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6.6 De Moivre’s Theorem 
and nth Roots

What you’ll learn about
• The Complex Plane
• Trigonometric Form of Complex

Numbers
• Multiplication and Division 

of Complex Numbers
• Powers of Complex Numbers
• Roots of Complex Numbers

... and why
This material extends your
equation-solving technique to
include equations of the form

, n an integer and c a
complex number.
zn

= c

a

a + bi
bi
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FIGURE 6.57 Plotting points in the com-
plex plane.

EXAMPLE 1  Plotting Complex Numbers
Plot , , and in the complex plane. These three points and
the origin determine a quadrilateral. Is it a parallelogram?

SOLUTION First notice that . The num-
bers u, v, and are plotted in Figure 6.58a. The quadrilateral is a parallelogram
because the arithmetic is exactly the same as in vector addition (Figure 6.58b).

Now try Exercise 1.

u + v
u + v = 11 + 3i2 + 12 + i2 = 3 + 2i

u + vv = 2 - iu = 1 + 3i

Imaginary axis

Real
axisO

u = 1 + 3i

u + v = 3 + 2i

v = 2 – i

(a)

y

x
O

u =  1, 3 

u + v =  3, 2

v =   2, –1  

(b)

FIGURE 6.58 (a) Two numbers and their sum are plotted in the complex plane. (b) The
arithmetic is the same as in vector addition. (Example 1)

Example 1 shows how the complex plane representation of complex number addition is
virtually the same as the Cartesian plane representation of vector addition. Another
similarity between complex numbers and two-dimensional vectors is the definition of
absolute value.

Is There a Calculus of Complex
Functions?
There is a calculus of complex functions. If you
study it someday, it should only be after acquir-
ing a pretty firm algebraic and geometric under-
standing of the calculus of real functions.

The Complex Plane
You might be curious as to why we reviewed complex numbers in Section P.6, then
proceeded to ignore them for the next six chapters. (Indeed, after this section we will
pretty much ignore them again.) The reason is simply because the key to understand-
ing calculus is the graphing of functions in the Cartesian plane, which consists of two
perpendicular real (not complex) lines.

We are not saying that complex numbers are impossible to graph. Just as every real
number is associated with a point of the real number line, every complex number can
be associated with a point of the complex plane. This idea evolved through the work
of Caspar Wessel (1745–1818), Jean-Robert Argand (1768–1822), and Carl Friedrich
Gauss (1777–1855). Real numbers are placed along the horizontal axis (the real axis)
and imaginary numbers along the vertical axis (the imaginary axis), thus associating
the complex number with the point . In Figure 6.57 we show the graph of

as an example.2 + 3i
1a, b2a + bi
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Trigonometric Form of Complex Numbers
Figure 6.59 shows the graph of in the complex plane. The distance r
from the origin is the modulus of z. If we define a direction angle for z just as we
did with vectors, we see that and . Substituting these expres-
sions for a and b gives us the trigonometric form (or polar form) of the complex
number z.

b = r sin ua = r cos u
u

z = a + bi

504 CHAPTER 6 Applications of Trigonometry

Polar Form
What’s in a cis?

Trigonometric (or polar) form appears frequently
enough in scientific texts to have an abbreviated
form. The expression “ is often
shortened to “ ” (pronounced “kiss ”). Thus

.z = r cis u
ucis u

cos u + i sin u” z  = a + bi

r
b = r sin u

a = r cos u
θ

Imaginary axis

Real
axis

FIGURE 6.59 If r is the distance of from the origin and is the directional an-
gle shown, then , which is the trigonometric form of z.z = r1cos u + i sin u2

uz = a + bi

An angle for the trigonometric form of z can always be chosen so that ,
although any angle coterminal with could be used. Consequently, the angle and
argument of a complex number z are not unique. It follows that the trigonometric form
of a complex number z is not unique.

uu

0 … u … 2pu

EXAMPLE 2  Finding Trigonometric Forms
Use an algebraic method to find the trigonometric form with for the
complex number. Approximate exact values with a calculator when appropriate.

(a) (b)

SOLUTION

(a) For ,

r = ƒ1 - 13 i ƒ = 21122 + 11322 = 2.

