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Introduction to Fracture Mechanics

The 1dea that cracks exist in parts even before service begins, and that cracks can grow
during service, has led to the descriptive phrase “damage-tolerant design.” The focus of
this philosophy is on crack growth until it becomes critical, and the part 15 removed
from service. The analysis tool 1s linear elastic fracture mechanics (LEFM). Inspection
and maintenance are essenfial in the decision to retire parts before cracks reach cata-
strophic size. Where human safety i1s concerned, periodic inspections for cracks are

mandated by codes and government ordinance.

The foundation of fracture mechanics was first established by Gnffith in 1921
using the stress field calculations for an elliptical flaw in a plate developed by Inglis in
1913. For the infinite plate loaded by an applied uniaxial stress & in Fig. 5-22, the max-

imum stress occurs at (Za, () and is given by
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Note that when a = b, the ellipse becomes a circle and Eq. (3-33) gives a stress con-
cenfration factor of 3. This agrees with the well-known result for an infimite plate with

a circular hole (see Table A-15-1). For a fine crack, b/a — 0, and Eq. (3-34) predicts

that (7 )max — 00. However, on a microscopic level, an infimitely shamp crack 1s a
hypothetical abstraction that 1s physically impossible, and when plastic deformation
oceurs, the stress will be fimite at the crack tip.



Crack Modes and the Stress Intensity Factor

Three distinct modes of crack propagation exist, as shown in Fig. 5-23_ A tensile stress
field gives rise to mode 1. the opening crack propagation mode, as shown in Fig. 5-23a.
This mode 1s the most common in practice. Mode II 1s the sliding mode, 15 due to
in-plane shear, and can be seen in Fig. 5-235. Mode 11l 1s the rearnng mode, which
arises from out-of-plane shear, as shown in Fig. 5-23¢. Combinations of these modes
can also occur. Since mode [ 1s the most common and important mode, the remainder
of this section will consider only this mode.
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Consider a mode [ crack of length 2a in the infinite plate of Fig. 3-24. By using
complex stress functions, it has been shown that the stress field on a dx dy element in
the vicinity of the crack ap is given by
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define a factor K called the stress intensity factor given by

K=0o.ma (b)

where the units are MPa./m or kpsi+/in. Since we are dealing with a mode I crack, Eq.
(b) 15 written as

K;=oma (5-35]

The stress ntensity factor 1s nor to be confused with the static stress concentration
factors K, and K, defined in Secs. 3—13 and 5-2.
Thus Eqgs. (5-34) can be rewritten as

Ty = J.;:rr cOs g (1 — singsin ?) (5-36a)
ay = J.i:rr COS g (1 + sin g sin %) [5-3&h)
Tay = % 51in E COs % COS ? (5-36c)

oo b (5-36)

The stress intensity factor is a function of geometry, size and shape of the crack,
and the type of loading. For various load and geometric configurations, Eq. (5-35) can
be written as

Ki = poJra (5-37)

where 8 is the stress intensity modification factor. Tables for f are available in the lit-
erature for basic configurations.!! Figures 5-25 to 5-30 present a few examples of § for
mode [ crack propagation.



Fracture Toughness

When the magnitude of the mode I stress intensity factor reaches a critical value,
K ;. crack propagation mitiates. The critical stress intensity factor K. 15 a matenal prop-
erty that depends on the matenal, crack mode, processing of the material, temperature,

loading rate, and the state of stress at the crack site (such as plane stress versus plane
strain). The critical stress intensity factor Ky, 1s also called the fracture toughness of
the material. The fracture toughness for plane strain is normally lower than that for
plane stress. For this reason, the term K ;. 1s typically defined as the mode [, plane strain
fracture toughness. Fracture toughness K. for engineering metals lies in the range
20 = Kj. < 200 MPa - /m; for engineering polymers and ceramics, |1 < Kj. <
5 MPa - /m, For a 4340 steel, where the vield strength due to heat treatment ranges
from 800 to 1600 MPa, K;_ decreases from 190 to 40 MPa - ,/m.



Table 5-1

Values of K_ for Some
Engineering Materials
at Room Temperature

Material K,, MPa./m
Alurminurm
2024 26
Z075 24
7178 a3
Titanium
TS AL-AY 115
TS AL-AY 55
Steel
4340 Q0
4340 &0
52100 ] 4

-Fl'

MPa

455
4525
4320

210
1035

aa0
1515
2070




Figure 5-25

Oftcenter crack in a plak in
||:|ngiru::|in-::1| ension; solid
curves are for the crack fip at
A dashed curves are for the
tip at B.
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Figure 5-26

Plate loaded in longitudinal
tension with a crack at the
edge; for the solid curve thers
are no constraints o bending;
the dashed curve was
abtained with |::-E!n|:|'|ng
constraints added.
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Figure 5-27

