William Stallings Data and Computer Communications

Chapter 5 Data Encoding

Encoding Techniques

XAnalog data, analog signal

Bigital data, digital signal

%Analog data, digital signal

Bigital data, analog signal

Signal Encoding Techniques

Figure 5.1 Encoding and Modulation Techniques

Encoding Techniques

Analog Data, Analog Signal

Analog Data, Analog Signals

% Types of Modulation

- ☑ Amplitude
- ➢ Frequency
- Phase

Analog Data, Analog Signals

% modulate carrier frequency f_c with input analog signal m(t) to produce a signal s(t) whose bandwidth is usually centered on f_c

why modulate analog signals?

Higher frequency can give more efficient transmission. For wireless transmission, it is impossible to transmit baseband signals; the transmitted antennas would be many kilometers in diameter.

Permits frequency division multiplexing (chapter 8)

Dr. Mohammed Arafah

Analog Modulation

William Stallings "Data and Computer Communications"

William Stallings "Data and Computer Communications"

H In AM, the **amplitude of the carrier is varied according to the baseband signal**.

- **#** Amplitude of AM wave is $R(t) = A + M \cos(2\pi f_m t)$
- **#** AM signal is $s(t) = R(t) \cos(2\pi f_c t) = (A + m(t)) \cos(2\pi f_c t)$
- $\Re s(t) = (A + M \cos(2\pi f_m t)) \cos(2\pi f_c t)$
- $\Re \quad \mathbf{s}(t) = A\cos(2\pi f_c t) + M\cos(2\pi f_m t)\cos(2\pi f_c t)$

$$\cos A.\cos B = \frac{1}{2}\cos(A-B) + \frac{1}{2}\cos(A+B)$$

- $\Re \quad s(t) = A \cos \left(2\pi f_c t\right) + \frac{1}{2} M \cos\left(2\pi (f_c + f_m)t\right) + \frac{1}{2} M \cos\left(2\pi (f_c f_m)t\right)$
- **#** AM signal consists of 3 frequencies:

Carrier: f_c , **Upper Sideband:** $f_c + f_m$, **Lower Sideband:** $f_c - f_m$

William Stallings "Data and Computer Communications"

In AM, the amplitude of the carrier is varied according to the baseband signal.

- **#** Amplitude of AM wave is $R(t) = A + M \cos(2\pi f_m t)$
- **#** AM signal is $s(t) = R(t) \cos(2\pi f_c t) = (A + M \cos(2\pi f_m t)) \cos(2\pi f_c t)$

$$s(t) = A \left(\frac{1 + M}{A} \cos(2\pi f_m t) \right) \cos(2\pi f_c t)$$

 $s(t) = A (1 + n_a \cos (2\pi f_m t)) \cos(2\pi f_c t)$

$$\Rightarrow \cos A \cdot \cos B = \frac{1}{2}\cos(A-B) + \frac{1}{2}\cos(A+B)$$

- $s(t) = A \cos (2\pi f_c t) + \frac{1}{2} A n_a \cos(2\pi (f_c + f_m)t) + \frac{1}{2} A n_a \cos(2\pi (f_c f_m)t)$
- \Re AM signal consists of 3 frequencies:

Carrier: f_c , **Upper Sideband:** $f_c + f_m$, **Lower Sideband:** $f_c - f_m$

Amplitude Modulation (AM) Example 1

 $S(t) = 15\cos(2\pi \ 100K \ t) + 5\cos(2\pi \ 90K \ t) + 5\cos(2\pi \ 110K \ t)$

Amplitude Modulation (AM) Example 2

 $S(t) = 5\cos(2\pi \ 1000 \text{K t}) + 2.5\cos(2\pi \ 900 \text{K t}) + 2.5\cos(2\pi \ 1100 \text{K t})$

Amplitude Modulation (AM) Example 3

Amplitude modulation is the simplest form of modulation.

