
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topic 8

(Textbook - Chapter 9)

Virtual Memory

Ahmad AlRjoub

http://fac.ksu.edu.sa/ahmadrj

http://fac.ksu.edu.sa/ahmadrj

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement

algorithms, and allocation of page frames

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Code needs to be in memory to execute, but entire program rarely

used

 Error code, unusual routines, large data structures

 Entire program code not needed at same time

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory

 Each program takes less memory while running -> more

programs run at the same time

 Increased CPU utilization and throughput with no increase

in response time or turnaround time

 Less I/O needed to load or swap programs into memory ->

each user program runs faster

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

 Virtual memory – separation of user logical memory from

physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical

address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

 Virtual address space – logical view of how process is

stored in memory

 Usually start at address 0, contiguous addresses until end of

space

 Meanwhile, physical memory organized in page frames

 MMU must map logical to physical

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory That is Larger Than Physical Memory

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual-address Space

 Usually design logical address space for

stack to start at Max logical address and

grow “down” while heap grows “up”

 Maximizes address space use

 Unused address space between

the two is hole

 No physical memory needed

until heap or stack grows to a

given new page

 Enables sparse address spaces with

holes left for growth, dynamically linked

libraries, etc

 System libraries shared via mapping into

virtual address space

 Shared memory by mapping pages read-

write into virtual address space

 Pages can be shared during fork(),

speeding process creation

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Library Using Virtual Memory

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging

 Could bring entire process into memory
at load time

 Or bring a page into memory only when
it is needed

 Less I/O needed, no unnecessary
I/O

 Less memory needed

 Faster response

 More users

 Similar to paging system with swapping
(diagram on right)

 Page is needed reference to it

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper – never swaps a page
into memory unless page will be needed

 Swapper that deals with pages is a
pager

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

 With swapping, pager guesses which pages will be used before

swapping out again

 Instead, pager brings in only those pages into memory

 How to determine that set of pages?

 Need new MMU functionality to implement demand paging

 If pages needed are already memory resident

 No difference from non demand-paging

 If page needed and not memory resident

 Need to detect and load the page into memory from storage

 Without changing program behavior

 Without programmer needing to change code

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v in-memory – memory resident, i not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During MMU address translation, if valid–invalid bit in page table
entry is i page fault

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Table When Some Pages Are Not in Main Memory

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Fault

 If there is a reference to a page, first reference to that page will
trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference abort

 Just not in memory

2. Find free frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Steps in Handling a Page Fault

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Aspects of Demand Paging

 Extreme case – start process with no pages in memory

 OS sets instruction pointer to first instruction of process, non-

memory-resident -> page fault

 And for every other process pages on first access

 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple

page faults

 Consider fetch and decode of instruction which adds 2 numbers

from memory and stores result back to memory

 Pain decreased because of locality of reference

 Hardware support needed for demand paging

 Page table with valid / invalid bit

 Secondary memory (swap device with swap space)

 Instruction restart

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Instruction Restart

 Consider an instruction that could access several different locations

 block move

 auto increment/decrement location

 Restart the whole operation?

 What if source and destination overlap?

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging

 Stages in Demand Paging (worse case)

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging (Cont.)

 Three major activities

 Service the interrupt – careful coding means just several hundred

instructions needed

 Read the page – lots of time

 Restart the process – again just a small amount of time

 Page Fault Rate 0 p 1

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p

 p < .0000025

 < one page fault in every 400,000 memory accesses

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Optimizations

 Swap space I/O faster than file system I/O even if on the same device

 Swap allocated in larger chunks, less management needed than file

system

 Copy entire process image to swap space at process load time

 Then page in and out of swap space

 Used in older BSD Unix

 Demand page in from program binary on disk, but discard rather than paging

out when freeing frame

 Used in Solaris and current BSD

 Still need to write to swap space

 Pages not associated with a file (like stack and heap) – anonymous

memory

 Pages modified in memory but not yet written back to the file system

 Mobile systems

 Typically don’t support swapping

 Instead, demand page from file system and reclaim read-only pages

(such as code)

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially

share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are

copied

 In general, free pages are allocated from a pool of zero-fill-on-demand

pages

 Pool should always have free frames for fast demand page execution

 Don’t want to have to free a frame as well as other processing on

page fault

 Why zero-out a page before allocating it?

 vfork() variation on fork() system call has parent suspend and child

using copy-on-write address space of parent

 Designed to have child call exec()

 Very efficient

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Before Process 1 Modifies Page C

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

After Process 1 Modifies Page C

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What Happens if There is no Free Frame?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not really in

use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in minimum

number of page faults

 Same page may be brought into memory several times

9.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can

be provided on a smaller physical memory

9.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Need For Page Replacement

9.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to

select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page

and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

9.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

9.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines

 How many frames to give each process

 Which frames to replace

 Page-replacement algorithm

 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page

faults on that string

 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault

 Results depend on number of frames available

 In all our examples, the reference string of referenced page

numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph of Page Faults Versus The Number of Frames

9.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages?

 Just use a FIFO queue

15 page faults

9.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 9 is optimal for the example

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

9.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

9.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)

 Counter implementation

 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find

smallest value

 Search through table needed

 Stack implementation

 Keep a stack of page numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 But each update more expensive

 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have

Belady’s Anomaly

9.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

9.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

9.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Enhanced Second-Chance Algorithm

 Improve algorithm by using reference bit and modify bit (if

available) in concert

 Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must

write out before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again

soon and need to write out before replacement

 When page replacement called for, use the clock scheme but

use the four classes replace page in lowest non-empty class

 Might need to search circular queue several times

9.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made

to each page

 Not common

 Lease Frequently Used (LFU) Algorithm: replaces page with

smallest count

 Most Frequently Used (MFU) Algorithm: based on the argument

that the page with the smallest count was probably just brought in

and has yet to be used

9.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Buffering Algorithms

 Keep a pool of free frames, always

 Then frame available when needed, not found at fault time

 Read page into free frame and select victim to evict and add

to free pool

 When convenient, evict victim

 Possibly, keep list of modified pages

 When backing store otherwise idle, write pages there and set

to non-dirty

 Possibly, keep free frame contents intact and note what is in them

 If referenced again before reused, no need to load contents

again from disk

 Generally useful to reduce penalty if wrong victim frame

selected

9.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Applications and Page Replacement

 All of these algorithms have OS guessing about future page

access

 Some applications have better knowledge – i.e. databases

 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer

 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out

of the way of the applications

 Raw disk mode

 Bypasses buffering, locking, etc

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 9

