William Stallings Data and Computer Communications

Chapter 9

Spread Spectrum

Spread Spectrum

- # important encoding method for wireless communications
- ## it was initially developed for military to make **jamming** and **interception harder**
- **x** analog & digital data → analog signal
- **x** spreads data over wide bandwidth
- # two approaches, both in use:

 - ☑ Direct Sequence Spread Spectrum (DSSS)

BFSK - Review

The BFSK: $s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)$

where, A =amplitude of signal

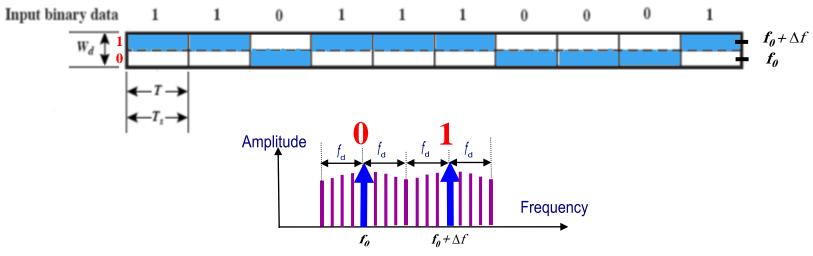
 f_0 = base frequency

 b_i = value of the t^{th} bit of data (+1 for binary 1 and -1 for binary 0)

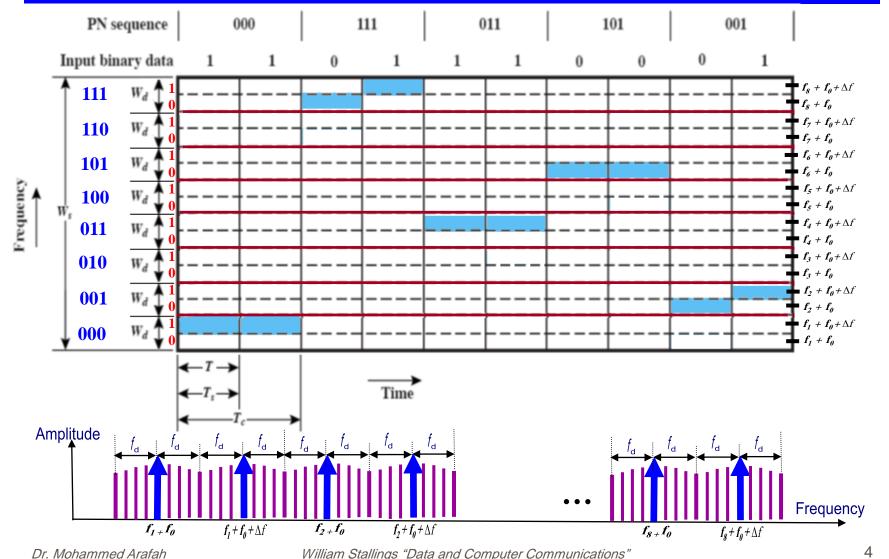
 Δf = frequency separation

T= bit duration 1/T= data rate

During the I^{th} bit interval, the frequency of data signal is f_{θ} if the data bit is -1 and f_{θ} + Δf if the data bit is +1

