William Stallings Data and Computer Communications

Chapter 8

Multiplexing

Multiplexing

% multiple channels on 1 physical line % common on long-haul, high capacity, links % have FDM, TDM, STDM alternatives

#Possible with **large bandwidth**

Multiple signals carried simultaneously # Each signal modulated onto differentcarrier frequency

Carrier frequencies must be sufficiently separated

#Bandwidths should **not overlap**

Transmitter

Receiver

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

William Stallings "Data and Computer Communications"

(c) Receiver

Frequency Division Multiplexing: Voice Signal

- # Bandwidth of voice signal (300-3400 Hz)
 # Generally taken as 4 kHz
- **#**Using AM with carrier frequency 64 kHz
- Spectrum of modulated signal is 8 kHz
 - △60 kHz 68 kHz

Frequency Division Multiplexing: Voice Signal

(c) Spectrum of composite signal using subcarriers at 64 kHz, 68 kHz, and 72 kHz

⊠B = total channel bandwidth where $B > \sum_{i=1}^{n} B_i$ ⊠B_i = bandwidth of a signal

FDM Problems

#Crosstalk

Spectra of adjacent component signals overlap
 Siguard band should be added
 ∑e.g. voice 4 kHz instead of 3400 Hz

#Intermodulation noise

Image: Image: mail in one image: Additional could produce frequency components of other channels

Analog Carrier Systems

- **#** long-distance links use an FDM hierarchy
- **#** AT&T (USA) and ITU-T (International) variants
- **#** Group
 - \bigtriangleup 12 voice channels (4kHz each) = 48kHz
 - ⊠ in range 60kHz to 108kHz
- **#** Supergroup
 - □ FDM of 5 group signals supports 60 channels
 □ on carriers between 420kHz and 612 kHz
- % Mastergroup
 - ☑ FDM of 10 supergroups supports 600 channels
- **#** so original signal can be modulated many times

North America and International carrier standards:

Number of Voice Channels	Bandwidth	Spectrum	AT&T	CCIT
12	48 KHz	60-108 KHz	Group	Group
60	240 KHz	312-552 KHz	Supergroup	Supergroup
300	1.232 MHz	812-2044 KHz		Mastergroup
600	2.52 MHz	564-3084 KHz	Mastergroup	
900	3.872 MHz	8.516-12.388 MHz		Supermaster Group
N × 600			Mastergroup Multiplex	
3,600	16.984 MHz	0.564-17.548 MHz	Jumpogroup	
10,800	57.442 MHz	3.124-60.566 MHz	Jumpogroup Multiplex	

Dr. Mohammed Arafah

William Stallings "Data and Computer Communications"

broadcast referision enantier requercy subcation								
Channel Number	Band (MHz)	Channel Number	Band (MHz)	Channel Number	Band (MHz)			
2	54 - 60	25	536-542	48	674 - 680			
3	60 - 66	26	542-548	49	680 - 686			
4	66 - 72	27	548-554	50	686 - 692			
5	76-82	28	554-560	51	692-698			
6	82-88	29	560 - 566	52	698-704			
7	174 - 180	30	566-572	53	704-710			
8	180-186	31	572-578	54	710-716			
9	186-192	32	578-584	55	716-722			
10	192-198	33	584-590	56	722-728			
11	198-204	34	590-596	57	728-734			
12	204-210	35	596 - 602	58	734 - 740			
13	210-216	36	602 - 608	59	740-746			
14	470 - 476	37	608-614	60	746 - 752			
15	476 - 482	38	614 - 620	61	752-758			
16	482-488	39	620 - 626	62	758-764			
17	488-494	40	626-632	63	764 - 770			
18	494 - 500	41	632-638	64	770-776			
19	500 - 506	42	638 - 644	65	776-782			
20	506 - 512	43	644 - 650	66	782-788			
21	512-518	44	650 - 656	67	788-794			
22	518-524	45	656 - 662	68	794-800			
23	524-530	46	662-668	69	800-806			
24	530 - 536	47	668-674					

Broadcast Television Channel Frequency Allocation

William Stallings "Data and Computer Communications"

Wavelength Division Multiplexing

FDM with multiple beams of light at different frequencies are transmitted on the same optical fiber

commercial systems with 160 channels of 10 Gbps
 Alcatel has carried 256 channels at 39.8 Gbps each, a total of 10.1 Tbps, over a 100-km

architecture similar to other FDM systems

multiplexer consolidates laser sources (1550nm) for transmission over single fiber

○ optical amplifiers amplify all wavelengths

demultiplexer separates channels at the destination

Dense Wavelength Division Multiplexing

- Bense wavelength division multiplexing (DWDM) refers originally to optical signals multiplexed within the 1550 nm band so as to utilize the capabilities of optical amplifiers which are effective for wavelengths between approximately 1525-1565 nm (C band), or 1570-1610 nm (L band)
- DWDM combines up to several wavelengths onto a single fiber and uses an ITU standard that specifies 100GHz or 200GHz spacing between the wavelengths, arranged in several bands around 1500-1600nm.
- use of more channels, more closely spaced, than ordinary FDM, resulting in the multiplexing equipment being more complex and expensive