1 - 13i

-3 - 4i1 - 13 i

0 … u 6 2p

DEFINITION Absolute Value (Modulus) of a Complex Number

The absolute value or modulus of a complex number is

In the complex plane, is the distance of from the origin.a + biƒa + bi ƒ

ƒz ƒ = ƒa + bi ƒ = 2a2
+ b2

 .

z = a + bi

DEFINITION Trigonometric Form of a Complex Number

The trigonometric form of the complex number is

where , , and . The number
r is the absolute value or modulus of z, and is an argument of z.u

tan u = b/ar = 2a2
+ b2a = r cos u, b = r sin u

z = r1cos u + i sin u2
z = a + bi
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Multiplication and Division 
of Complex Numbers
The trigonometric form for complex numbers is particularly convenient for multiplying
and dividing complex numbers. The product involves the product of the moduli and the
sum of the arguments. (Moduli is the plural of modulus.) The quotient involves the quo-
tient of the moduli and the difference of the arguments.

SECTION 6.6 De Moivre’s Theorem and nth Roots 505

Because the reference angle is (Figure 6.60),

Thus,

(b) For ,

The reference angle for (Figure 6.61) satisfies the equation

Because the terminal side of is in the third quadrant, we conclude that

Therefore,

Now try Exercise 5.

-3 - 4i L 51cos 4.07 + i sin 4.072.

u = p + u¿ L 4.07.

u

 u¿ = tan-1 
4

3
= 0.927. Á

 tan u¿ =

4

3
 , so

uu¿

ƒ -3 - 4i ƒ = 21-322 + 1-422 = 5.

-3 - 4i

1 - 13 i = 2 cos 
5p

3
+ 2i sin 

5p

3
 .

u = 2p + a-

p

3
b =

5p

3
 .

-p/3u¿ for u

θ ′

θ

1 – 3i

Imaginary axis

Real
axis

FIGURE 6.60 The complex number for
Example 2a.

θ ′

θ

–3 – 4i

Imaginary axis

Real
axis

FIGURE 6.61 The complex number for
Example 2b.

Product and Quotient of Complex Numbers

Let . Then

1.

2.
z1

z2
=

r1

r2
 3cos 1u1 - u22 + i sin 1u1 - u224, r2 Z 0.

z1
# z2 = r1r23cos 1u1 + u22 + i sin 1u1 + u224.

1cos u1 + i sin u12 and z2 = r21cos u2 + i sin u22z1 = r1

Proof of the Product Formula

You will be asked to prove the quotient formula in Exercise 63.

 = r1r23cos 1u1 + u22 + i sin 1u1 + u224
 = r1r231cos u1 cos u2 - sin u1 sin u22 + i 1sin u1 cos u2 + cos u1 sin u224

 z1
# z2 = r11cos u1 + i sin u12 # r21cos u2 + i sin u22

6965_CH06_pp455-518.qxd  1/14/10  1:55 PM  Page 505



Powers of Complex Numbers
We can use the product formula to raise a complex number to a power. For example, let

. Then

Figure 6.62 gives a geometric interpretation of squaring a complex number: Its argu-
ment is doubled and its distance from the origin is multiplied by a factor of r, increased
if r or decreased if r .

We can find by multiplying z by :

= r 31cos 3u + i sin 3u2
= r 33cos 1u + 2u) + i sin 1u + 2u24
= r 1cos u + i sin u2 # r 21cos 2u + i sin 2u2

z3
= z # z2

z2z3

6 17 1

= r 21cos 2u + i sin 2u2
= r 23cos 1u + u2 + i sin 1u + u24
= r 1cos u + i sin u2 # r 1cos u + i sin u2

z2
= z # z

z = r1cos u + i sin u2

506 CHAPTER 6 Applications of Trigonometry

EXAMPLE 3  Multiplying Complex Numbers
Use an algebraic method to express the product of and in standard form. 
Approximate exact values with a calculator when appropriate.

