server

Corba, RMI,
COM/DCOM, RPC

1-Tier 2-Tiers 3-Tiers

36

Internet: Universal C/S

HTML
XML

Web Server

ServletsServletsServletsServlets

ServletsServletsServletsJSP, ASP

ServletsServletsServletsHTML/
XML

Mail Server

DBMS

Message Server

Directory service

Application Server
Corba, RMI,
COM/DCOM,

RPC

JavaMail

JDBC, ADO
ODBC

OLE DB,…
JMS

JNDI

37

Proxy servers (replication transparency) and
caches: Web proxy server

A cache is a store of recently used data.

Client

Proxy

Web

server

Web

server

server
Client

38

Variants of Client Sever Model: Mobile code
and Web applets

Applets downloaded to clients give good interactive response
Mobile codes such as Applets are potential security threat, so the
browser gives applets limited access to local resources (e.g. NO
access to local/user file system).

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

39

Variants of Client Sever Model: Mobile Agents

A running program (code and data) that travels from
one computer to another in a network carrying out of
an autonomous task, usually on behalf of some other
process

advantages: flexibility, savings in communications cost virtual
markets, software maintain on the computers within an
organization.

Potential security threat to the resources in computers
they visit. The environment receiving agent should
decide which of the local resource to allow. (e.g.,
crawlers and web servers).
Agents themselves can be vulnerable – they may not
be able to complete task if they are refused access.

40

Thin clients and compute servers

Network computer: download OS and applications from the
network and run on a desktop (solve up-gradation problem) at
runtime.
Thin clients: Windows-based UI on the user machine and
application execution on a remote computer. E.g, X-11 system.

Thin
Client

Application
Process

Network computer or PC
Compute server

network

41

Mobile devices and spontaneous networking

The world is increasingly populated by small and portal computing
devices.
W-LAN need to handle constantly changing heterogamous,
roaming devices
Need to provide discovery services: (1) registration service to
enable servers to publish their services and (2) look up service to
allow clients to discover services that meet their requirements.

42

Peer Processes: A distributed application
based on peer processes

All of the processes play similar roles, interacting cooperatively as peers to
perform a distributed activities or computations without distinction between
clients and servers. E.g., music sharing systems Gnutella, Napster, Kaza, etc.
Distributed “white board” – users on several computers to view and interactively
modify a picture between them.

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

43

Interfaces and Objects

The use of CS has impact on the software
architecture followed:

Distribution of responsibilities
Synchronization mechanisms between client and server
Admissible types of requests/responses

Basic CS model, responsibility is statically allocated.
File server is responsible for file, not for web pages.

Peer process model, responsibility is dynamically
allocated:

In fully decentralized music file sharing system, search
process may be delegated to different peers at runtime.

44

Design Requirements/Challenges of Distributed
Systems

Performance Issues
Responsiveness

Support interactive clients
Use caching and replication

Throughput
Load balancing and timeliness

Quality of Service:
Reliability
Security
Adaptive performance.

Dependability issues:
Correctness, security, and fault tolerance
Dependable applications continue to work in the presence of
faults in hardware, software, and networks.

45

Presentation Outline

Introduction
Architectural Models

Software Layers
System Architectures

Client-Server
Clients and a Single Sever, Multiple Servers, Proxy Servers with
Cachers, Peer Model

Alternative Client-Sever models driven by:
Mobile code, mobile agents, network computers, thin clients, mobile
devices and spontaneous networking

Design Challenges/Requirements
Fundamental Models – formal description

Interaction, Failure, and Security models.
Summary

46

Lecture Overview (II)

Fundamental Models are concerned with a formal description of
the properties that are common in all of the architectural models.
All architectural models composed of processes that
communicate with each other by sending messages over a
computer networks.
Models addressing time synchronization, message delays,
failures, security issues are addressed are:

Interaction Model – deals with performance and the difficulty of
setting of time limits in a distributed system.
Failure Model – specification of the faults that can be exhibited by
processes
Secure Model – discusses possible threats to processes and
communication channels.

47

Interaction Model

Computation occurs within processes;
The processes interact by passing messages,
resulting in:

Communication (information flow)
Coordination (synchronization and ordering of activities)
between processes.

Two significant factors affecting interacting
processes in a distributed system are:

Communication performance is often a limiting
characteristic.
It is impossible to maintain a single global notion of time.

48

Interaction Model:
Performance of Communication Channel

The communication channel in our model are realised in a variety
of ways in DSs. E.g., by implementation of:

Streams
Simple message passing over a network.

Communication over a computer network has performance
characteristics:

Latency:
A delay between the start of a message’s transmission from one
process to the beginning of receipt by another.

Bandwidth:
the total amount of information that can be transmitted over in a
given time.
Communication channels using the same network, have to share the
available bandwith.

Jitter
The variation in the time taken to deliver a series of messages. It is
vary relevant to multimedia data.

49

Interaction Model:
Computer clocks and timing events

Each computer in a DS has its own internal clock, which can be
used by local processes to obtain the value of the current time.
Therefore, two processes running on different computers cam
associate timestamp with their events.
However, even if two processes read their clock at the same time,
their local clocks may supply different time.

This is because computer clock drift from perfect time and their
drift rates differ from one another.

Even if the clocks on all the computers in a DS are set to the
same time initially, their clocks would eventually vary quite
significantly unless corrections are applied.

There are several techniques to correcting time on computer
clocks. For example, computers may use radio receivers to get
readings from GPS (Global Positioning System) with an accuracy
about 1 microsecond.