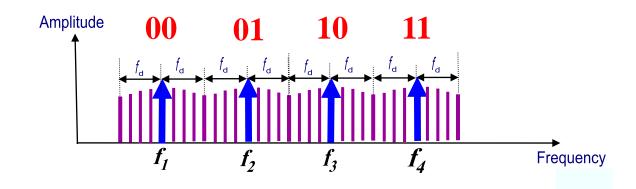


BFSK FHSS

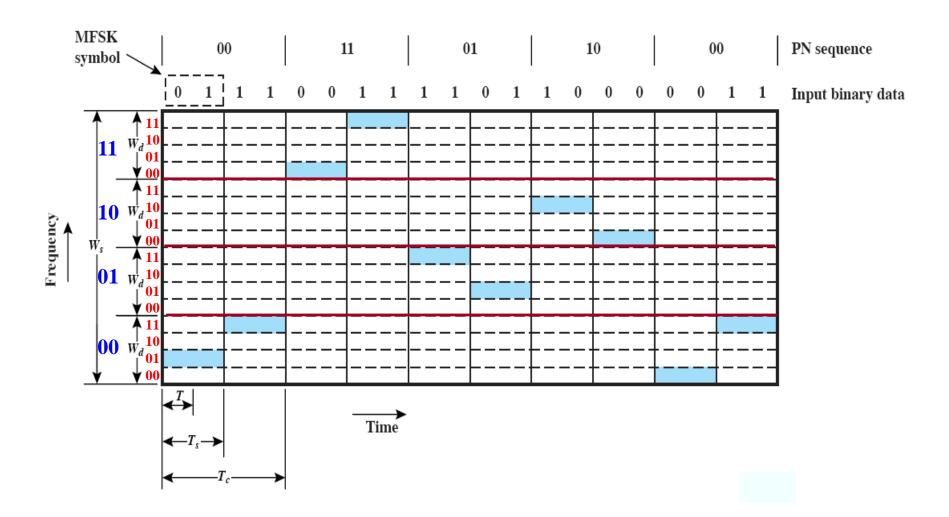


MFSK - Review

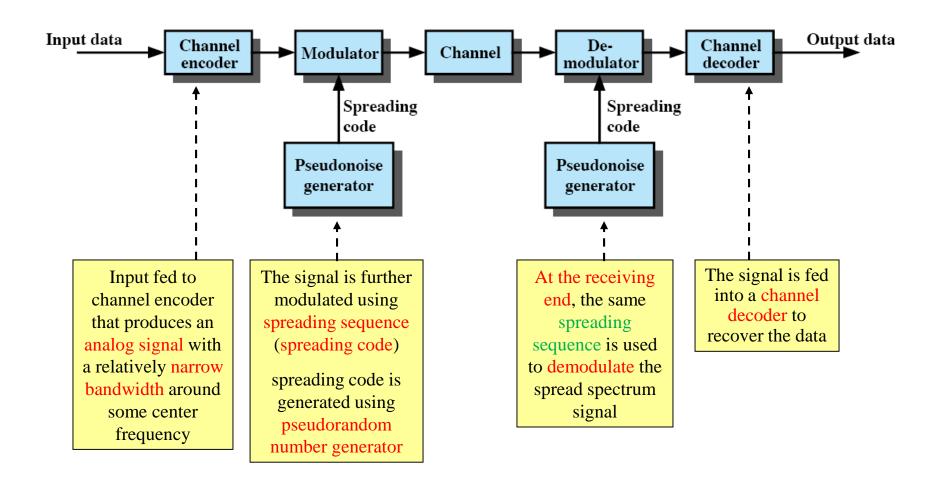




MFSK FHSS



Seneral Model of Spread Spectrum System



Concept of Spread Spectrum

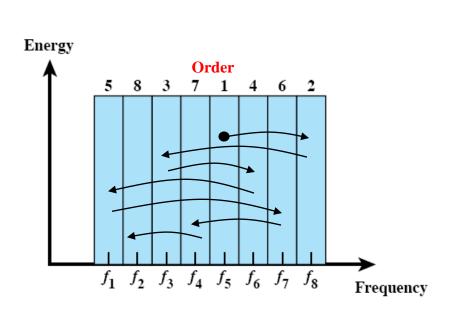
- Input fed to channel encoder that produces an analog signal with a relatively narrow bandwidth around some center frequency
- ** The signal is further modulated using spreading sequence or spreading code
- **** spreading code** is generated using **pseudorandom number generator**
- # The effect of this modulation is to increase significantly the bandwidth (spread the spectrum) of the signal to be transmitted
- ** At the **receiving end**, the **same spreading sequence** is used to **demodulate** the spread spectrum signal.
- # Finally, the signal is fed into a **channel decoder** to recover the data

Spread Spectrum Advantages

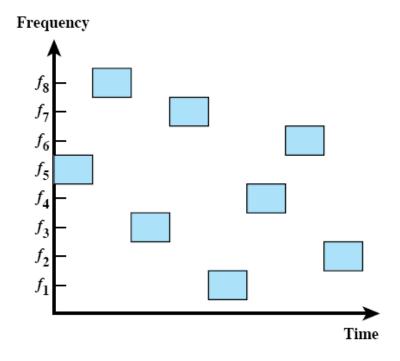
- # Several advantages can be gained from this apparent waste of spectrum:

 - **△**several users can share same higher bandwidth with little interference
 - **区DM/CDMA** Mobile telephones

Frequency Hopping Spread Spectrum (FHSS)



(a) Channel assignment



(b) Channel use

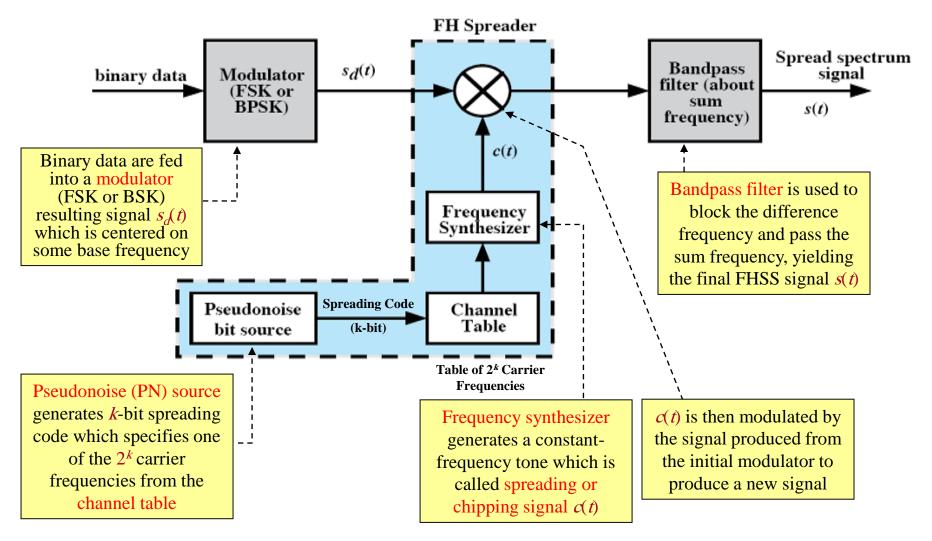
Frequency Hopping Spread Spectrum (FHSS)