SOLUTION

Now try Exercise 19.L 478.11 + 128.11i

= 35012 acos 
p

12
+ i sin 

p

12
b

= 25 # 1412 ccos a -p

4
+

p

3
b + i sina -p

4
+

p

3
b d

z1
# z2 = 2512acos 

-p

4
+ i sin 

-p

4
b # 14acos 

p

3
+ i sin 

p

3
b

z1 = 2512acos 
-p

4
+ i sin 

-p

4
b ,  z2 = 14acos 

p

3
+ i sin 

p

3
b

z2z1

EXAMPLE 4  Dividing Complex Numbers
Use an algebraic method to express the product in standard form. Approximate
exact values with a calculator when appropriate.

SOLUTION

Now try Exercise 23.L -0.46 - 0.12i

=

12

3
 3cos 1-165°2 + i sin 1-165°24

=

12

3
 3cos 1135° - 300°2 + i sin 1135° - 300°24

z1

z2
=

212 1cos 135° + i sin 135°2
61cos 300° + i sin 300°2

z1 = 2121cos 135° + i sin 135°2,  z2 = 61cos 300° + i sin 300°2
z1/z2

Imaginary axis

Real
axis

z2

r2 r
z

θ
2 θ

FIGURE 6.62 A geometric 
interpretation of .z2
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Similarly,

This pattern can be generalized to the following theorem, named after the mathemati-
cian Abraham De Moivre (1667–1754), who also made major contributions to the field
of probability.

o

z5
= r 51cos 5u + i sin 5u2

z4
= r 41cos 4u + i sin 4u2
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De Moivre’s Theorem

Let and let n be a positive integer. Then

zn
= 3r 1cos u + i sin u24n = r n1cos nu + i sin nu2.

z = r 1cos u + i sin u2

EXAMPLE 5  Using De Moivre’s Theorem
Find using De Moivre’s Theorem.

SOLUTION

Solve Algebraically See Figure 6.63. The argument of ,
and its modulus is Therefore,

Support Numerically Figure 6.64a sets the graphing calculator we use in complex
number mode. Figure 6.64b supports the result obtained algebraically.

Now try Exercise 31.

= 81-1 + 0i2 = -8

= 81cos p + i sin p2
z3

= 23 ccos a3 #
p

3
b + i sin a3 #

p

3
b d

z = 2acos 
p

3
+ i sin 

p

3
b

ƒ1 + i13 ƒ = 11 + 3 = 2.
z = 1 + i13 is u = p/3

11 + i1323
Imaginary axis

Real
axis

2

1

1 + i   3

3

FIGURE 6.63 The complex number 
in Example 5.

i

(a)

θ

Normal Sci Eng
Float 0123456789
Radian Degree
Func Par Pol Seq
Connected Dot
Sequential Simul
Real a+bi re^
Full Horiz G–T

(1+i (3))3
–8

(b)

FIGURE 6.64 (a) Setting a graphing calculator in complex number mode.
(b) Computing with a graphing calculator.11 + i 1323

EXAMPLE 6  Using De Moivre’s Theorem
Find using De Moivre’s Theorem.

SOLUTION The argument of , and its
modulus is

(continued)

` - 12

2
+ i 

12

2
` = A

1

2
+

1

2
= 1.

z = 1- 12/22 + i112/22 is u = 3p/4

31- 12/22 + i112/2248
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Therefore,

Now try Exercise 35.

Roots of Complex Numbers
The complex number in Example 5 is a solution of and the 
complex number in Example 6 is a solution of . The 
complex number is a third root of and is an eighth
root of 1.

1- 12/22 + i112/22-8,1 + i13
z8

= 11- 12/22 + i112/22 z3
= -8,1 + i13

= 1 + i # 0 = 1

= cos 6p + i sin 6p

z8
= cos a8 #

3p

4
b + i sin a8 #

3p

4
b

z = cos 
3p

4
+ i sin 

3p

4

508 CHAPTER 6 Applications of Trigonometry

nth Root of a Complex Number

A complex number is an nth root of z if

If , then v is an nth root of unity.z = 1

vn
= z.

v = a + bi

We use De Moivre’s Theorem to develop a general formula for finding the nth roots of
a nonzero complex number. Suppose that is an nth root of

Then

(1)

Next, we take the absolute value of both sides:

Substituting into Equation (1), we obtain

Therefore, n can be any angle coterminal with . Consequently, for any integer k, v is
an n th root of z if and

The expression for v takes on n different values for , and the values
start to repeat for .