 $s(\mathbf{t}) = [1 + n_a x(t)] \cos 2\pi f_c t$

 \bigtriangleup cos(2*nf_ct*) = carrier signal $\bigtriangleup x(t)$ = normalized input signal $\bigtriangleup m(t)$ = input signal = $n_a x(t)$ $\bigtriangleup n_a$ = modulation index

Normalized to unity amplitude

△ A=1 represents the carrier amplitude which is a constant that we would choose to demonstrate the *modulation index*

A is a dc component that prevents loss of information

***** This scheme is known as **Double Sideband Transmitted Carrier (DSBTC)**

***** The envelope of the resulting signal is $[1+n_a x(t)]$ and, as long as $n_a < 1$, the envelope is an exact reproduction of the original signal. If $n_a > 1$, the envelope will cross the time axis and information is lost.

Modulation Index

Dr. Mohammed Arafah

William Stallings "Data and Computer Communications"

EXAMPLE 5.4 Derive an expression for s(t) if x(t) is the amplitude-modulating signal $\cos 2\pi f_m t$. We have

$$s(t) = [1 + n_a \cos 2\pi f_m t] \cos 2\pi f_c t$$

By trigonometric identity, this may be expanded to

$$s(t) = \cos 2\pi f_c t + \frac{n_a}{2} \cos 2\pi (f_c - f_m) t + \frac{n_a}{2} \cos 2\pi (f_c + f_m) t$$

The resulting signal has a component at the original carrier frequency plus a pair of components each spaced f_m hertz from the carrier.

Modulation Index $(n_a) = 1$

Amplitude Modulation (AM) -Example

Spectrum of AM Signal

- $|f| > |f_c|$ upper sideband
- $|\mathbf{f}| < |\mathbf{f}_c|$ lower sideband
- **#** Both replicas of the original spectrum *M*(*f*)
- Lower sideband frequency reversed

(b) Spectrum of AM signal with carrier at f_c

Spectrum of AM Signal

An important relationship is:

$$P_{t} = P_{c} \left(1 + \frac{n_{a}^{2}}{2} \right) \qquad P_{c} = \frac{1}{2} A^{2}$$
$$n_{a} = M / A$$

 $\square P_t$ = total transmitted power in s(t) $\square P_c$ = transmitted power in carrier

300 Hz = 0.3 KHz = 3 KHz S7 KHz 57 KHz 59.7 KHz 60 3 KHz 60 KHz 3000 Hz = 3 KHz Upper 63 KHz

Signal

William Stallings "Data and Computer Communications"

Single Sideband (SSB)

% s(t) contains unnecessary components % Each sideband contains spectrum of m(t) % SSB sends only one sideband

Eliminate other sideband and carrier

Single Sideband (SSB)

Advantages

 \bigcirc only half bandwidth required (B_T = B)

 \boxtimes for DSBTC B_T = 2B (B of original signal)

△ Less power required

 \boxtimes no power of other sideband or carrier

Disadvantages of suppressing the carrier

△ carrier used for synchronization

➢ For example, suppose that the original analog signal is an ASK waveform encoding digital data. The receiver needs to know the starting point of each bit time to interpret the data correctly. A constant carrier provides a clocking mechanism by which to time the arrival of bits.

% Vestigial sideband (VSB) - compromise

⊠ single sideband, reduced power carrier

AM Band Allocation:

Angle Modulation

Frequency Modulation (FM)

In FM, the frequency of the carrier is varied according to the amplitude of input analog signal.

Frequency Modulation (FM)

- **#** Input analog signal $m(t) = M \cos(2\pi f_m t)$
- **#** Carrier wave $c(t) = A \cos(2\pi f_c t)$
- **#** FM signal is $s(t) = A \cos(2\pi (f_c + n_f m(t)) t)$
- **#** FM signal is $s(t) = A \cos(2\pi (f_c + n_f M \cos(2\pi f_m t)) t)$

Phase Modulation (PM)

H In PM, the **phase of the carrier is varied according to the amplitude of input analog signal**.