50

Interaction Model:
Two variants of the interaction model

In a DS it is hard to set time limits on the time taken for process
execution, message delivery or clock drift.
Synchronous DS – hard to achieve:

The time take to execute a step of a process has know lower and
upper bounds.
Each message transmitted over a channel is received within a
known bounded time.
Each process has a local clock whose drift rate from real time has
known bound.

Asynchronous DS: There is NO bounds on:
Process execution speeds
Message transmission delays
Clock drift rates.

51

Interaction Model:
Event Ordering

In many DS applications we are interested in
knowing whether an event occurred before,
after, or concurrently with another event at
another processes.

The execution of a system can be described in
terms of events and their ordering despite the lack
of accurate clocks.

Consider a mailing list with users X, Y, Z, and
A.

52

Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

53

Inbox of User A looks like:

Due to independent delivery in message delivery, message may
be delivered in different order.
If messages m1, m2, m3 carry their time t1, t2, t3, then they can
be displayed to users accordingly to their time ordering.

Item From Subject
23 Z Re: Meeting

24 X Meeting

26 Y Re: Meeting

54

Failure Model

In a DS, both processes and communication
channels may fail – i.e., they may depart from
what is considered to be correct or desirable
behavior.
Types of failures:

Omission Failure
Arbitrary Failure
Timing Failure

55

Processes and channels

Communication channel proceduces an omission failure if it does not
transport a message from “p”s outgoing message buffer to “q”’s
incoming message buffer. This is known as “dropping messages” and is
generally caused by lack of buffer space at the receiver or at gateway or
by a network transmission error.

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffe

receivem

56

Omission and arbitrary failures

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send,but the message is not put

in its outgoing message buffer.
Receive-omissionProcess A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

57

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

58

Masking Failures

It is possible to construct reliable services from
components that exhibit failures.

For example, multiple servers that hold replicas of data can
continue to provide a service when one of them crashes.

A knowledge of failure characteristics of a
component can enable a new service to be designed
to mask the failure of the components on which it
depends:

Checksums are used to mask corrupted messages.

59

Security Model

The security of a DS can be achieved by
securing the processes and the channels
used in their interactions and by protecting
the objects that they encapsulate against
unauthorized access.

60

Protecting Objects: Objects and principals

Use “access rights” that define who is allowed to perform operation on a
object.
The sever should verify the identity of the principal (user) behind each
operation and checking that they have sufficient access rights to perform
the requested operation on the particular object, rejecting those who do
not.

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

61

The enemy

To model security threats, we postulate an enemy that is capable of
sending any process or reading/copying message between a pair of
processes
Threats form a potential enemy: threats to processes, threats to
communication channels, and denial of service.

Communication channel

Copy of m

Process p Process qm

The enemy
m’

62

Defeating security threats: Secure channels

Encryption and authentication are use to build secure channels.
Each of the processes knows the identity of the principal on
whose behalf the other process is executing and can check their
access rights before performing an operation.

Principal A

Secure channelProcess p Process q

Principal B

63

Summary

Most DSs are arranged accordingly to one of a
variety of architectural models:

Client-Server
Clients and a Single Sever, Multiple Servers, Proxy Servers
with Cache, Peer Model

Alternative Client-Sever models driven by:
Mobile code, mobile agents, network computers, thin clients,
mobile devices and spontaneous networking

Fundamental Models – formal description
Interaction, failure, and Security models.

The concepts discussed in the module play an
important role while architecting DS and apps.

	Architectural Models
	Presentation Outline
	Lecture Overview (I)
	Lecture Overview (II)
	Architectural Models
	Architectural Models – Intro [1]
	Architectural Models – Intro [2]
	Software Architecture and Layers
	Software and hardware service layers in distributed systems
	Platform
	Middleware
	System Architecture
	System Architecture Models
	Client Server Basic Model:�Clients invoke individual servers
	Clients and Servers
	Clients and Servers
	Client/Server Communications:�Interaction schemes
	Publish/Subscribe Paradigm
	Publish/Subscribe Interactions
	Basic Interaction Model
	Why decoupling?
	Space decoupling
	Time decoupling
	Synchronization decoupling
	Message Passing
	RPC/RMI
	Shared Spaces
	Message Queuing (Pull)
	Generations Of C/S
	Frontal Processing
	Collaborative Processing
	Multilevel collaborative processing
	A service provided by multiple servers
	Distributed Data & Processing
	Internet & New C/S Architectures
	Internet: Universal C/S
	Proxy servers (replication transparency) and caches: Web proxy server
	Variants of Client Sever Model: Mobile code and Web applets
	Variants of Client Sever Model: Mobile Agents
	Thin clients and compute servers
	Mobile devices and spontaneous networking
	Peer Processes: A distributed application based on peer processes
	Interfaces and Objects
	Design Requirements/Challenges of Distributed Systems
	Presentation Outline
	Lecture Overview (II)
	Interaction Model
	Interaction Model:�Performance of Communication Channel
	Interaction Model:�Computer clocks and timing events
	Interaction Model:�Two variants of the interaction model
	Interaction Model:�Event Ordering
	Real-time ordering of events
	Inbox of User A looks like:
	Failure Model
	Processes and channels
	Omission and arbitrary failures
	Timing failures
	Masking Failures
	Security Model
	Protecting Objects: Objects and principals
	The enemy
	Defeating security threats: Secure channels
	Summary