Dense Wavelength Division Multiplexing

- **#** channel spacing of **200GHz or less** could be considered **dense**
- # typical system would use 40 channels at 100 GHz spacing or 80 channels with 50 GHz spacing
- Some technologies are capable of 25 GHz spacing (sometimes called ultra dense WDM)

40 channels DWDM

Dense Wavelength Division Multiplexing

Connecting locations redundantly with a Multiple-10Gbit/s Fiber Optic Ring

- **#** multiple digital signals carried on single path
- ℜ portions of each signal interleaved in time
- **byte Interleaving**, each time slot contains one character of data
- **#** time slots **pre-assigned** to sources
 - Synchronous TDM is called synchronous not because synchronous transmission is used, but because the time slots are pre-assigned to sources and fixed.
- **#** slot transmitted even if source has **no data**
- **#** may **waste** capacity but simple to implement
- **#** different data rates are possible
- **#** fast source can be assigned multiple slots
- **#** slots dedicated to source called channel

At the transmitter:

- **#** data from each source is buffered
- **#** buffers scanned sequentially to form a composite digital signal $m_c(t)$
- Scanning operation is sufficiently rapid so that each buffer is emptied before more data can arrive
- **#** The data rate of the composite signal $m_c(t)$ must be at least equal the sum of data rates of input signals m(t)
- # data organized into frames, each frame contains a cycle of time slots

At the receiver:

the interleaved data are demultiplexed and routed to the appropriate destination buffer.

Transmitters

Receiver

Bursty traffic \rightarrow Waste of resources

(b) TDM Frames

Time Division Multiplexing

(c) Receiver

TDM Link Control

ℜ no headers and trailers

data link control protocols (flow control and error control) not needed

flow control

- △ As far as multiplexers and demultiplexers are concerned, flow control is not needed.
- △ data rate of multiplexed line is fixed
- ☐ if one channel is temporarily unable to accept data, the other channels are expecting to receive data at predetermined time
- △ corresponding source must be quenched
- ➡ the channel will carry empty slots
- ☐ flow control can be provided on per channel basis

error control

error control can be provided on per channel basis by using HDLC

Data Link Control on TDM

(b) Input data streams

•••• f₂ F₁ d₂ f₁ d₂ f₁ d₂ d₁ d₂ d₁ d₂ d₁ C₂ d₁ A₂ C₁ F₂ A₁ f₂ F₁ f₂ f₁ d₂ f₁ d₂ d₁ d₂ d₁ d₂ d₁ d₂ d₁ C₂ C₁ A₂ A₁ F₂ F₁

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data fieldA = address field <math>f = one octet of FCS fieldC = control field

Framing

It is important to maintain framing synchronization because, if the source and destination are out of step, data on all channels are lost

added digit framing:

one control bit added to each TDM frame

🗵 T1 Link

☑ identifiable bit pattern used on control channel
 ☑ e.g., alternating 01010101...unlikely on a data channel
 ☑ E1 Link

Synchronizing Multiple Sources Pulse Stuffing

Most difficult problem in TDM design

If each source has separate clock

 \square any variation among clocks \rightarrow loss of sync

Input data rates not related by simple rational number

Pulse stuffing is a common solution

- have outgoing data rate (excluding framing bits) higher than sum of incoming rates
- stuff extra dummy bits or pulses into each incoming signal until it matches local clock

stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

Pulse Stuffing - Example

Inputs:

Source 1: Analog, 2 kHz
Source 2: Analog, 4 kHz
Source 3: Analog, 2 kHz
Sources 4-11: Digital, 7200 bps

Pulse Stuffing - Example

For analog sources:

- △ Sources 1, 3 sampled at **4000 samples/sec**
- Source 2 at 8000 samples/sec
- \square PAM samples are then quantized using 4 bits/sample \rightarrow PCM
- At scan rate of 4000 times per second , one PAM sample (4 bits) is taken from sources 1, 3 and two PAM samples (8 bits) are taken from source 2 per scan
- These four samples are interleaved and converted to 4-bit PCM samples
- ightarrow Total of 16 bits are generated at rate of 4000 times per second → 64 kbps

For digital sources:

Pulse stuffing raise each source to a rate of 8 kbps
 aggregate data rate = 64 kbps

- **#** For example, frame can consist of **32 bits**
- H Each frame containing 16 PCM bits (64kbps/128kps*32) and 2 bits (8kbps/128kbps*32) from each of the eight digital sources.
Pulse Stuffing - Example

Pulse Stuffing - Example

Digital Carrier Systems

Synchronous TDM transmission structure

TDM performed at multiple levels

Hierarchy of TDM structures

⊠US, Canada, Japan use AT&T system

○ Other countries use ITU-T system

Ν	orth Americar	1	International (ITU-T)			
Designation	Number of Voice Channels	Data Rate (Mbps)	Level	Number of Voice Channels	Data Rate (Mbps)	
DS-1	24	1.544	1	30	2.048	
DS-1C	48	3.152	2	120	8.448	
DS-2	96	6.312	3	480	34.368	
DS-3	672	44.736	4	1920	139.264	
DS-4	4032	274.176	5	7680	565.148	

