
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topic 6

(Textbook - Chapter 5)

Process Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Mutex Locks

 Semaphores

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To present the concept of process synchronization.

 To introduce the critical-section problem, whose solutions

can be used to ensure the consistency of shared data

 To present both software and hardware solutions of the

critical-section problem

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing

execution

 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the

consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the

number of full buffers. Initially, counter is set to 0. It is

incremented by the producer after it produces a new buffer

and is decremented by the consumer after it consumes a

buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating

table, writing file, etc

 When one process in critical section, no other may be in its

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,

then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process Pi

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

while (turn == j);

critical section

turn = j;

remainder section

} while (true);

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of

times that other processes are allowed to enter their critical

sections after a process has made a request to enter its critical

section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n
processes

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-

preemptive

 Preemptive – allows preemption of process when running

in kernel mode

 Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields CPU

Essentially free of race conditions in kernel mode

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem

 Two process solution

 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is

ready!

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking

 Protecting critical regions via locks

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

 Either test memory word and set value

 Or swap contents of two memory words

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE

 Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:

int compare _and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set the variable “value” the value of the passed parameter “new_value”
but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared integer “lock” initialized to 0;

 Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {

waiting[i] = true;

key = true;

while (waiting[i] && key)

key = test_and_set(&lock);

// The first process to execute the test_and_set()

// will find key == false; all others must wait.

waiting[i] = false; //

/* critical section */

j = (i + 1) % n; // it scans the array waiting in the cyclic ordering

// (i + 1, i + 2, ..., n − 1, 0, ..., i − 1)

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

Boolean waiting[n];

Boolean lock;

Both initialized to

false

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock

 Protect a critical section by first acquire() a lock then

release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

 acquire() {

while (!available)

; /* busy wait */

available = false;;

}

 release() {

available = true;

}

 do {

acquire lock

critical section

release lock

remainder section

} while (true);

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted

domain

 Binary semaphore – integer value can range only between 0 and 1

 Same as a mutex lock

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()

and signal()on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem

where the wait and signal code are placed in the critical

section

 Could now have busy waiting in critical section

implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections

and therefore this is not a good solution

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the

appropriate waiting queue

 wakeup – remove one of processes in the waiting queue

and place it in the ready queue

 typedef struct{

int value;

struct process *list;

} semaphore;

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking

 A process may never be removed from the semaphore queue in which it is
suspended

 Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

 Solved via priority-inheritance protocol

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 5