- #signal is broadcast over seemingly random series of frequencies
- **# receiver hops from frequency to another** over fixed intervals in synchronization with transmitter
- **#eavesdroppers** hear unintelligible blips
- **#jamming** on one frequency affects only a few bits

FHSS Basic Approach

- **X** Number of **channels** allocated for a **frequency hopping** (FH) signal
- \mathbb{H} **2**^k carrier frequencies forming **2**^k channels
- **** spacing** between carrier frequencies (i.e., the width of each channel) corresponds to the bandwidth of the input signal
- **# transmitter operates in one channel at a time for a fixed interval**
- # during that interval, some number of bits is transmitted using some encoding scheme
- **#** spreading code dictates the sequence of channels used.
- **Both transmitter and receiver use the same code to tune into a sequence of channels in synchronization.**

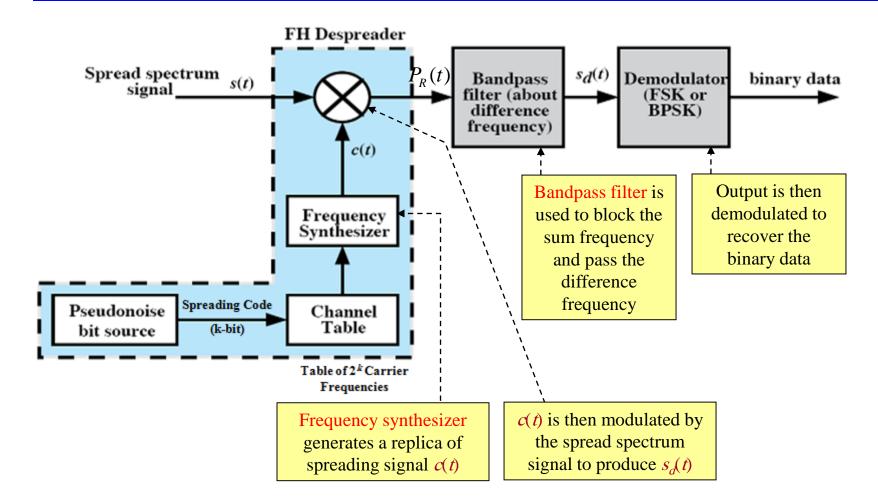
- \mathbb{H} binary data are fed into a modulator using some digital-to-analog encoding scheme, such as FSK or BPSK resulting signal $s_d(t)$ which is centered on some base frequency
- # pseudonoise (PN) source serves as an index into a table of frequencies
- * each k bits of the PN source (i.e., spreading code) specifies one of the 2^k carrier frequencies
- \Rightarrow at each successive interval, a new spreading code (k bits) is generated \Rightarrow a new carrier frequency is selected
- # frequency synthesizer generates a constant-frequency tone whose frequency hops among a set of 2^k frequencies, with the hopping pattern determined by k bits from the PN sequence. It is known spreading or chipping signal c(t)
- **c**(t) is then modulated by the signal produced from the initial modulator to produce a new signal with the same shape but now centered on the selected carrier frequency
- # bandpass filter is used to block the difference frequency and pass the sum frequency, yielding the final FHSS signal s(t)



$$\begin{array}{c} p_T(t) = s_d(t)c(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)\cos(2\pi f_t) \\ \\ p_T(t) = 0.5A[\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i)t) + \cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f - f_i)t)] \\ \\ s(t) = 0.5A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i)t) \\ \\ s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t) \\ \\ \hline s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t) \\ \\ \hline s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t) \\ \\ \hline s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t) \\ \hline \\ s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta$$

Frequencies

- \sharp signal $\underline{s}(t)$ is multiplied by a replica of the spreading signal $\underline{c}(t)$ to yield a product signal $\underline{s}(t)$
- **# bandpass filter** is used to block the sum frequency and pass the difference frequency
- # Output signal of bandpass filter is then demodulated to recover the binary data.



$$p_R(t) = s(t)c(t) = 0.5A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i)t)\cos(2\pi f_i t)$$

$$p_R(t) = s(t)c(t) = 0.25A[\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i + f_i)t) + \cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)]$$