- ₭ long-distance links use an TDM hierarchy
- **#** AT&T (USA) and ITU-T (International) variants
- H The basis of the TDM hierarchy used in North America and Japan is the Digital signal-1 (DS-1), also known as T1
- **#** DS-1 can carry mixed voice and data signals
- **#** aggregate data rate of $8000 \times 193 = 1.544$ Mbps
- **#** frame synchronization in DS-1 link uses an extra bit at the start of each frame which alternates between 1 and 0 for consecutive frames.

Notes:

1. The first bit is a framing bit, used for synchronization.

2. Voice channels:

•8-bit PCM used on five of six frames.

•7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.

3. Data channels:

•Channel 24 is used for signaling only in some schemes.

•Bits 1-7 used for 56 kbps service

•Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

→Aggregate data rate of 1.544 Mbps

Level	Multiplex Order	Bit Rate (Mbit's)	Voice Channels
то		0.064	1
71	24 x T0	1.544	24
T2	4 x T1	6.312	96
Т3	7 x T2	44.736	670
T 4	3 x T3	139.204	0/2

E1 Carrier

- **#** ITU-T recommends for a PCM carrier at 2.048 Mbps called **E1 Carrier**.
- **#** This carrier has 32 of 8-bit data samples, yielding 256 bits every 125 μsec.
- **#** This gives the gross data rate of **2.048 Mbps**.
- **#** Thirty of the channels are used for information and two are used for signaling.
- ₭ Outside North America and Japan, the E1 carrier is widely used.

E1 Carrier

O ITU-T PDH Transmission Hierarchies

Level Marshall Marshall And							
Level	Order	Bit Rate (Mbit/s)	Voice Channels				
E0		0.064	1				
E1	32 x E0	2.048	30				
E2	4x E1	8.448	120				
F3	4 x E2	34.368	480				
<u> </u>	4x E3	139.264	1920				
E4	4.54	565.148	7680				

ITU-T PDH Transmission Hierarchies

O ITU-T PDH Transmission Hierarchies

SONET/SDH

SONET (Synchronous Optical Network) optical transmission interface proposed by BellCore, standardize by ANSI

SDH (Synchronous Digital Hierarchy)

☐ compatible version published by ITU-T
☐ few differences from SONET

Synchronous Optical Network (SONET)

- Synchronous Optical Network (SONET) is a digital transport system.
- In SONET, the base transfer rate is 51.84 Mbps, a 125 μsec signal, and a frame format of 9 rows by 90 columns (90 columns * 9 rows * 8 bit/byte * 8000 = 51.84 Mbps.
- H The basic rate of SONET, known as Synchronous Transport Signal 1 (STS-1), is 51.84 Mbps.
- SONET is the standard in North America, which is permitted to be multiplexed by an integer of three to the European preference of 155.520 Mbps.

STS-1 Frame

STS-1 Envelope

STS-1 Frame

Fiber Channel

Framing STS-ID Framing A2 **C1** A1 BIP-8 Orderwire User Section **B1 E1 F1** Overhead DataCom DataCom DataCom **D1 D2 D3** Pointer Pointer Pointer **H1** H2 Action H3 BIP-8 APS APS **B2 K1 K2** DataCom DataCom DataCom Line **D4** D5 D6 Overhead DataCom DataCom DataCom **D7 D**8 **D9** DataCom DataCom DataCom **D10 D11 D12** Growth Growth Orderwire **Z1** Z2 E2

(a) Transport Overhead

Trace
J1
BIP-8
B3
Signal
Label C2
Path
Status G1
User
F2
Multiframe
H4
Growth
Z3
Growth
Z4
Growth
Z5