We summarize this result.

k = n, n + 1, Á

k = 0, 1, Á , n - 1

a =

u + 2pk

n
.

na = u + 2pk

s = 1n r
ua

cos na + i sin na = cos u + i sin u.

sn
= r

s = 2n r

s 7 0, r 7 0sn
= r

2s2n
= 2r 2

2s2n 1cos2 na + sin2 na2 = 2r 21cos2 u + sin2 u2
ƒsn1cos na + i sin na2 ƒ = ƒr1cos u + i sin u2 ƒ

sn1cos na + i sin na2 = r1cos u + i sin u2
3s1cos a + i sin a24n = r1cos u + i sin u2

vn
= z

z = r1cos u + i sin u2. v = s1cos a + i sin a2
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Finding nth Roots of a Complex Number

If , then the n distinct complex numbers

where are the n th roots of the complex number z.k = 0, 1, 2, Á , n - 1,

1n r acos 
u + 2pk

n
+ i sin 

u + 2pk

n
b ,

z = r1cos u + i sin u2

EXAMPLE 7  Finding Fourth Roots
Find the fourth roots of 

SOLUTION The fourth roots of z are the complex numbers

for .

Taking into account that , the list becomes

Now try Exercise 45.

= 14 5 ccos 
19p

12
+ i sin 

19p

12
d

z4 = 14 5 ccos a p
12

+

3p

2
b + i sin a p

12
+

3p

2
b d

= 14 5 ccos 
13p

12
+ i sin 

13p

12
d

z3 = 14 5 ccos a p
12

+

2p

2
b + i sin a p

12
+

2p

2
b d

= 14 5 ccos 
7p

12
+ i sin 

7p

12
d

z2 = 14 5 ccos a p
12

+

p

2
b + i sin a p

12
+

p

2
b d

= 14 5 ccos 
p

12
+ i sin 

p

12
d

z1 = 14 5 ccos a p
12

+

0

2
b + i sin a p

12
+

0

2
b d

1p/3 + 2pk2/4 = p/12 + pk/2

k = 0, 1, 2, 3

14 5 acos 
p/3 + 2pk

4
+ i sin 

p/3 + 2pk

4
b

z = 51cos 1p/32 + i sin 1p/322.

EXAMPLE 8  Finding Cube Roots
Find the cube roots of and plot them.

SOLUTION First we write the complex number in trigonometric form

The third roots of are the complex numbers

(continued)

cos 
p + 2pk

3
+ i sin 

p + 2pk

3
, 

z = -1 = cos p + i sin p

z = -1 + 0i = cos p + i sin p.

z = -1

-1

6965_CH06_pp455-518.qxd  1/14/10  1:55 PM  Page 509



510 CHAPTER 6 Applications of Trigonometry

for . The three complex numbers are

Figure 6.65 shows the graph of the three cube roots z1, z2, and z3. They are evenly
spaced (with distance of radians) around the unit circle.

Now try Exercise 57.
2p/3

z3 = cos 
p + 4p

3
+ i sin 

p + 4p

3
=

1

2
-

13

2
 i.

z2 = cos 
p + 2p

3
+ i sin 

p + 2p

3
= -1 + 0i,

=

1

2
+

13

2
 i,z1 = cos 

p

3
+ i sin 

p

3

k = 0, 1, 2

[–2.4, 2.4] by [–1.6, 1.6]

z1

z2

z3

FIGURE 6.65 The three cube roots 
z1, z2, and z3 of displayed on the unit 
circle (dashed). (Example 8)

-1

EXAMPLE 9  Finding Roots of Unity
Find the eight eighth roots of unity.

SOLUTION First we write the complex number in trigonometric form

The eighth roots of are the complex numbers

for 

Figure 6.66 shows the eight points. They are spaced radians apart.