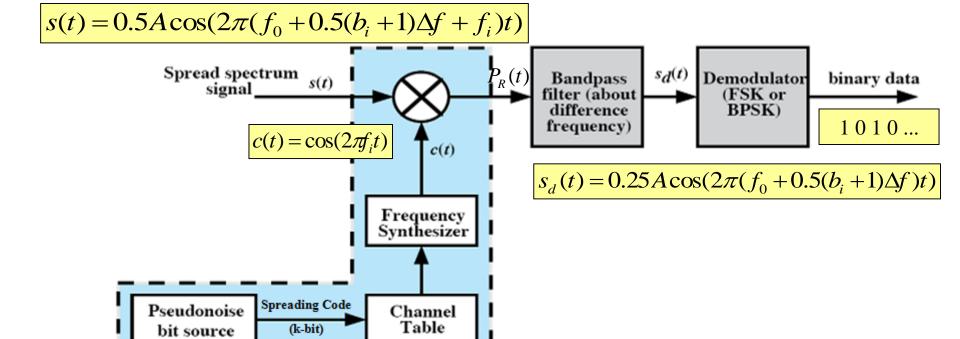


Table of 2^k Carrier Frequencies

\#The BFSK input to FHSS system is:

$$s_d(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)$$
 for $iT < t < (i+1)T$

where,

A =amplitude of signal

 f_0 = base frequency

 b_i = value of the t^{th} bit of data (+1 for binary 1 and -1 for binary 0)

 Δf = frequency separation

T= bit duration

1/T = data rate

During the t^{th} bit interval, the frequency of data signal is f_{θ} if the data bit is -1 and $f_{\theta} + \Delta f$ if the data bit is +1

\#The transmitter product signal ($p_T(t)$) during t^h hop is:

$$p_T(t) = s_d(t)c(t) = A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)\cos(2\pi f_i t)$$

where f_i is the frequency generated by the **frequency synthesizer** during the ith hop.

\#Using the trigonometric identity:

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y))$$

We have:

$$p_T(t) = 0.5A[\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i)t) + \cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f - f_i)t)]$$

X The bandpass filter is used to block the differences frequency and pass the sum frequency, yielding an FHSS signal:

$$s(t) = 0.5A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i)t)$$

Thus, during the f^h bit interval, the frequency of data signal is $f_0 + f_i$ if the data bit is -1 and $f_0 + f_i + \Delta f$ if the data bit is +1

\#The receiver product signal ($p_R(t)$) during t^{th} hop is:

$$p_R(t) = s(t)c(t) = 0.5A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i)t)\cos(2\pi f_i t)$$

where f_i is the frequency generated by the **frequency synthesizer** during the ith hop.

♯Using the trigonometric identity:

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y))$$

We have:

$$p_R(t) = s(t)c(t) = 0.25A[\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f + f_i + f_i)t) + \cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)]$$

The bandpass filter is used to block the sum frequency and pass the difference frequency, yielding a signal of the form $s_o(t)$:

$$s_d(t) = 0.25A\cos(2\pi(f_0 + 0.5(b_i + 1)\Delta f)t)$$

Pseudorandom Numbers (PN)

- **#**generated by **algorithm using initial seed** by a algorithm
 - □ Deterministic, not actually random
- **x**starting from an initial seed
- **# need to know algorithm and seed to predict sequence**
- # hence only receiver can decode signal

FHSS Using MFSK

- **★ commonly use multiple FSK (MFSK)**
- \mathbb{H} have frequency shifted every T_c seconds
- # for data rate R
 - \triangle bit duration $T_h = 1/R$ sec
 - \triangle signal element duration $T_s = mT_b$
- \mathcal{F}_c is greater than or equal to \mathcal{F}_s , the spreading modulation is referred to as **slow-frequency-hop spread spectrum**; otherwise it is known as **fast-frequency-hop spread spectrum**

Slow-frequency-hop spread spectrum	$T_{c} \geq T_{s}$
Fast-frequency-hop spread spectrum	$T_{c} < T_{s}$