(b) Path Overhead

	Section Overhead
A1, A2:	Framing bytes = $F_{6,28}$ hex; used to synchronize the beginning of the frame.
C1:	STS-1 ID identifies the STS-1 number (1 to N) for each STS-1 within an STS-N multiplex.
B1:	Bit-interleaved parity byte providing even parity over previous STS-N frame after scrambling; the ith bit of this octet contains the even parity value calculated from the <i>i</i> th bit position of all octets in the previous frame.
E1:	Section level 64-kbps PCM orderwire; optional 64-kbps voice channel to be used between section terminating equipment, hubs, and remote terminals.
F1:	64-kbps channel set aside for user purposes.
D1-D3:	192-kbps data communications channel for alarms, maintenance, control, and administration between sections.
	Line Overhead
H1-H3:	Pointer bytes used in frame alignment and frequency adjustment of payload data.
B2:	Bit-interleaved parity for line level error monitoring.
K1, K2:	Two bytes allocated for signaling between line level automatic protection switching equipment; uses a bit-oriented protocol that provides for error protection and management of the SONET optical link.
D4-D12:	576-kbps data communications channel for alarms, maintenance, control, monitoring, and administration at the line level.
Z1, Z2:	Reserved for future use.
E2:	64-kbps PCM voice channel for line level orderwire.
	Path Overhead
J1:	64-kbps channel used to send repetitively a 64-octet fixed-length string so a receiving terminal can continuously verify the integrity of a path the contents of the message are user programmable.
B3:	Bit-interleaved parity at the path level, calculated over all bits of the previous SPE.
C2:	STS path signal label o designate equipped versus unequipped STS signals. Unequipped means the line connection is complete but there is no path data to send. For equipped signals, the label can indicate the specific STS payload mapping that might be needed in receiving terminals to interpret the payloads.
G1:	Status byte sent from path terminating equipment back to path originating equipment to convey status of terminating equipment and path error performance.
F2:	64-kbps channel for path user.
H4:	Multiframe indicator for payloads needing frames that are longer than a single STS frame; multiframe indicators are used when packing lower rate channels (virtual tributaries) into the SPE.
Z3-Z5:	Reserved for future use.

A1, A2: Indicates the beginning of each STS-1 within a STS-n frame. The pattern is Hex F628.

JO: Section trace. It is defined only for STS-1 number 1 of an STS-N signal. Used to transmit a one byte fixed length string or a 16 byte message so that a receiving terminal in a section can verify its continued connection to the intended transmitter.

ZO: Section growth. It is defined in each STS-1 for future growth except for STS-1 number 1 (which is defined as J0).

B1: Section error monitoring. The BIP-8 is calculated over all bits of the previous STS-N frame after scrambling and is placed in the B1 byte of STS-1 number 1 before scrambling. Defined only for STS-1 number 1 of an STS-N signal.

E1: Allocated to be used as local orderwire channels for voice communication between section terminating equipments, hubs and remote terminal locations.

F1: Reserved for user purposes (e.g. temporary data/voice channel connections for special maintenance purposes).

D1 - D3: Data communication channels (DCC). A 192 kbit/s message based channel for alarms, maintenance, control, monitoring, administration and other communication needs.

H1, H2: Pointer bytes. Allocated to a pointer that indicates the offset in bytes between pointer and the first byte of the STS SPE. It is used to align the STS-1 transport overheads in an STS-N signal as well as perform frequency justification.

H3: Pointer action byte. It is used for frequency justification. Depending on the pointer value, this byte is used to adjust the fill input buffers. It only carries valid information in the event of negative justification, otherwise it's not defined.

B2: Line error monitoring. The BIP-8 is used to determine if a transmission error has occurred over a line. It is calculated over all bits of the previous STS-1 frame before scrambling and is placed in the B2 byte of the current frame before scrambling.

K1, K2: Allocated for APS (Automatic Protection Switching) signaling for the protection of the multiplex section.

Linear APS messages

Ring APS messages

ANSI T1.1 protection	05.01 switching protocol	ANSI T1.105.01 protection switching protocol			
K1 byte	Condition	K1 byte	Condition		
b1 - b4 1111 1110 1101 1010 1011 1010 1001 1000 0111 0100 0011 0100 0001	Lockout of protection Forced switch Signal fail high priority Signal fail low priority Signal degrade high priority Signal degrade low priority Unused Manual switch Unused Wait-to-restore Unused Exercise Unused Reserve request Do not revert	b1 - b4 1111 1110 1101 1001 1011 1000 0111 0100 0111 0100 0011 0010	Lockout of protection (span) or signal fail (protection) Forced switch (span) Forced switch (ring) Signal fail (span) Signal fail (ring) Signal degrade (protection) Signal degrade (span) Signal degrade (ring) Manual switch (span) Manual switch (span) Manual switch (ring) Wait-to-restore Exerciser (span) Exerciser (ring) Reserve request (span) Beserve request (span)		
0000 b5 - b8	No request Selects channel used by APS messages	0000 b5 - b8	No request Destination node ID		
K2 byte	Condition	K2 byte	Condition		

b1 - b4	Selects bridged channel used	b1 - b4	Source node ID
b5	Determines automatic protection switch architecture	b5	Path code: $0 =$ short path; 1 = long path
b6 - b8	000 = Reserved for future use 001 = Reserved for future use 010 = Reserved for future use 011 = Reserved for future use 100 = Reserved for future use 101 = Reserved for future use 110 = MS-RDI 111 = MS-AIS	b6 - b8	000 = Idle 001 = Bridged 010 = Bridged and switched 011 = Reserved for future use 100 = Reserved for future use 101 = Reserved for future use 110 = MS-RDI

D4 - D12: Data Communication Channels (DCC). These 9 bytes form a 576 kbit/s message channel for alarms, maintenance, control, monitor, administration and other communication needs between line-terminating entities.

S1: Synchronization messaging. Bits 5 - 8 are used to carry the synchronization status messages which provide an indication of the quality level of the synchronization source of the SONET signal. Bits 1 - 4 are reserved for future use.