Beams of rectangular cross
section h::wing an Edge crack.
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Figure 5-28

Plate in tension containing a
circular hole with tweo cracks.
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Figure 5-29

A ::'-f'|inder ||:u::||::|ing in axial
tension |‘|E|".-"i|'|g a radial crack
of depth @ extending
completely around the
cizumfernce of the -::}-'|inc:|er.
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Figure 5-30

C}fhnder subiecred to internal
pressure o, hl::l*.-fing a radial
crack in the l:::-ngiruclind
direclion of depth a. Use

Eq. (4-51) for the tangential
stress atr =1y
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One of the first problems facing the designer 1s that of deciding whether the condi-
tions exist, or not, for a brittle fracture. Low-temperature operation, that is, operation
below room temperature, 15 a key indicator that brittle fracture 15 a possible failure
mode. Tables of transition temperatures for various materials have not been published,
possibly because of the wide varation in values, even for a single material. Thus, in
many situations, laboratory testing may give the only clue to the possibility of a brttle
fracture. Another key indicator of the possibility of fracture 1s the ratio of the yield
strength to the ultimate strength. A high ratio of §, /5, indicates there is only a small
ability to absorb energy m the plastic region and hence there 1s a likelihood of brttle

fracture.
The strength-to-stress ratio K;./ K; can be used as a factor of safety as

. K!’c‘

"= |5-38)




EXAMPLE 5-6 A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni-
axial tensile stress of 350 MPa. It is operated below its ductile-to-brittle transition tem-
perature with K;. equal to 28.3 MPa. If a 65-mm-long ceniral transverse crack is
present. estimate the tensile stress at which catastrophic failure will occur. Compare this
stress with the yield strength of 240 MPa for this steel.

Solution For Fig. 5-25, withd = b, 2a =63 mm and 2b = 12 m, so that d/b= 1 and a/d =
65/12(10%) = 0.00542. Since a/d is so small, 8 = 1, so that

K1 =oy/ma =50y7(32.5 x 107) = 16.0 MPa /m

From Eq. (5-38),

K .
L2y
K;  16.0

M

The stress at which catastrophic failure occurs 1s

K 28.3
= ey = 277 (50) = 88.4 MPa
K; 16.0

The vield strength 1s 240 MPa, and catastrophic failure occurs at 88.4/240 = 0.37, or
at 37 percent of yield. The factor of safety in this circumstance 1s Kj./Kj; =
28.3/16 = 1.77 and not 240/50 = 4.8,

Answer T,



EXAMPLE 5-7

Solution

Answer

A plate of width 1.4 m and length 2.8 m is required to support a tensile force in the
2.8-m direction of 4.0 MN. Inspection procedures will detect only through-thickness
edge cracks larger than 2.7 mm. The two Ti-6AL-4V allovs in Table 5—1 are being con-
sidered for this application, for which the safety factor must be 1.3 and minimum
weilght 15 important. Which alloy should be used?

(a) We elect first to estimate the thickness required to resist yielding. Since 0 = P/wi,
we have t = P/wa. For the weaker alloy, we have, from Table 5-1, §, = 910 MPa.
Thus,

Thus

P 4.0010)

i = —
WT,1) 1.4(700)

= 4.08 mm or greater

For the stronger alloy, we have, from Table 5-1,

1035
gl = ﬁ = 796 MPa

and so the thickness 1s

P 4.0(10)°
way  1.4(796)

f = = 3.539 mm or greater



(b) Now let us find the thickness required to prevent crack growth. Using Fig. 5-26, we
have

h 28)2 a 2.7
= === == = (0.001 93
1.4 b 1.4(10%)
Corresponding to these ratios we find from Fig, 5-26that f = 1.1, and K = l.lo/ma.
K 1154103 K;.

K;  1lloyma ° = l.lnyma



From Table 5-1. K. = 115 MPa /m for the weaker of the two alloys. Solving for &

with n = 1 gives the fracture stress

B 115
1.1y/7 (2.7 x 10-3)

which 1s greater than the yield strength of 910 MPa, and so yield strength is the basis
for the geometry decision. For the stronger alloy S, = 1035 MPa, with n = 1 the frac-
ture stress Is

= 1135 MPa

a

_ Kie 53
nKr  1(1.1)y/m(2.7 x 1077
which is less than the yield strength of 1035 MPa. The thickness 1 1s

P 4.0(10%
woy — 1.4(542.9/1.3)

= 342.9 MPa

]

= = 6.84 mm or greater

This example shows that the fracture toughness Kj. limits the geometryv when the
stronger alloy 1s used, and so a thickness of 6.84 mm or larger 1s required. When the
weaker alloy 1s used the geometry is limited by the yield strength, giving a thickness of

only 4.08 mm or greater. Thus the weaker alloy leads to a thinner and lighter weight
choice since the failure modes differ.



Determining KIC Experimentally