Phase Modulation (PM)

- **#** Input analog signal $m(t) = M \cos(2\pi f_m t)$
- **#** Carrier wave $c(t) = A \cos(2\pi f_c t)$
- **#** PM signal is $s(t) = A \cos(2\pi f_c t + n_p m(t))$
- **H** PM signal is $s(t) = A \cos(2\pi f_c t + n_p M \cos(2\pi f_m t))$

Angle Modulation

Angle Modulation includes FM and PM

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

% For **phase modulation**, the phase is proportional to the modulating signal:

PM: $\phi(t) = n_p m(t)$, , where $n_p = PM$ index

% For frequency modulation, the derivative of the phase is proportional to the modulating signal:

FM: ϕ (t) = n_fm(t), , where n_f = FM index

 ϕ `(t) = derivative of ϕ (t)

Angle Modulation

The phase of s(t) at any instant is just $2\pi f_c t + \phi(t)$.

- **H** In PM, the instantaneous phase deviation is proportional to m(t).
- Because frequency can be defined as the rate of change of phase of a signal, the instantaneous frequency of s(t) is:

$$\Rightarrow f_i(t) = \frac{d}{dt} [2\pi f_c t + \phi(t)]$$
$$\Rightarrow f_i(t) = f_c + \frac{1}{2\pi} \phi'(t)$$

Frequency Modulation (FM)

\mathbb{H} FM Peak deviation (Δ F):

$$\Delta F = \frac{1}{2\pi} n_f A_m \,\mathrm{Hz}$$

 $\triangle A_m = maximum value of m(t)$

 $\square n_f = FM$ index

 $\triangle \Delta F$ = maximum shift away from f_c in one direction

H FM: A_m is high \rightarrow high $\Delta F \rightarrow$ high B_T

FM: average power level of FM signal is constant = $\frac{1}{2}A_c^2$ **# AM**: modulation affects power not bandwidth (**B**_{AM} = **2B**)

$$P_t = P_c \left(1 + \frac{n_a^2}{2} \right)$$

Phase Modulation - Example

EXAMPLE 5.5 Derive an expression for s(t) if $\phi(t)$ is the phase-modulating signat $n_p \cos 2\pi f_m t$. Assume that $A_c = 1$. This can be seen directly to be

$$s(t) = \cos[2\pi f_c t + n_p \cos 2\pi f_m t]$$

The instantaneous phase deviation from the carrier signal is $n_p \cos 2\pi f_m t$. The phase angle of the signal varies from its unmodulated value in a simple sinusoidal fashion, with the peak phase deviation equal to n_p .

The preceding expression can be expanded using Bessel's trigonometric identities:

$$s(t) = \sum_{n=-\infty}^{\infty} J_n(n_p) \cos\left(2\pi f_c t + 2\pi n f_m t + \frac{n\pi}{2}\right)$$

where $J_n(n_p)$ is the *n*th-order Bessel function of the first kind. Using the property

$$J_{-n}(x) = (-1)^n J_n(x)$$

this can be rewritten as

$$s(t) = J_0(n_p) \cos 2\pi f_c t + \sum_{n=1}^{\infty} J_n(n_p) \left[\cos \left(2\pi (f_c + nf_m)t + \frac{n\pi}{2} \right) + \cos \left(2\pi (f_c - nf_m)t + \frac{(n+2)\pi}{2} \right) \right]$$

The resulting signal has a component at the original carrier frequency plus

of sidebands displaced from f_c by all possible multiples of f_m . For $n_p \ll 1$, the higher-order terms fall off rapidly.

a set

Frequency Modulation - Example

EXAMPLE 5.6 Derive an expression for s(t) if $\phi'(t)$ is the frequency modulating signal $-n_f \sin 2\pi f_m t$. The form of $\phi'(t)$ was chosen for convenience. We have

$$\phi(t) = -\int n_f \sin 2\pi f_m t \, dt = \frac{n_f}{2\pi f_m} \cos 2\pi f_m t$$

Thus

$$s(t) = \cos\left[2\pi f_c t + \frac{n_f}{2\pi f_m} \cos 2\pi f_m t\right]$$
$$= \cos\left[2\pi f_c t + \frac{\Delta F}{f_m} \cos 2\pi f_m t\right]$$

The instantaneous frequency deviation from the carrier signal is $-n_f \sin 2\pi f_m t$. The frequency of the signal varies from its unmodulated value in a simple sinusoidal fashion, with the peak frequency deviation equal to n_f radians/ second.

