William Stallings Data and Computer Communications

Chapter 4 Transmission Media

Part I: Guided Transmission Media

Overview

%Guided - wire %Unguided - wireless

Key concerns are data rate and distance Model A and A a

Design Factors

A number of design factors relating to transmission medium and signal:

Bandwidth

☐ Higher bandwidth of a signal gives higher data rate

Transmission impairments

Attenuation

Interference

☐ In guided media, interference can be caused by emanations from nearby cables or from unguided transmissions.

△ Proper shielding of a guided medium can minimize the problem.

% Number of receivers

☐ In guided media

More receivers (multi-point) introduce more attenuation

Electromagnetic Spectrum

Transmission Media

Guided Transmission Media

Coaxial cable Coaxial fiber

Twisted Pair

A twisted pair consists of *two insulated copper wires arranged in a regular spiral pattern.*

A wire pair acts as a single communication link.

Typically, a number of these pairs are bundled together into a cable by wrapping them in a tough protective sheath.

Twisted Pair

- **#** The twisting tends to decrease the **crosstalk** interference between adjacent pairs in a cable.
- **#** Neighboring pairs in a bundle typically have somewhat different **twist lengths** to reduce the crosstalk interference.
- **#** On long-distance links, the **twist length** typically varies from 5 to 15 cm.
- **#** The wires in a pair have **thicknesses** of from 0.4 to 0.9 mm.

- -Separately insulated
- -Twisted together
- -Often "bundled" into cables
- Usually installed in building during construction

Twisted Pair - Applications

#Most common medium

#Telephone network

■ Between house and local exchange (subscriber loop) **#Within buildings**

☐To private branch exchange (PBX)

#For local area networks (LAN)

☐10Mbps or 100Mbps

Twisted Pair - Transmission Characteristics

XAnalog

Amplifiers every 5km to 6km

X Digital

☐Use either analog or digital signals

repeater every 2km or 3km

- **% Cheap**
- **# Easy to work with**
- **# Limited distance**
- **# Limited bandwidth**
- **# Limited data rate**
- **Susceptible to interference and noise**
- **# Attenuation is strong function of frequency**

Transmission Characteristics

Dr. Mohammed Arafah

Transmission Characteristics Example:

- Consider 24-gauge (0.5 mm) twisted pair operating at 1MHz
- \rightarrow Attenuation = 20 dB/km

Cable Length = $\frac{\text{Allowable Power Loss in dB}}{\text{Attenuation in dB/km}}$

- \rightarrow Cable length = 20 dB / 20 dB/km
- \rightarrow Cable length = 1 km

UTP Connector

UTP Standard – 1000BaseT

Max. 1 PC on each segment

Dr. Mohammed Arafah

RJ-45 Termination — EIA/TIA-568A

RJ-45 Termination — EIA/TIA-568B

UTP Implementation: Straight-Through

UTP Implementation: Crossover

UTP Implementation: Straight-Through

UTP Implementation: Straight-Through

UTP Implementation: Crossover

Dr. Mohammed Arafah

UTP Implementation: Crossover

Dr. Mohammed Arafah

#Unshielded Twisted Pair (UTP)

- **Ordinary telephone wire**
- △Cheapest
- Easiest to install
- **△Suffers from external EM interference**

Shielded Twisted Pair (STP) Metal braid or sheathing that reduces interference More expensive Harder to handle (thick, heavy)

UTP Categories

Name	Typical construction	Bandwidth	Applications	Notes	
Level 1		0.4 MHz	Telephone and modem lines	Not described in EIA/TIA recommendations. Unsuitable for modern systems. ^[7]	
Level 2		4 MHz	Older terminal systems, e.g. IBM 3270	Not described in EIA/TIA recommendations. Unsuitable for modern systems. ^[7]	
Cat.3	UTP ^[8]	16 MHz ^[8]	10BASE-T and 100BASE-T4 Ethernet ⁽⁸⁾	Described in EIA/TIA-568. Unsuitable for speeds above 16 Mbit/s. Now mainly for telephone ${\rm cables}^{[8]}$	
Cat.4	UTP ^[8]	20 MHz ^[8]	16 Mbit/s ^[8] Token Ring	Not commonly used ^[8]	
Cat.5	UTP ^[8]	100 MHz ^[8]	100BASE-TX & 1000BASE-T Ethernet ⁽⁸⁾	Common in most current LANs ^[8]	
Cat.5e	UTP ^[8]	100 MHz ^[8]	100BASE-TX & 1000BASE-T Ethernet ^[8]	Enhanced Cat5. Same construction as Cat5, but with better testing standards.	
Cat.6	UTP ^[8]	250 MHz ^[8]	10GBASE-T Ethernet	Most commonly installed cable in Finland according to the 2002 standard. SFS-EN 50173-1	
Cat.6a	U/FTP, F/UTP	500 MHz	10GBASE-T Ethernet	Adds cable shielding. ISO/IEC 11801:2002 Amendment 2.	
Cat.7	F/FTP, S/FTP	600 MHz	Telephone, CCTV, 1000BASE-TX in the same cable. 10GBASE-T Ethernet.	Fully shielded cable. ISO/IEC 11801 2nd Ed.	
Cat.7a	F/FTP, S/FTP	1000 MHz	Telephone, CATV, 1000BASE-TX in the same cable. 10GBASE-T Ethernet.	Uses all four pairs. ISO/IEC 11801 2nd Ed. Am. 2.	
Cat.8.1	U/FTP, F/UTP	1600- 2000 MHz	Telephone, CATV, 1000BASE-TX in the same cable. 40GBASE-T Ethernet.	In development.	
Cat.8.2	F/FTP, S/FTP	1600- 2000 MHz	Telephone, CATV, 1000BASE-TX in the same cable. 40GBASE-T Ethernet.	In development.	