FHSS Using MFSK

#MFSK commonly used with FHSS

#For one signal element MFSK

$$s(t) = A \cos(2\pi f_i t), \qquad 1 \le i \le M$$

$$f_i = f_c + (2i - 1 - M)f_d$$

 $\triangle f_c$ = carrier frequency

 $\triangle f_d$ = difference frequency

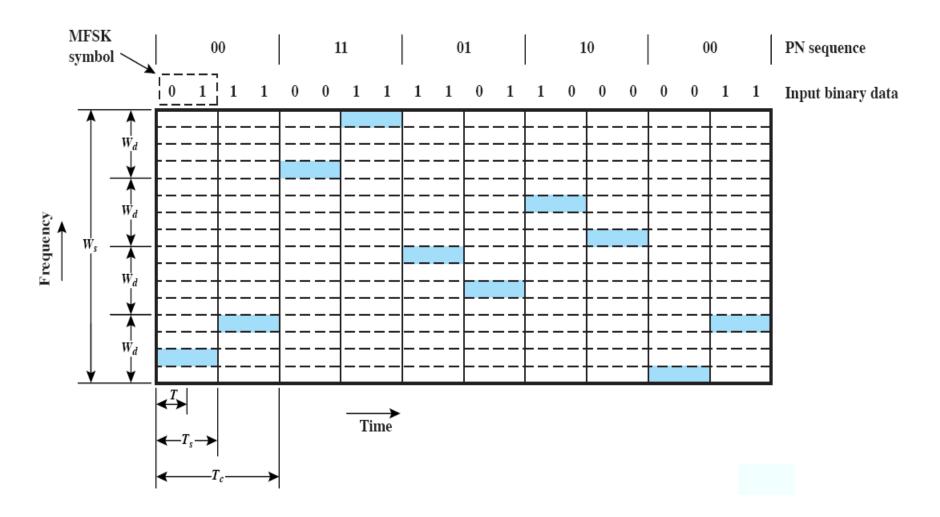
 $\triangle M$ = number of different signal elements = 2^m

m = number of bits per signal element

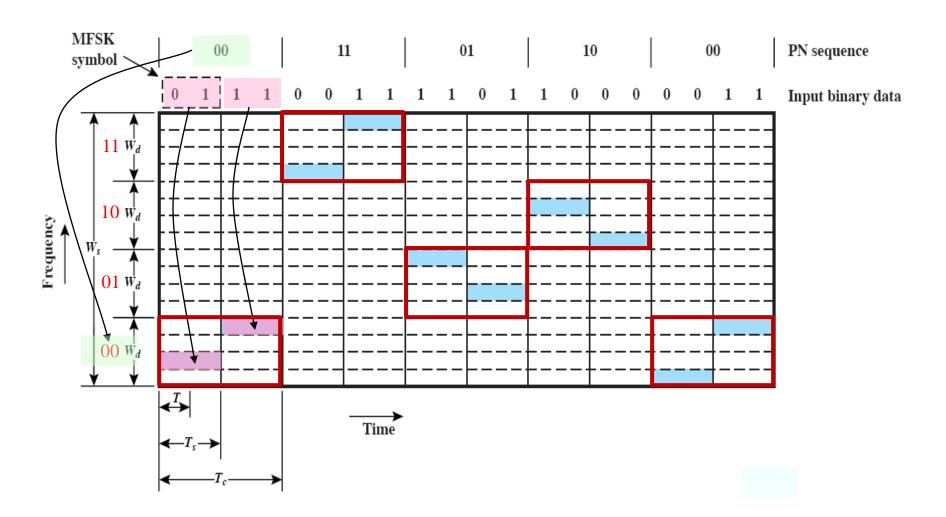
FHSS Using MFSK - Example

- # M = 4 frequencies encode 2 bits at a time
- # MFSK bandwidth $W_d = 2M f_d$
- # Using **FHSS** with k = 2, $2^k = 4$ channels
- \mathbb{H} Each channel with bandwidth W_d
- # Total **bandwidth for FHSS**: $W_s = 2^k W_d$
- # Slow FHSS: $T_c = 2T_s = 4T_b$
 - □ Each 2 bits of the PN sequence is used to select one of the four channels
 - channel held for duration of two signal elements, or four bits
- # Fast FHSS: $T_s = 2T_c = 2T_b$