Now try Exercise 59.
2p/8 = p/4

z8 = cos 
7p

4
+ i sin 

7p

4
=

12

2
-

12

2
 i

z7 = cos 
3p

2
+ i sin 

3p

2
= 0 - i

z6 = cos 
5p

4
+ i sin 

5p

4
= -  

12

2
-

12

2
 i

= -1 + 0iz5 = cos p + i sin p

z4 = cos 
3p

4
+ i sin 

3p

4
= -  

12

2
+

12

2
 i

= 0 + iz3 = cos 
p

2
+ i sin 

p

2

=

12

2
+

12

2
 iz2 = cos 

p

4
+ i sin 

p

4

= 1 + 0iz1 = cos 0 + i sin 0

k = 0, 1, 2, Á , 7.

cos 
0 + 2pk

8
+ i sin 

0 + 2pk

8
,

z = 1 + 0i = cos 0 + i sin 0

z = 1 + 0i = cos 0 + i sin 0.

z = 1

Imaginary axis

Real
axis

z4

z6

z2

z8

z1z5

z3

z7

FIGURE 6.66 The eight eighth roots of
unity are evenly spaced on a unit circle. (Ex-
ample 9)
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QUICK REVIEW 6.6 (For help, go to Sections P.5, P.6, and 4.3.)

6.

7.

8.

In Exercises 9 and 10, find all real solutions.

9.

10. x4
- 1 = 0

x3
- 1 = 0

sin u = -  

12

2
  and  cos u = -

12

2

sin u = -  

13

2
  and  cos u = -  

1

2

sin u = -  

12

2
  and  cos u =

12

2

In Exercises 1 and 2, write the roots of the equation in form.

1.

2.

In Exercises 3 and 4, write the complex number in standard form
.

3.

4.

In Exercises 5–8, find an angle that satisfies both
equations.

5. sin u =

1

2
  and  cos u = -  

13

2

u in 0 … u 6 2p

11 - i24
11 + i25

a + bi

51x2
+ 12 = 6x

x2
+ 13 = 4x

a + bi

SECTION 6.6 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, plot all four points in the same complex plan.

1.

2.

In Exercises 3–12, find the trigonometric form of the complex number
where the argument satisfies 

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, write the complex number in standard form .

13.

14.

15.

16.

17.

18. 17 acos 
p

12
+ i sin 

p

12
b

12 acos 
7p

6
+ i sin 

7p

6
b

5acos 
p

4
+ i sin 

p

4
b

53cos 1-60°2 + i sin 1-60°24
81cos 210° + i sin 210°2
31cos 30° - i sin 30°2

a + bi

4 - 7i3 + 2i

3 - 3i-2 + 2i13

13 + i2 + 2i

-2i3i

0 … u 6 2p.

2 - 3i, 1 + i, 3, -2 - i

1 + 2i, 3 - i, -2 + 2i, i

In Exercises 19–22, find the product of z1 and z2. Leave the answer in
trigonometric form.

19.

20.

21.

22.

In Exercises 23–26, find the trigonometric form of the quotient.

23. 24.

25. 26.

In Exercises 27–30, find the product and quotient in two
ways, (a) using the trigonometric form for z1 and z2 and (b) using the
standard form for z1 and z2.

27.

28.

29.

30.

In Exercises 31–38, use De Moivre’s Theorem to find the indicated
power of the complex number. Write your answer in standard form

and support with a calculator.a + bi

z1 = 2 - 3i  and  z2 = 1 - 13i

z1 = 3 + i  and  z2 = 5 - 3i

z1 = 1 - i  and  z2 = 13 + i

z1 = 3 - 2i  and  z2 = 1 + i

z1/z2z1
# z2

cos 1p/22 + i sin 1p/22
cos 1p/42 + i sin 1p/42

61cos 5p + i sin 5p2
31cos 2p + i sin 2p2

51cos 220° + i sin 220°2
21cos 115° + i sin 115°2

21cos 30° + i sin 30°2
31cos 60° + i sin 60°2

z1 = 13 acos 
3p

4
+ i sin 

3p

4
b   z2 =

1

3
 acos 

p

6
+ i sin 

p

6
b

z1 = 5acos 
p

4
+ i sin 

p

4
b   z2 = 3acos 

5p

3
+ i sin 

5p

3
b

z2 = 0.53cos 1-19°2 + i sin 1-19°24
z1 = 121cos 118° + i sin 118°2
z2 = 21cos 130° + i sin 130°2
z1 = 71cos 25° + i sin 25°2

y

x
30°

3
z

y

x
45°

4
z

31.

