
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topic 8

(Textbook - Chapter 9)

Virtual Memory

Ahmad AlRjoub

http://fac.ksu.edu.sa/ahmadrj

http://fac.ksu.edu.sa/ahmadrj

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement

algorithms, and allocation of page frames

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Code needs to be in memory to execute, but entire program rarely

used

 Error code, unusual routines, large data structures

 Entire program code not needed at same time

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory

 Each program takes less memory while running -> more

programs run at the same time

 Increased CPU utilization and throughput with no increase

in response time or turnaround time

 Less I/O needed to load or swap programs into memory ->

each user program runs faster

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

 Virtual memory – separation of user logical memory from

physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical

address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

 Virtual address space – logical view of how process is

stored in memory

 Usually start at address 0, contiguous addresses until end of

space

 Meanwhile, physical memory organized in page frames

 MMU must map logical to physical

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory That is Larger Than Physical Memory

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual-address Space

 Usually design logical address space for

stack to start at Max logical address and

grow “down” while heap grows “up”

 Maximizes address space use

 Unused address space between

the two is hole

 No physical memory needed

until heap or stack grows to a

given new page

 Enables sparse address spaces with

holes left for growth, dynamically linked

libraries, etc

 System libraries shared via mapping into

virtual address space

 Shared memory by mapping pages read-

write into virtual address space

 Pages can be shared during fork(),

speeding process creation

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Library Using Virtual Memory

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging

 Could bring entire process into memory
at load time

 Or bring a page into memory only when
it is needed

 Less I/O needed, no unnecessary
I/O

 Less memory needed

 Faster response

 More users

 Similar to paging system with swapping
(diagram on right)

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper – never swaps a page
into memory unless page will be needed

 Swapper that deals with pages is a
pager

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

 With swapping, pager guesses which pages will be used before

swapping out again

 Instead, pager brings in only those pages into memory

 How to determine that set of pages?

 Need new MMU functionality to implement demand paging

 If pages needed are already memory resident

 No difference from non demand-paging

 If page needed and not memory resident

 Need to detect and load the page into memory from storage

 Without changing program behavior

 Without programmer needing to change code

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  in-memory – memory resident, i  not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During MMU address translation, if valid–invalid bit in page table
entry is i  page fault

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Table When Some Pages Are Not in Main Memory

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Fault

 If there is a reference to a page, first reference to that page will
trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory

2. Find free frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Steps in Handling a Page Fault

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Aspects of Demand Paging

 Extreme case – start process with no pages in memory

 OS sets instruction pointer to first instruction of process, non-

memory-resident -> page fault

 And for every other process pages on first access

 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple

page faults

 Consider fetch and decode of instruction which adds 2 numbers

from memory and stores result back to memory

 Pain decreased because of locality of reference

 Hardware support needed for demand paging

 Page table with valid / invalid bit

 Secondary memory (swap device with swap space)

 Instruction restart

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Instruction Restart

 Consider an instruction that could access several different locations

 block move

 auto increment/decrement location

 Restart the whole operation?

 What if source and destination overlap?

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging

 Stages in Demand Paging (worse case)

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging (Cont.)

 Three major activities

 Service the interrupt – careful coding means just several hundred

instructions needed

 Read the page – lots of time

 Restart the process – again just a small amount of time

 Page Fault Rate 0  p  1

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p

 p < .0000025

 < one page fault in every 400,000 memory accesses

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Optimizations

 Swap space I/O faster than file system I/O even if on the same device

 Swap allocated in larger chunks, less management needed than file

system

 Copy entire process image to swap space at process load time

 Then page in and out of swap space

 Used in older BSD Unix

 Demand page in from program binary on disk, but discard rather than paging

out when freeing frame

 Used in Solaris and current BSD

 Still need to write to swap space

 Pages not associated with a file (like stack and heap) – anonymous

memory

 Pages modified in memory but not yet written back to the file system

 Mobile systems

 Typically don’t support swapping

 Instead, demand page from file system and reclaim read-only pages

(such as code)

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially

share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are

copied

 In general, free pages are allocated from a pool of zero-fill-on-demand

pages

 Pool should always have free frames for fast demand page execution

 Don’t want to have to free a frame as well as other processing on

page fault

 Why zero-out a page before allocating it?

 vfork() variation on fork() system call has parent suspend and child

using copy-on-write address space of parent

 Designed to have child call exec()

 Very efficient

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Before Process 1 Modifies Page C

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

After Process 1 Modifies Page C

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What Happens if There is no Free Frame?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not really in

use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in minimum

number of page faults

 Same page may be brought into memory several times

9.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can

be provided on a smaller physical memory

9.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Need For Page Replacement

9.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to

select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page

and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

9.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

9.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines

 How many frames to give each process

 Which frames to replace

 Page-replacement algorithm

 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page

faults on that string

 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault

 Results depend on number of frames available

 In all our examples, the reference string of referenced page

numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph of Page Faults Versus The Number of Frames

9.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages?

 Just use a FIFO queue

15 page faults

9.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 9 is optimal for the example

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

9.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

9.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)

 Counter implementation

 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find

smallest value

 Search through table needed

 Stack implementation

 Keep a stack of page numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 But each update more expensive

 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have

Belady’s Anomaly

9.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

9.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

9.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Enhanced Second-Chance Algorithm

 Improve algorithm by using reference bit and modify bit (if

available) in concert

 Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must

write out before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again

soon and need to write out before replacement

 When page replacement called for, use the clock scheme but

use the four classes replace page in lowest non-empty class

 Might need to search circular queue several times

9.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made

to each page

 Not common

 Lease Frequently Used (LFU) Algorithm: replaces page with

smallest count

 Most Frequently Used (MFU) Algorithm: based on the argument

that the page with the smallest count was probably just brought in

and has yet to be used

9.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Buffering Algorithms

 Keep a pool of free frames, always

 Then frame available when needed, not found at fault time

 Read page into free frame and select victim to evict and add

to free pool

 When convenient, evict victim

 Possibly, keep list of modified pages

 When backing store otherwise idle, write pages there and set

to non-dirty

 Possibly, keep free frame contents intact and note what is in them

 If referenced again before reused, no need to load contents

again from disk

 Generally useful to reduce penalty if wrong victim frame

selected

9.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Applications and Page Replacement

 All of these algorithms have OS guessing about future page

access

 Some applications have better knowledge – i.e. databases

 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer

 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out

of the way of the applications

 Raw disk mode

 Bypasses buffering, locking, etc

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 9