SONET Synchronization Status Messages

S1 byte b5 - b8	SONET synchronization quality level description
0000	Synchronized-traceability unknown
0001	Stratum 1 traceable
0111	Stratum 2 traceable
1010	Stratum 3 traceable
1100	±20 ppm clock traceable
1110	Reserved for network synchronization
1111	Don't use for synchronization

MO: Only defined for STS-1 signal. Bits 5 - 8 are used as a line REI function. They convey the count of errors detected by B2. Bits 1 - 4 are reserved for future use.

M1: This byte is located in the third STS-1 in order of appearance in the byte interleaved STS-N frame and is used as a line REI function. It conveys the count of errors detected by B2.

Z1: In SONET signals and at rates above STS-1 and below STS-192, this byte is defined in each STS-1 number 1 for future growth.

Z2: In SONET signals and at rates above STS-1 and below STS-192, this byte is defined in each STS-1 except the third STS-1 for future growth.

E2: Allocated for an express orderwire between line entities. It is defined only for STS-1 number 1 of an STS-N signal and its use is optional.

William Stallings "Data and Computer Communications"

J1: STS path trace. It is used to transmit a 64-byte, fixed-length string so that a receiving terminal can verify its continued connection to the intended transmitter.

B3: Path error monitoring. The BIP-8 is calculated over all bits of the previous STS SPE before scrambling. Computed value is placed in the B3 byte.

C2: Signal label. Allocated to identify the construction and content of the STS-level SPE and for PDI-P.

C2 byte coding

00 Unequipped 01 Equipped – nonspecific 02 Floating VT mode
01 Equipped – nonspecific 02 Floating VT mode
02 Floating VT mode
03 Locked VT mode
04 Asynchronous mapping for DS3
12 Asynchronous mapping for 139.264 Mbit/s
13 Mapping for ATM
14 Mapping for DQDB
15 Asynchronous mapping for FDDI
16 Mapping for HDLC over SONET
E1 STS-1 payload with 1 VT-x payload defect
E2 STS-1 payload with 2 VT-x payload defects
E3 STS-1 payload with 3 VT-x payload defects
E4 STS-1 payload with 4 VT-x payload defects
E5 STS-1 payload with 5 VT-x payload defects
E6 STS-1 payload with 6 VT-x payload defects
E7 STS-1 payload with 7 VT-x payload defects
E8 STS-1 payload with 8 VT-x payload defects
E9 STS-1 payload with 9 VT-x payload defects
EA STS-1 payload with 10 VT-x payload defects
EB STS-1 payload with 11 VT-x payload defects
EC STS-1 payload with 12 VT-x payload defects
ED STS-1 payload with 13 VT-x payload defects
EE STS-1 payload with 14 VT-x payload defects
EF STS-1 payload with 15 VT-x payload defects
F0 STS-1 payload with 16 VT-x payload defects
F1 STS-1 payload with 17 VT-x payload detects
F2 STS-1 payload with 18 VT-x payload defects
F3 S1S-1 payload with 19 V1-x payload defects
F4 STS-1 payload with 20 VT-x payload defects
F5 STS-1 payload with 21 VT-x payload defects
FD S15-1 payload with 22 V1-x payload defacts
F7 STS-1 payload with 23 VT-x payload defacts
EQ STS-1 payload with 25 VT-x payload defects
FA STS-1 navinad with 26 VT-x navinad defects
FB STS-1 payload with 27 VT-x payload defects
FC STS-1 payload with 28 VT-x payload defects, or STS-1.
STS-3c, etc. with a non-VT payload defect (DS3, FDDI, etc.)

G1: Path status. Allocated to convey back to an originating STS SPE the path-terminating status and performance. Bits 1 - 4 convey the count of interleaved bit blocks that have been detected in error by B3. Bits 5 - 7 provide codes to indicate both an old version and an enhanced version of the STS RDI-P.

G1, RDI-P defects

REI			-	RDI-P		Spare		
b1	b2	b3	b4	b5	b6	b7	b8	
<u>ل</u>							•	
b5	b6	b7	Interpre	tation	ä	Triggers		
0	0	0	No remote defect			No defects		
0	0	1	No remote defect			No defects		
0	1	0	Remote payload defect		ct	PLM-P		
0	1	1	No remote defect			No defects		
1	0	0	Remote defect		2	AIS-P, LOP	-P	
1	0	1	Remote server defect			AIS-P. LOP-P		
1	1	0	Remote	connectivity	defect	TIM-P, UNE	Q-P	
1997	4	1	Demote	defect	AIS D LOD	D		

F2: Path user channel. Allocated for user communication purposes between path elements.

H4: Multiframe indicator. Provides a generalized multiframe indicator for payloads. Currently, it is only used for VT-structured payloads.

Z3, Z4: Allocated for future use. Have no defined value. The receiver is required to ignore their content.