32. c3acos 
3p

2
+ i sin 

3p

2
b d5

acos 
p

4
+ i sin 

p

4
b3
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33.

34.

35.

36.

37. 38.

Use an algebraic method in Exercises 39–44 to find the cube roots of the
complex number. Approximate exact solution values when appropriate.

39. 40.

41. 42.

43. 44.

In Exercises 45–50, find the fifth roots of the complex number.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, find the nth roots of the complex number for the
specified value of n.

51. 52.

53. 54.

55. 56.

In Exercises 57–60, express the roots of unity in standard form .
Graph each root in the complex plane.

57. Cube roots of unity 58. Fourth roots of unity

59. Sixth roots of unity 60. Square roots of unity

61. Determine z and the three cube roots of z if one cube root of z
is 

62. Determine z and the four fourth roots of z if one fourth root of z
is 

63. Quotient Formula Let and
sin . Verify that

.

64. Group Activity nth Roots Show that the nth roots 
of the complex number are spaced 

radians apart on a circle with radius .

Standardized Test Questions
65. True or False The trigonometric form of a complex

number is unique. Justify your answer.

66. True or False The complex number i is a cube root of
Justify your answer.- i.

1n r

2p/nr1cos u + i sin u2
z1/z2 = r1/r2 3cos (u1 - u22 + i sin (u1 - u224

u22, r2 Z 0z2 = r21cos u2 + i
z1 = r11cos u1 + i sin u12

-2 - 2i.

1 + 13i.

a + bi

32,  n = 5-2i,  n = 6

-2 + 2i,  n = 42 + 2i,  n = 3

1 - i,  n = 61 + i,  n = 4

1 + 13 i2i

2acos 
p

4
+ i sin 

p

4
b2acos 

p

6
+ i sin 

p

6
b

32acos 
p

2
+ i sin 

p

2
bcos p + i sin p

-2 + 2i3 - 4i

27acos 
11p

6
+ i sin 

11p

6
b3acos 

4p

3
+ i sin 

4p

3
b

2acos 
p

4
+ i sin 

p

4
b21cos 2p + i sin 2p2

a1

2
+ i 

13

2
b311 - 13i23

13 + 4i220

11 + i25
c6acos 

5p

6
+ i sin 

5p

6
b d4

c2acos 
3p

4
+ i sin 

3p

4
b d3 In Exercises 67–70, do not use technology to solve the problem.

67. Multiple Choice Which of the following is a trigono-
metric form of the complex number 

(A) (B)

(C) (D)

(E)

68. Multiple Choice Which of the following is the number
of distinct complex number solutions of 

(A) 0 (B) 1 (C) 3 (D) 4 (E) 5

69. Multiple Choice Which of the following is the standard
form for the product

of 

(A) 2 (B) (C) (D) (E) 

70. Multiple Choice Which of the following is not a fourth
root of 1?

(A) (B) (C) (D) (E) 

Explorations
71. Complex Conjugates The complex conjugate of

is . Let .

(a) Prove that .

(b) Use the trigonometric form to find .

(c) Use the trigonometric form to find 

(d) Prove that 

72. Modulus of Complex Numbers Let
.

(a) Prove that 

(b) Use the trigonometric form for the complex numbers z1
and z2 to prove that 

Extending the Ideas
73. Using Polar Form on a Graphing Calculator

The complex number can be entered in polar
form on some graphing calculators as .

(a) Support the result of Example 3 by entering the complex
numbers z1 and z2 in polar form on your graphing 
calculator and computing the product with your graphing
calculator.

(b) Support the result of Example 4 by entering the complex
numbers z1 and z2 in polar form on your graphing 
calculator and computing the quotient with your graphing
calculator.