The equation for the FM signal has the identical form as for the PM signal, with $\Delta F/f_m$ substituted for n_p . Thus the Bessel expansion is the same.

Angle Modulation

₩AM

⊡linear, produce frequencies = $f_m \pm f_c$

 $\square B_T = 2B$

 $\boxtimes B_T$ = transmitted AM signal bandwidth

 \boxtimes B = input signal bandwidth

FM/PM
 include term of form cos φ(t)
 nonlinear, produce wide range of frequencies both require more bandwidth than AM

Angle Modulation

₩FM/PM

Frequency Modulation (FM)

FM Transmitter

FM Receiver

https://www.youtube.com/watch?v=gfz1FbIOMbs

William Stallings "Data and Computer Communications"

Frequency Modulation (FM)

FM Band Allocation:

Example

Angle modulated signal

$$s(t) = 20\cos\left[10^6 \pi t + 4\sin 2\pi (1000)t\right]$$

`(*t*

Ø

% Find **max phase** and **frequency deviation.**

Answer:

$$\phi(t) = n_p m(t) = 4\sin 2\pi (1000)t$$

Max phase deviation = 4 radians

$$\phi'(t) = n_f m(t) = 4(2000\pi) \cos 2\pi (1000) t$$

$$n_f A_m = 4(2000\pi)$$

$$\Delta F = \frac{1}{2\pi} n_f A_m$$

$$\Rightarrow \Delta F = \frac{1}{2\pi} 4(2000\pi)$$

$$\Rightarrow \Delta F = 4000 \text{ Hz}$$
Max frequency deviation = 4000 Hz

William Stallings "Data and Computer Communications"

Digital Data, Digital Signal

Digital Data, Digital Signal

- **○**Discrete, discontinuous voltage pulses
- Each pulse is a signal element
- Binary data encoded into signal elements

A positive voltage represents a binary 1, and zero volts indicates a binary 0

✓ It is called **Return to Zero (RZ)**

Polar

One logic state represented by positive voltage the other by negative voltage

+25∨ 0 -25∨

0

0 0

It is called None Return To Zero (NRZ)

Example: RS-232

Bipolar

➡ Bipolar line encoding has 3 voltage levels, a low or 0 is represented by a 0 Volt level and a 1 is represented by alternating polarity pulses.

0 1 1 0

TTL +5V Logic Levels 0V 0 1 0 1 1 0 1 0 0 1 0

XData rate (*R*)

Rate of data transmission in **bits per second**

Duration or length of a bit (T_b)

☐Time taken for transmitter to emit the bit

Modulation rate (*R_s***)**

Rate at which the signal level changes
Measured in baud = signal elements per second

#DC component

Some line coding schemes leave a residual direct –current (dc) component (component at frequency 0)

☑Dc components is **undesirable**

☑The signal is distorted if it passed through a system (such as transformer) that does not allow the passage of dc

Image: Dc is extra energy residing on the line and is useless

Synchronization

☑To correctly interpret the signals received , the receiver's bit intervals must correspond exactly to the sender's bit intervals (the same clock rate).

Example: Faster receiver clock

a. Sent

Term	Units	Definition
Data element	Bits	A single binary one or zero
Data rate	Bits per second (bps)	The rate at which data elements are transmitted
Signal element	Digital: a voltage pulse of constant amplitude Analog: a pulse of constant frequency, phase, and amplitude	That part of a signal that occupies the shortest interval of a signaling code
Signaling rate or modulation rate	Signal elements per second (baud)	The rate at which signal elements are transmitted

Interpreting Signals

Need to know Timing of bits - when they start and end Signal levels

Signal to noise ratio (SNR) Data rate

△Bandwidth

- **#** An increase in data rate increases bit error rate (BER).
- **#** An increase in SNR decreases bit error rate.
- **#** An increase in bandwidth allows an increase in data rate.