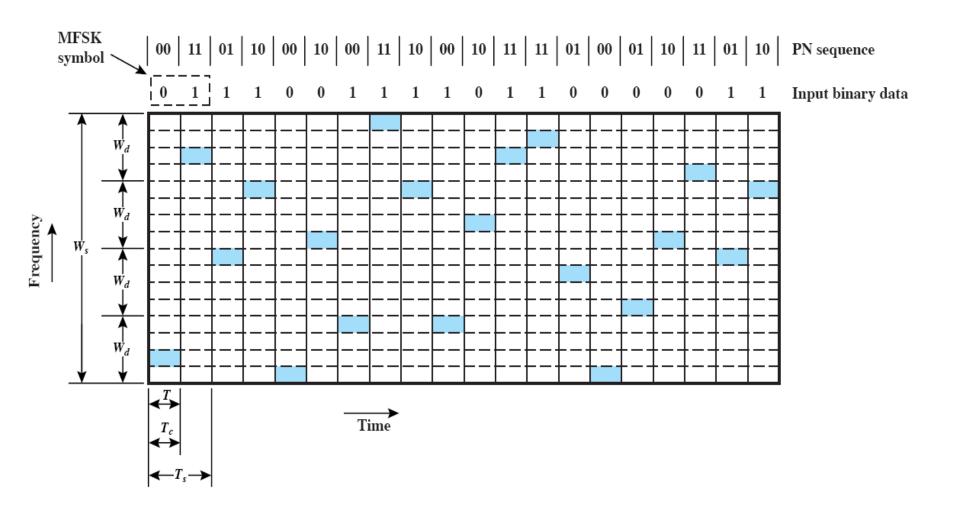
Slow MFSK FHSS



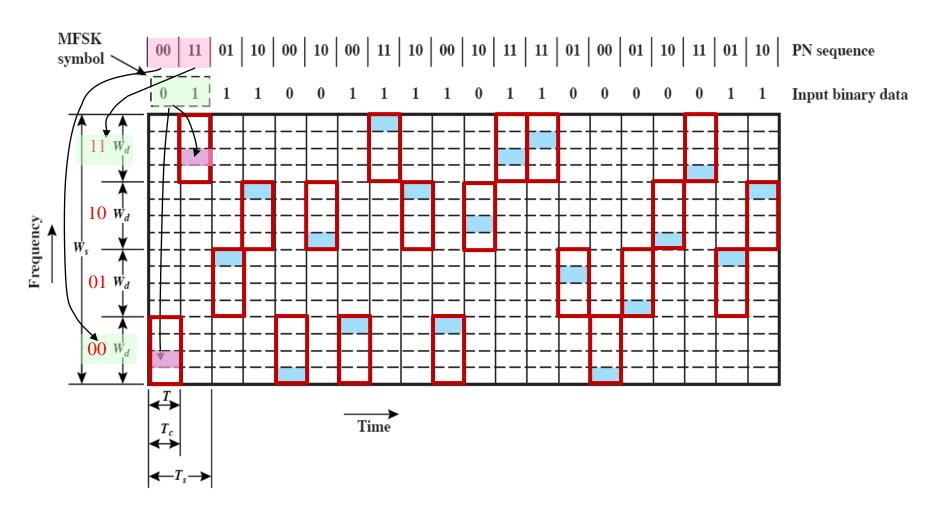
Slow MFSK FHSS



Fast MFSK FHSS



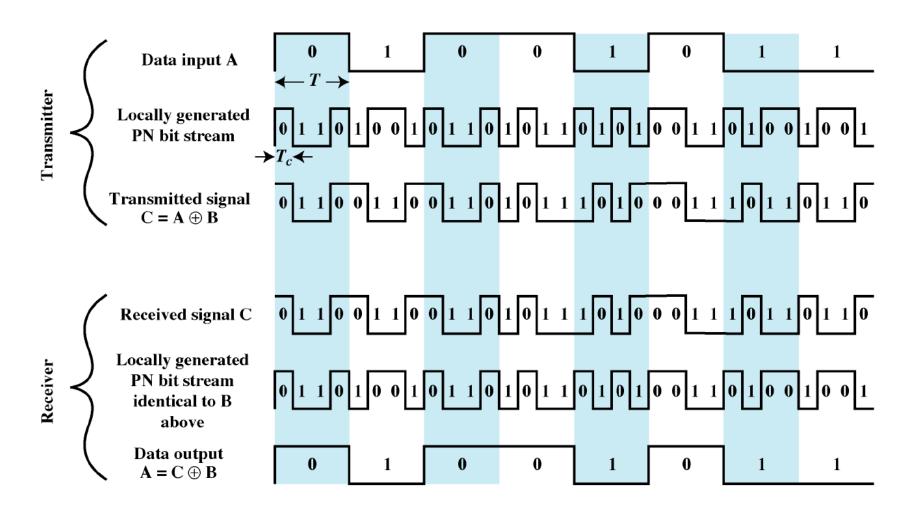
Fast MFSK FHSS



Direct Sequence Spread Spectrum (DSSS)

- **# each bit is represented by multiple bits** using a spreading code
- # this spreads signal across a wider frequency band
- ## frequency band of signal is proportional to number of bits
 - △10-bit spreading code → spreads the signal across the frequency band 10 times greater than a 1-bit spreading code
- # Input is combined with spread code using XOR
 - **△input 0: spreading code unchanged**
 - **△input 1: spreading code inverted**

Direct Sequence Spread Spectrum Example



Direct Sequence Spread Spectrum (DSSS)

\#The BPSK signal is represented as:

$$\left| s_d(t) = Ad(t)\cos(2\pi f_c t) \right|$$

where,

A =amplitude of signal

 f_c = carrier frequency

d(t) = discrete function that takes on the value of +1 for one bit time if the corresponding bit in the bit stream is 1 and the value -1 for one bit if the corresponding bit in the bit stream is 0