(c) Support the result of Example 5 by entering the complex
number in polar form on your graphing calculator and
computing the power with your graphing calculator.

reiu
r1cos u + i sin u2

ƒz1
# z2 ƒ = ƒz1 ƒ

#
ƒz2 ƒ .

ƒz ƒ = ƒr ƒ .

z = r1cos u + i sin u2
-z = r 3cos 1u + p2 + i sin 1u + p24.

z/ z, if z Z 0.

z # z

z = r 3cos 1-u2 + i sin 1-u24
z = r 1cos u + i sin u2z = a - biz = a + bi

1i- 1-11-1- i2i2

1 - i-1 + i-2i-2

12 acos 
p

4
+ i sin 

p

4
b  and 12 acos 

7p

4
+ i sin 

7p

4
b?

z5
= 1 + i ?

2acos 
7p

3
+ i sin 

7p

3
b

2acos 
5p

3
+ i sin 

5p

3
b2acos 

4p

3
+ i sin 

4p

3
b

2acos 
2p

3
+ i sin 

2p

3
b2acos 

p

3
+ i sin 

p

3
b

-1 + 13i?
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74. Visualizing Roots of Unity Set your graphing calcu-
lator in parametric mode with Tstep ,
Xmin , Xmax 2.4, Ymin 1.6, and Ymax 1.6.

(a) Let and . Use
TRACE to visualize the eight eighth roots of unity. We say
that generates the eighth roots of unity. (Try both dot
mode and connected mode.)

(b) Replace in part (a) by the arguments of other eighth
roots of unity. Do any others generate the eighth roots of
unity?

(c) Repeat parts (a) and (b) for the fifth, sixth, and seventh
roots of unity, using appropriate functions for x and y.

(d) What would you conjecture about an nth root of unity that
generates all the nth roots of unity in the sense of part (a)?

75. Parametric Graphing Write parametric equations that 
represent for Draw and label an accurate
spiral representing for .n = 0, 1, 2, 3, 4112 + i2n

n = t.112 + i2n

2p/8

2p/8

y = sin 112p/82t2x = cos 112p/82t2
== -== -2.4

= 10 … T … 8,
76. Parametric Graphing Write parametric equations

that represent . Draw and label an accurate
spiral representing for .

77. Explain why the triangles formed 
by 0, 1, and z1, and by 0, z2, and 
z1z2 shown in the figure are similar 
triangles.

78. Compass and Straightedge 
Construction Using only a 
compass and straightedge, 
construct the location of z1z2 given 
the location of 0, 1, z1, and z2.

In Exercises 79–84, find all solutions of the equation (real and complex).

79. 80.

81. 82.

83. 84. x5
- 1 = 0x5

+ 1 = 0

x4
+ 1 = 0x3

+ 1 = 0

x4
- 1 = 0x3

- 1 = 0

n = 0, 1, 2, 3, 41-1 + i2n
1-1 + i2n for n = t
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Properties, Theorems, and Formulas
Component Form of a Vector 456
The Magnitude or Length of a Vector 458
Vector Addition and Scalar Multiplication 458
Unit Vector in the Direction of the Vector v 459
Dot Product of Two Vectors 467
Properties of the Dot Product 467
Theorem Angle Between Two Vectors 468
Projection of the Vector u onto the Vector v 470

Procedures
Head Minus Tail Rule for Vectors 457
Resolving a Vector 460

Work 471
Coordinate Conversion Equations 488
Symmetry Tests for Polar Graphs 494
The Complex Plane 503
Modulus or Absolute Value of a Complex 
Number 504
Trigonometric Form of a Complex Number 504
De Moivre’s Theorem 507

Product and Quotient of Complex Numbers 505
nth Root of a Complex Number 508

Gallery of Functions
Rose Curves: r a cos n and r a sin n

r 4 sin 3 r 3 sin 4

Limaçon Curves: r a b sin and r a b cos with a 0 and b 0

Limaçon with an inner loop: 1 Cardioid: 1
a
b

=

a
b

6

77u�=u�=

u=u=

u=u=

[–6,6] by [–4, 4] [–4.7, 4.7] by [–3.1, 3.1]
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