N1: Allocated to support tandem connection maintenance and the tandem connection link. Bits 1 - 4 are used to provide the tandem connection Incoming Error Count (IEC). In option 1, bits 5 - 8 are used to provide the tandem connection data link which is an optional 32 kbit/s data channel available to applications or services that span more than one LTE-LTE connection, but may be shorter than a PTE-PTE connection. In option 2, bits 5 - 8 are used to provide maintenance information including REI, outgoing error indication, RDI, outgoing defect information and TC access point identifier.

Synchronous Digital Hierarchy (SDH)

- In SDH, the base transfer rate is 155.52 Mbps, a 125 μsec signal, and a frame format of 9 rows by 270 columns (270 columns * 9 rows * 8 bit/byte * 8000 = 155520000 bps.
- ₭ The basic rate of SDH, known as Synchronous Transport Module 1 (STM-1), is 155.52 Mbps.
- **SDH** is a European Standard and was developed by **ITU-T**.

Synchronous Digital Hierarchy (SDH)

SDH Envelope

Order of

transmission

٦.	~ -	A	1 A	2 10	11		
	2		1 2 J	0	11	. ト	
▼3	A1	A2	JO	J1			
	B1	E1	F1	B3		H	
	D1	D2	D3	C2		H	
	H1	H2	H3	G1		⊢⊦	
	B2	K1	K2	F2		⊢⊦	
	D4	D5	D6	H4		H	
	D7	D8	D9	Z3		H	
	D10	D11	D12	Z4		H	
	S1	M0/1	E2	N1			

Interleaving of three SONET STS-1 frames into an STS-3 frame

SONET/SDH Multiplexing

Three individual STS-1 payloads carried in an STS-3 signal

First STS-1

Second STS-1

Third STS-1

A SONET STS-3 frame showing how the STS-1s are interleaved.

A1	A2	JO			
B1	E1	F1			
D1	D2	D3			
H1	H2	Н3	 J1		
B2	K1	K2	B3		
D4	D5	D6	C2		
D7	D8	D9	G1		
D10	D11	D12	F2		➢Payload Overhead
S1	M0/1	E2	H4		
A1	A2	JO	Z3		
B1	E1	F1	Z4		
D1	D2	D3	N1	\Box	
H1	H2	H3			

Payload overhead (POH) is the first column of the synchronous payload envelope (SPE)

STS-1 SPE for all VT1.5 (T1 Container)

William Stallings "Data and Computer Communications"

STS-1 SPE for all VT2 (E1 Container)

Dr. Mohammed Arafah

William Stallings "Data and Computer Communications"

SONET/SDH

- **STS-1** \rightarrow 28 T1 Links
 - \rightarrow 21 E1 Links
- - → 3*28 T1 Links
 - → 3*21 E1 Links

SONET/SDH

Synchronous Optical Network (ANSI)

Synchronous Digital Hierarchy (ITU-T)

#have hierarchy of signal rates

Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1) is 51.84Mbps

△ carries one DS-3 or multiple (DS1 DS1C DS2) plus ITU-T rates (eg. 2.048Mbps)

☐multiple STS-1 combine into STS-N signal

□ ITU-T lowest rate is 155.52Mbps (STM-1)
SONET/SDH

SONET		SDH Transmissio	Transmission	DS-3	DS-1	DS-0
Electrical	Optical	Optical	rate (Mbps)	Equiv. #	Equiv. #	Equiv. #
STS-1	OC-1		51.840	1	28	672
STS-3	OC-3	STM-1	155.520	3	84	2016
STS-9	OC-9	STM-3	466.560	9	252	6048
STS-12	OC-12	STM-4	622.080	12	336	8064
STS-18	OC-18	STM-6	933.120	18	504	12096
STS-24	OC-24	STM-8	1244.160	24	672	16128
STS-36	OC-36	STM-12	1866.240	36	1008	24192
STS-48	OC-48	STM-16	2488.320	48	1344	32256
STS-192	OC-192	STM-64	9953.280	192	5376	129024

Statistical TDM

- **#** in **Synchronous TDM** many slots **are wasted**
- Statistical TDM allocates time slots dynamically based on demand
- # multiplexer scans input lines and collects data until frame
 full
- **#** There are *n* I/O lines and *k* time slots available on the TDM frame, where k < n

line data rate lower than aggregate input line rates
 # may have problems during peak periods
 Must buffer inputs

Statistical TDM

Output data rate is less than the sum input rates

- Can take more sources than synchronous TDM at same output rate or less output rate for same sources as synchronous TDM
- Statistical Multiplexer does not send empty slots if there are data to send

More **overhead** than TDM

Isolations must be identified → address information must be included with data

Statistical TDM

Control information is needed

Two possible formats:

One data source per frame

need to identify address of source
 work well under light load
 inefficient under heavy load

Multiple sources per frame

need to identify length of data of each source

Flag Address Control Statistical TDM subframe	FCS	Flag
---	-----	------

(a) Overall frame

|--|

(b) Subframe with one source per frame

(c) Subframe with multiple sources per frame

Parameters for statistical TDM:

- $\square I$ = number of Input sources
- $\square R$ = data rate of each source, bps
- $\square \mu$ = effective capacity of multiplexed line, bps
- $\[tmm] \alpha$ = mean fraction of time each source is transmitting, 0< α <1

 $K = \frac{\mu}{IR}$ = ratio of multiplexed line capacity to total maximum input

- **ﷺ** If *K*=0.25 → four times as many devices using the same link capacity
- **#** *K* can be bounded: $\alpha < K < 1$

 $\square \text{ If } K = 1 \rightarrow \text{Synchronous TDM}$

 \square if $K < \alpha$, then a single input will exceed the multiplexer capacity

- M = Markov process. Transition probabilities depend only on current state. Memoryless.
- · Poisson/Exponential is special case of Markov.