Comparison of Encoding Schemes

Signal Spectrum

 Lack of high frequencies components means less bandwidth is required for transmission
 Lack of dc component is also desirable
 Concentrate power in the middle of the bandwidth

Clocking

- ☐Synchronizing transmitter and receiver
- Separate clock to synchronize the transmitter and the receiver

△Alternatively, suitable encoding (i.e., Manchester Encoding) provides synchronization

Comparison of Encoding Schemes

#Error detection

□Can be built in to signal encoding

Signal interference and noise immunity

Some codes are better than others

Cost and complexity

Higher signal rate (& thus data rate) lead to higher costs

Some codes require signal rate greater than data rate

Encoding Schemes

*****Nonreturn to Zero-Level (NRZ-L) **#**Nonreturn to Zero Inverted (**NRZI**) **Bipolar** -**AMI # Pseudoternary # Manchester *** Differential Manchester **B8ZS HDB3**

Encoding Schemes

William Stallings "Data and Computer Communications"

Encoding Schemes

Nonreturn to Zero-Level (NRZ-L)

- 0 = high level
- 1 = low level

Nonreturn to Zero Inverted (NRZI)

- 0 = no transition at beginning of interval (one bit time)
- 1 = transition at beginning of interval

Bipolar-AMI

- 0 = no line signal
- 1 = positive or negative level, alternating for successive ones

Pseudoternary

- 0 = positive or negative level, alternating for successive zeros
- 1 = no line signal

Manchester

- 0 = transition from high to low in middle of interval
- 1 = transition from low to high in middle of interval

Differential Manchester

Always a transition in middle of interval

- 0 = transition at beginning of interval
- 1 = no transition at beginning of interval

B8ZS

Same as bipolar AMI, except that any string of eight zeros is replaced by a string with two code violations

HDB3

Same as bipolar AMI, except that any string of four zeros is replaced by a string with one code violation

*** Nonreturn to Zero-Level (NRZ-L)**

- $\square 0 = high level$
- $\square 1 = low level$

*** Nonreturn to Zero Inverted (NRZI)**

- $\square 0 =$ no transition at beginning of interval (one bit time)
- $\square 1 =$ transition at beginning of interval

Bipolar-AMI

 $\square 0 = no line signal$

 $\square 1 =$ positive or negative level, alternating for successive ones

Pseudoternary

% Manchester

 $\square 0$ = transition from high to low in middle of interval

 $\square 1 =$ transition from low to high in middle of interval

Differential Manchester

Always a transition in middle of interval

- $\square 1 = no \text{ transition}$ at beginning of interval

B8ZS

△based on bipolar AMI

➡string of 8 zeros is replaced by a string with two code violations

#HDB3

string of 4 zeros is replaced by a string with one code violation

Nonreturn to Zero-Level (NRZ-L)

- **#** Two different voltages for 0 and 1 bits
- **#** Voltage constant during bit interval
- # More often, negative voltage for bit one and positive for bit zero.

Nonreturn to Zero-Level (NRZ-L)

Unipolar NRZ-L

Unipolar NRZ-L has two major shortcomings

It has a DC component, meaning that its average voltage is not 0 but some positive constant.

Lack of synchronization. If we have a long sequence of 0s or 1s, we won't be able to know how many we got.

Nonreturn to Zero-Level (NRZ-L)

Polar NRZ-L

- **Polar NRZ-L** handles the DC component issue, meaning the average voltage level is 0.
- However, long sequence of 0s or 1s leads to constant voltage level → Suffers from presence of dc component
- **#** It still has the **synchronization problem**.