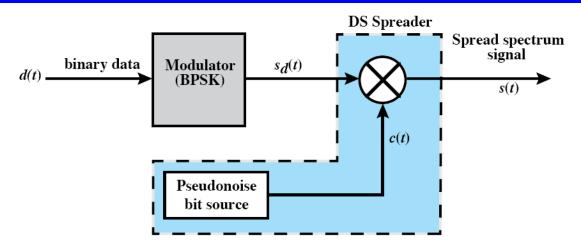
To produce the DSSS signal, we multiply d(t) by c(t), which is the PN sequence taking on values of +1 and -1:

$$s(t) = s_d(t)c(t) = Ad(t)c(t)\cos(2\pi f_c t)$$

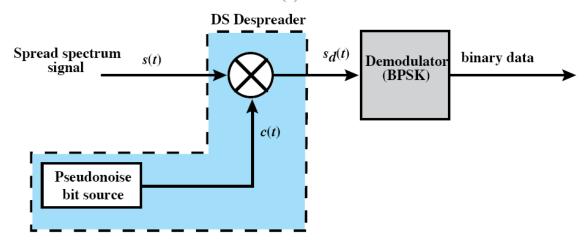
 \mathbb{H} At the receive, the incoming signal is multiplied again by c(t), but $c(t) \times c(t) = 1$ and therefore, the original signal is recovered:

$$s(t)c(t) = Ad(t)c(t)c(t)\cos(2\pi f_c t) = s_d(t)$$

Direct Sequence Spread Spectrum System

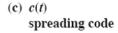


(a) Transmitter

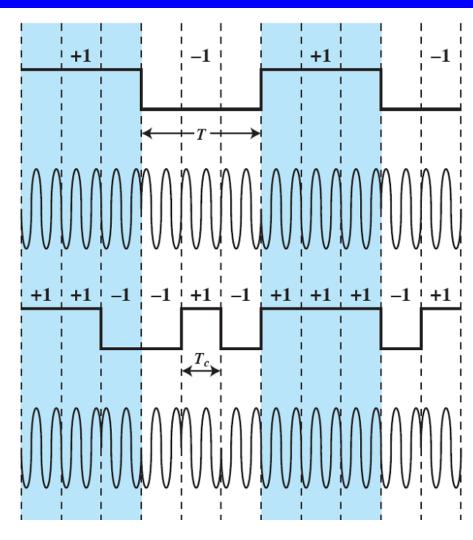


(b) Receiver

DSSS Example Using BPSK



(d) $s_t(t)$



Code Division Multiple Access (CDMA)

- #a multiplexing technique used with spread spectrum
- **#**given a **data signal rate** *D*
- **★ break each bit into** *k* **chips** according to a fixed chipping code specific to each user
 △ Pattern unique for each user (user code)
- #resulting new channel has chip data rate kD chips per second

CDMA – Example

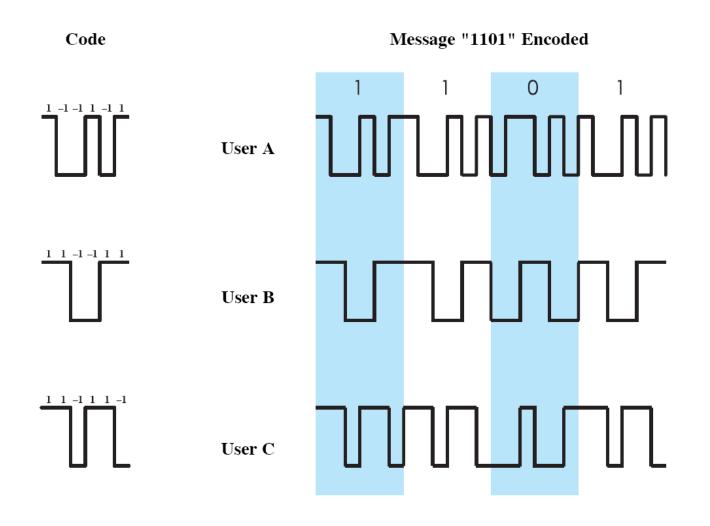
```
\#User A code c_A = <1, -1, -1, 1, -1, 1>
\#User B code c_B = <1, 1, -1, -1, 1, 1>
\#User C code c_C = <1, 1, -1, 1, 1, -1>
```

#If A wants to send bit 1:

#If A wants to send bit 0:

☑i.e. 1's complement (1, -1 inverted)

CDMA - Example



CDMA – Example

If a receiver R receives a chip pattern $d = \langle d_1, d_2, d_3, d_4, d_5, d_6 \rangle$ and the receiver is seeking to communicate with a user u so that it has at hand u's code $\langle c_1, c_2, c_3, c_4, c_5, c_6 \rangle$, the receiver performs the following decoding function:

$$S_u(d) = d_1 \times c_1 + d_2 \times c_2 + d_3 \times c_3 + d_4 \times c_4 + d_5 \times c_5 + d_6 \times c_6$$

- # If u is actually user A, then
 - ☑ If A sends 1:

$$\times d = <1, -1, -1, 1, -1, 1>$$

 $\times S_A = 1 \times 1 + (-1 \times -1) + (-1 \times -1) + 1 \times 1 + (-1 \times -1) + 1 \times 1 = 6$

☑ If A sends 0:

$$\boxtimes d = <-1, 1, 1, -1, 1, -1>$$

 $\boxtimes S_A = -1 \times 1 + 1 \times -1 + 1 \times 1 + 1 \times -1 + 1 \times -1 + -1 \times 1 = -6$