Statistical TDM - Performance

- ¥ Viewing the multiplexer as a single-server queue, and assuming Poisson arrivals and constant service time
- **#** Parameters:
 - $\Delta \lambda$ = arrival rate (mean number of arrivals per second)
 - \square μ = mean service rate

$$T_s = \frac{1}{\mu}$$
 $T_s = service time for each arrival$

 $\square \rho$ = utilization, fraction of time server is busy ρ =

- $\square N_{w}$ = mean number of waiting items in the system
- $\square N$ = mean number of items in the system (waiting + being served)

$$\rightarrow N = N_w + \rho$$

 $rac{T_r}$ = residence time, mean time an item spends in the system (waiting + being served)

 $\Box \sigma_r$ = standard deviation of T_r

Formulas:

$$\lambda = \text{Mean number of arrivals per second} \qquad \lambda = \alpha IR$$

$$T_s = \text{service time for each arrival} \qquad T_s = \frac{1}{\mu}$$

$$\rho = \text{Utilization, fraction of time server is busy} \qquad \rho = \frac{\lambda}{\mu} = \lambda T_s \qquad \rho = \frac{\lambda}{\mu} = \frac{\alpha IR}{\mu} = \frac{\alpha}{K}$$

$$N_w = \text{mean number of waiting items in the system} \qquad N_w = \frac{\rho^2}{2(1-\rho)}$$

$$N = \text{mean number of items in the system} \qquad N = \frac{\rho^2}{2(1-\rho)} + \rho$$

Little's Law tells us that the average number of customers in the system *N*, is the effective arrival rate λ , times the average time that a customer spends in the system *T*_n or simply:

N= mean number of items in the system T_r = Mean time an item spends in the system

$$N = \lambda T_r \longrightarrow T_r = \frac{N}{\lambda}$$

$$T_r = \frac{N}{\lambda} = \frac{N}{\rho/T_s} = \frac{T_s}{\rho} \left(\frac{\rho^2}{2(1-\rho)} + \rho\right) = \frac{T_s}{\rho} \left(\frac{\rho^2 + 2\rho - 2\rho^2}{2(1-\rho)}\right) = \frac{T_s}{\rho} \left(\frac{2\rho - \rho^2}{2(1-\rho)}\right) = \frac{T_s(2-\rho)}{2(1-\rho)}$$

 $\sigma_r = \text{standard deviation of } T_r \quad \sigma_r = \frac{1}{(1-\rho)} \sqrt{\rho - \frac{3\rho^2}{2} + \frac{5\rho^3}{6} - \frac{\rho^2}{12}}$

Dr. Mohammed Arafah

William Stallings "Data and Computer Communications"

Mean buffer size versus utilization

$$N_w = \frac{\rho^2}{2(1-\rho)}$$

Mean delay versus utilization

$$T_r = \frac{T_s(2-\rho)}{2(1-\rho)}$$
$$T_s = \frac{1}{\mu}$$

Statistical TDM - Performance

Probability of overflow as a function of buffer size

dedicate two cable TV channels to data transfer

each channel shared by number of subscribers, using statistical TDM

B Downstream

cable scheduler delivers data in small packets
 active subscribers share downstream capacity
 grant requests to allocate upstream time slots to subscribers

Upstream

user requests timeslots on shared upstream channel
 Headend scheduler notifies subscriber of slots to use

subscriber line: link between subscriber and network

- **₭** carry voice grade signal: 0 4 kHz
- **#** uses currently installed twisted pair cable
 - support 1 MHz or moreProvide high speed data over phone line

Asymmetric DSL (ADSL)

☐ more downstream rate than upstream
☐ most home user traffic is downstream

₭ uses Frequency division multiplexing
 △ reserve lowest 25kHz for voice (POTS)
 △ more than 4 kHz to prevent interference
 ₭ has a range of up to 5.5km

Frequency plan for ADSL. Red area is the frequency range used by normal voice telephony (PSTN), the green (upstream) and blue (downstream) areas are used for ADSL

- **# DMT separates the ADSL signal into 256 subchannels (bins)**
- **%** Transmission band divided to 4.3125 kHz subchannels
- **# Each subchannel can carry a data rate up to 60 kbps**
- **# DMT has 224 downstream frequency bins and up to 26 upstream bins.**
- 第 The frequency layout can be summarized as:
 △ 30Hz-4 kHz, voice.
 △ 4-25 kHz, unused guard band.
 △ 25-138 kHz, 26 upstream bins (7-32).
 △ 138-1104 kHz, 224 downstream bins (33-256).
- # Typically, a few bins around 32-33 are not used in order to prevent interference between upstream and downstream bins either side of 138 kHz.