Nonreturn to Zero Inverted

- **#** Nonreturn to zero inverted on ones
- **#** Constant voltage pulse for duration of bit
- **#** Data encoded as **presence or absence of signal transition** at beginning of bit time

Transition (low to high or high to low) denotes binary 1
 No transition denotes binary 0

- **#** Example of Differential Encoding since have
 - ☐ Data represented by changes rather than levels

More reliable detection of transition rather than level

William Stallings "Data and Computer Communications"

NRZ

NRZ Pros & Cons

% Pros △ Easy to engineer △ Make good use of bandwidth **% Cons** △ Suffers from presence of dc component ☑ long sequence of 0s or 1s → constant voltage level

No synchronization capability
⊠long sequence of 0s or 1s → out of sync

Multilevel Binary Bipolar-AMI

#Use more than two levels **#**Bipolar-AMI

Zero represented by no line signal
 One represented by positive or negative pulse
 One pulses alternate in polarity
 No loss of sync if a long string of ones
 No net dc component
 Lower bandwidth
 Easy error detection
 Long runs of zeros still a problem

Multilevel Binary

Bipolar-AMI

Pseudoternary

Multilevel Binary Issues

 Synchronization with long runs of 0's (AMI) or 1's (Pseudoternary)
 △ can insert additional bits (ISDN)
 △ scramble data (later)

ℜ Not as efficient as NRZ

Each signal element only represents one bit

☑ Receiver needs to distinguish between three levels: +A, -A, 0

Requires approx. 3dB more signal power for same probability of bit error

Biphase

Manchester and **differential Manchester**

#Transition at the middle of each bit period

Manchester

Mid-bit transition: data & clocking

#Differential Manchester

Mid-bit transition: clocking only

##
Biphase Features

Synchronization

receiver can synchronize at transition

Clocking

☐self-clocking code

Error detection

△absence of transition indicates error

noise invert two transition sides undetected

X No dc component

Disadvantage: more bandwidth

Manchester Encoding

Has transition in middle of each bit period
Transition serves as clock and data
Low to high represents one
High to low represents zero
Used by IEEE 802.

Manchester Encoding

Manchester Encoding

Clock Encoding and Extraction:

Clock Encoding and Extraction:

Bit stream to be transmitted

Transmitter clock, TxC

Manchester encoded signal, TxD / RxD

Extracted clock, RxC

Received Data

Differential Manchester Encoding

H Midbit transition is clocking only

- **#** Transition at start of bit period representing 0
- **#** No transition at start of bit period representing 1

☑ this is a differential encoding scheme

₭ Used by IEEE 802.5

Differential Manchester Encoding

Biphase Pros and Cons

Pros

Synchronization on mid bit transition (self clocking)
Mas no dc component

☑ Has error detection

☑ Absence of expected transition

Con

At least one transition per bit time and possibly two
 Maximum modulation rate is twice NRZ
 Requires more bandwidth

Modulation Rate

Because of encoding, data rate (bps) is different from modulation rate (baud)

Modulation rate:

 $\mathbf{R}_{s} = \mathbf{R}/\mathbf{m} = \mathbf{R} / \mathbf{log}_{2}\mathbf{M}$

 $\square R = data rate (bps)$ $\square m = bits per signal element = Log_2M$ $\square M = number of different signal elements = 2^m$

% Number of transitions occur in bit time**%** Depends on encoding and bit sequence

Dr. Mohammed Arafah

Modulation Rate - Example

A signal has two data levels with a signal element duration of 1 ms. Calculate the modulation rate and data rate.