CDMA – Example

 \mathbb{H} If user B send 1, receiver using S_A

$$\triangle d = <1, 1, -1, -1, 1, 1>$$
 $\triangle c_A = <1, -1, -1, 1, -1, 1>$
 $\triangle S_A(d) = S_A(1, 1, -1, -1, 1, 1)$
 $= 1 \times 1 + 1 \times -1 + -1 \times -1 + 1 \times 1 + 1 \times -1 + 1 \times 1 = 0$

X Same result if B sends 0

Orthogonal Codes

- **\mathbb{H}** If A, B transmit same time, S_A is used \triangle only A signal is received, B is ignored

$$S_A(c_B) = S_B(c_A) = 0$$

★ Codes of A, B are called orthogonal

Orthogonal Codes

- **X** Orthogonal codes are not always available
- \Re More commonly, $S_X(c_Y)$ is small if $X \neq Y$
- # Thus, can distinguish when X = Y, $X \neq Y$
- # In the previous example

$$\triangle S_A(c_C) = S_C(C_A) = 0$$

$$\triangle S_R(c_C) = S_C(c_R) = 2$$

- ****** Receiver can identify signal of user even if other users transmitting at same time

CDMA – Example

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

(b) Transmission from A

Transmit (data bit = 1)	1	-1	-1	1	-1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	1	1	1	1	1	= 6

Transmit (data bit $= 0$)	-1	1	1	-1	1	-1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	-1	-1	-1	-1	-1	-1	= -6

CDMA – Example

(c) Transmission from B, receiver attempts to recover A's transmission

Transmit (data bit = 1)	1	1	-1	-1	1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	-1	1	-1	-1	1	= 0

(d) Transmission from C, receiver attempts to recover B's transmission

Transmit (data bit = 1)	1	1	-1	1	1	-1	
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	1	1	1	-1	1	-1	= 2

(e) Transmission from B and C, receiver attempts to recover B's transmission

B (data bit $= 1$)	1	1	-1	-1	1	1	
C (data bit = 1)	1	1	-1	1	1	-1	
Combined signal	2	2	-2	0	2	0	
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	2	2	2	0	2	0	= 8

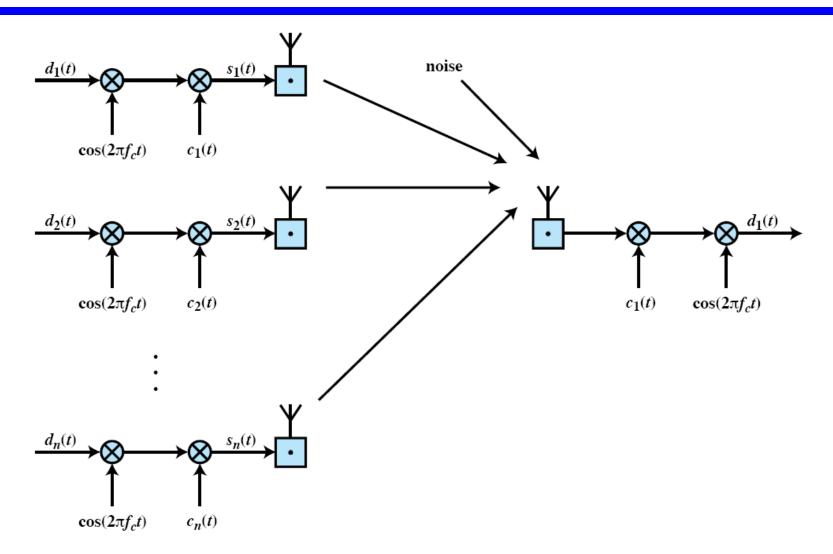
CDMA Limitations

- ****** Receiver can filter unwanted users
 - □either 0 or low-level noise
- **#**However, system will break down if
 - many users compete for channel
 - signal power from some users is too high because some users are very near to receiver

CDMA for DSSS

- \mathbb{H} There are *n* users, each transmitting using different PN sequence
- # For each user, data stream d(t) is BPSK modulated to produce signal with bandwidth W_d and then multiplied by spreading code for that user $c_i(t)$
- # All of the signals, plus noise, are received at the receiver's antenna
- \divideontimes Suppose that the receiver is attempting to recover the data of user 1. The incoming signal is multiplied by the spreading code of user 1 ($c_1(t)$) and then demodulated.
- ★ Narrow the bandwidth of that portion of the incoming signal corresponding to user 1 to the original bandwidth of the unspread signal.
- Incoming signals from other users are not despread by the spreading code from user 1 and hence retain their bandwidth of Ws
- Howanted signal energy remains spread over a large bandwidth and the wanted signal is concentrated in a narrow bandwidth
- **#** Bandpass filter at the demodulator can therefore recover the desired signal

CDMA for DSSS



Summary

- **#**looked at use of spread spectrum techniques:
- **#FHSS**
- **#DSSS**
- **#CDMA**