http://en.wikipedia.org/wiki/ITU_G.992.1

DMT modem sends out test signals on each subchannel to determine signal-to-noise ratio

- DMT modem then assigns more bits to channels with better signal transmission qualities and less bits to channels with poorer signal transmission qualities
- H typical situation in which there is increasing attenuation and hence decreasing signal-to-noise ratio at higher frequencies → As the higher-frequency subchannels carry less of the load

- # Bit stream to be transmitted is divided into a number of parallel bit streams (substreams)
- **B Each substream is carried in separate frequency band using FDM**
- Sum of the data rates of the substreams is equal to the total data rate
- **% Each substream is then converted to an analog signal using QAM**
- H This scheme works easily because of QAM's ability to assign different numbers of bits per transmitted signal

Each QAM signal occupies a distinct frequency band, so these signals can be combined by simple addition to produce the composite signal for transmission

DMT Transmitter

William Stallings "Data and Computer Communications"

Version	Standard name	Common name	Downstream rate 🖂	Upstream rate 🖂	Approved in
ADSL	ANSI T1.413-1998 Issue 2	ADSL	8.0 Mbit/s	1.0 Mbit/s	1998
ADSL	ITU G.992.1	ADSL (G.DMT)	12.0 Mbit/s	1.3 Mbit/s	1999-07
ADSL	ITU G.992.1 Annex A	ADSL over POTS	12.0 Mbit/s	1.3 Mbit/s	2001
ADSL	ITU G.992.1 Annex B	ADSL over ISDN	12.0 Mbit/s	1.8 Mbit/s	2005
ADSL	ITU G.992.2	ADSL Lite (G.Lite)	1.5 Mbit/s	0.5 Mbit/s	1999-07
ADSL2	ITU G.992.3	ADSL2	12.0 Mbit/s	1.3 Mbit/s	2002-07
ADSL2	ITU G.992.3 Annex J	ADSL2	12.0 Mbit/s	3.5 Mbit/s	
ADSL2	ITU G.992.3 Annex L	RE-ADSL2	5.0 Mbit/s	0.8 Mbit/s	
ADSL2	ITU G.992.4	splitterless ADSL2	1.5 Mbit/s	0.5 Mbit/s	2002-07
ADSL2+	ITU G.992.5	ADSL2+	24.0 Mbit/s	1.3 Mbit/s	2003-05
ADSL2+	ITU G.992.5 Annex M	ADSL2+M	24.0 Mbit/s	3.3 Mbit/s	2008

STC offers ADSL2+ service at maximum of 20 Mbit/s downstream data rate. The service is called Xband Jood and as of 2010 costs SAR 296 per month.

Here the maximum attainable data rate however depends on the location and is usually less than stated maximum of 20 Mbit/s at most locations.

http://en.wikipedia.org/wiki/ITU_G.992.5

ADSL2+ extends the capability of basic ADSL by doubling the number of downstream bits. The data rates can be as high as 24 Mbps downstream and up to 1.4 Mbps upstream depending on the distance from the DSLAM to the customer's premises.

ADSL2+ is capable of **doubling the frequency band** of typical ADSL connections from 1.1 MHz to 2.2 MHz. This doubles the downstream data rates of the previous ADSL2 standard (which was up to 12 Mbit/s), but like the previous standards will degrade from its peak bit rate after a certain distance.

http://www.billion.com/edu/AnnexM_Whitepaper.pdf

100

2B1Q coding on single twisted pair (residential) with echo cancelling up to 2Mbps over 3.7km Very high data rate DSL DMT/QAM for very high data rates over separate bands for separate services

□ up to 2Mbps over 3.7km

#Single line DSL

	ADSL	HDSL	SDSL	VDSL
Data rate	1.5 to 9 Mbps downstream 16 to 640 kbps upstream	1.544 or 2.048 Mbps	1.544 or 2.048 Mbps	13 to 52 Mbps downstream
	1 1			1.5 to 2.3 Mbps upstream
Mode	Asymmetric	Symmetric	Symmetric	Asymmetric
Copper pairs	1	2	1	1
Range (24-gauge UTP)	3.7 to 5.5 km	3.7 km	3.0 km	1.4 km
Signaling	Analog	Digital	Digital	Analog
Line code	CAP/DMT	2B1Q	2B1Q	DMT
Frequency	1 to 5 MHz	196 kHz	196 kHz	$\geq 10 \text{ MHz}$
Bits/cycle	Varies	4	4	Varies

ADSL = Asymmetric DSL HDSL = High data rate DSL SDSL = Single line DSL

VDSL = Very high data rate DSL

Summary

looked at multiplexing multiple channels on a single link
FDM
TDM
Statistical TDM
ADSL and xDSL