Answer:

Modulation rate = $1/1 \times 10^{-3}$ = 1000 signal elements/ sec (baud)

 $\mathbf{R} = \mathbf{R}_{s} \times \mathbf{log}_{2}\mathbf{M} = \mathbf{R}_{s} \times \mathbf{m}$

Data Rate = Modulation rate $x \log_2 2 = 1000$ bps

Modulation Rate

Number of Transitions

	Minimum	101010	Maximum
NRZ-L	0 (all 0s or 1s)	1.0	1.0
NRZI	0 (all 0s)	0.5	1.0 (all 1s)
Bipolar-AMI	0 (all 0s)	1.0	1.0
Pseudoternary	0 (all 1s)	1.0	1.0
Manchester	1.0 (1010)	1.0	2.0 (all 0s or 1s)
Differential Manchester	1.0 (all 1s)	1.5	2.0 (all 0s)

William Stallings "Data and Computer Communications"

Number of Transitions

For the 11-bit binary string **01001100011**, the number of transitions for the encoding schemes is:

NRZ-L	\rightarrow	5
	\rightarrow	5
🔼 Bipolar – AMI	\rightarrow	7
Pseudoternary	\rightarrow	8
Manchester	\rightarrow	16
🔼 Differential Manchester	\rightarrow	16

Encoding VS Spectral Density

Normalized frequency (f/R)

Encoding VS Bit Error Rate

Comparison of Encoding Schemes

Encoding Scheme	DC Component	Synchronization	Error Detection	Noise Immunity	Clocking	Cost (Higher signal rate)
NRZ-L	Long sequence of 0s or 1s	Long sequence of 0s or 1s	No	Yes	No	No
NRZI	Long sequence of 0s	Long sequence of Os	No	Yes	No	Νο
AMI	None	Long sequence of Os	Yes (Pulses must alternate in polarity)	No (Requires approx. 3dB more signal power for same BER)	Νο	Νο
Pseudoternary	None	Long sequence of 1s	Yes (Pulses must alternate in polarity)	No (Requires approx. 3dB more signal power for same BER)	Νο	Νο
Manchester	None	Yes	Yes (Absence of transition)	Yes	Yes	Yes (2 transitions/bit for 0s or 1s)
Differential Manchester	None	Yes	Yes (Absence of transition)	Yes	Yes	Yes (2 transitions/bit for 0s)

William Stallings "Data and Computer Communications"

Scrambling

- # use scrambling to replace sequences that would produce constant voltage
- Long series of 0s or 1s replaced with filling sequence provide sufficient transitions
- These filling sequences must
 produce enough transitions to sync
 be recognized by receiver & replaced with original
 be same length as original

ℜ Design goals

have no dc component
 have no long sequences of zero level line signal
 have no reduction in data rate
 give error detection capability

Receiver replace with original sequence

Scrambling Techniques

#Two main techniques:

△Bipolar with 8 zeros substitution (B8ZS)

High-density bipolar-3 zeros (HDB3)

Bipolar with 8-zeros substitution (B8ZS)

- **#**Bipolar With 8 Zeros Substitution
- **#**If octet of all zeros and last voltage pulse preceding was positive encode as 000+-0++
- **#**If octet of all zeros and last voltage pulse preceding was negative encode as 000-+0+-
- Causes two violations of AMI code
- **#**Unlikely to occur as a result of noise
- Receiver detects and interprets as octet of all zeros

Bipolar with 8-zeros substitution (B8ZS)

△encode as 000-+0+-

High Density Bipolar 3 Zeros (HDB3)

- **#** Based on bipolar-AMI
- **#** String of four zeros replaced with one or two pulses
- # 4 zeros, preceding +, even number of pulses
 △encode as -00-
- # 4 zeros, preceding −, odd number of pulses
 △encode as 000−
- # 4 zeros, preceding –, even number of pulses
 △encode as +00+

4 zeros \rightarrow string with 1 or 2 code violations

Ensure successive violations of opposite polarity

	Number of Bipolar Pulses (ones) since Last Substitution		
Polarity of Preceding Pulse	Odd	Even	
-	000-	+00+	
+	000+	-00-	

(HDB3)

William Stallings "Data and Computer Communications"

Example 1:

Example 2:

Summary

⊯looked at signal encoding techniques
 △digital data, digital signal
 △analog data, digital signal
 △digital data, analog signal
 △analog data, analog signal