Near End Crosstalk

Coupling of signal from one pair to another
Coupling takes place when transmit signal entering the link couples back to receiving pair
I a pear transmitted signal is picked up by pear

#i.e. near transmitted signal is picked up by near receiving pair

Comparison of Shielded and Unshielded Twisted Pair

	Atter	nuation (dB per 10)0 m)	Near-end Crosstalk (dB)		
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150-ohm STP	Category 3 UTP	Category 5 UTP	150-ohm STP
1	2.6	2.0	1.1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25		10.4	6.2		41	47.5
100		22.0	12.3		32	38.5
300			21.4			31.3

Coaxial Cable

Coaxial Cable

Hollow outer cylindrical conductor that surrounds single inner wire conductor

Inner conductor insulated by solid dielectric material

- **# Outer conductor** covered with jacket/shield
- **X** Diameter between 1-2.5 cm

BNC Connector

Coaxial Standards – 10Base2

NIC

Dr. Mohammed Arafah

#Television distribution

- Ariel to TV
- Cable TV

#Long distance telephone transmission

□Can carry 10,000 voice calls simultaneously
 □Being replaced by fiber optic

 #Short distance computer systems links

#Local area networks

Boaxial Cable - Transmission Characteristics

- **#** Frequency characteristics superior to Twisted Pair
- **#** Less susceptible to interference than Twisted Pair
- ₭ Spectrum up to 500 MHz
- **#** Main constraint is **attenuation**
- Repeaters needed at closer distances for digital transmission at high data rates
- **#** Analog and digital signals

% Analog

Amplifiers every few km

Digital

Repeater every 1km
Transmission Characteristics

Dr. Mohammed Arafah

Transmission Characteristics Example:

- Consider 0.375 inch (9.5 mm) coaxial cable operating at 7 MHz

Cable Length = $\frac{\text{Allowable Power Loss in dB}}{\text{Attenuation in dB/km}}$

- \rightarrow Cable length = 20 dB / 5 dB/km
- \rightarrow Cable length = 4 km

- Holds one or more fibers in a cable

Dr. Mohammed Arafah

Advantages of Optical Fiber

#Greater capacity

☐ Fiber: 100s of Gbps over 10s of kilometers

Twisted pair: 1Mbps for few kilometers, or 100 Mbps for few meters

△Coaxial cable: 100s of Mbps for 1 km

#Smaller size and weight

#Lower attenuation

Advantages of Optical Fiber

#Electromagnetic isolation

not affected by external electromagnetic fields

☐do not radiate energy

#Greater security

☐ difficult to tap

#Greater repeater spacing

☐ 10s to 100s of kilometers

Optical Fiber - Applications

% Long-haul trunks
% Metropolitan trunks
% Rural exchange trunks
% Subscriber loops
% LANs

∺Light is a form of *electromagnetic* energy.

% The speed of light depends on the density of the medium which it is travelling (the higher the density, the slower the speed).

- If a ray of light travelling through one substance suddenly enters another substance, its speed changes abruptly, causing the ray to change direction. This change is called refraction.
- **#** When light travels into a **more** dense medium, *the angle of the incidence (I) is greater than the angle of refraction (R).*
- ₩ When light travels into a less dense medium, the angle of the incidence (I) is less than the angle of refraction (R).
- ℜ In the fiber-optic technology, a glass or plastic core is surrounded by a cladding of less dense glass or plastic.

₭ For a beam of light travels from a more dense into a less dense medium, as the angle of incidence (I) increases, so does the angle of refraction (R). It moves away from the vertical and closer to the horizontal.

***** The change in the incident angle (*1*) results in a refracted angle (*R*) of 90 degrees. The refracted beam now lying along the horizontal. This incident angle is known as the *critical angle*.

Optical Fiber – Critical Angle

Optical Fiber – Reflection

When the angle of incidence (I) becomes greater than the critical angle, a reflection occurs. Light no longer passes into the less dense medium (cladding).

#In this case, the *angle of incidence is equal to the angle of reflection.*

Control fibers use reflections to guide light through a glass or plastic core, which is surrounded by a cladding of less dense glass or plastic.

Optical Fiber – Reflection

Optical Fiber – Summary

- Light propagating between two materials with different refraction index is partially reflected, partially refracted
- Light going from high refraction index material to low index material refracts with higher angle
- ₭ Beyond "critical" angle, light is totally reflected

Optical Fiber - Light Sources

%Light Emitting Diode (LED)

☐Cheaper

☑Wider operating temp range

△Last longer

Typical wavelength 850 nm

%Injection Laser Diode (ILD)

More efficient

Greater data rate

Typical wavelength 1300 - 1500 nm

Optical Fiber – Light Sources

#Modulate electrical signals into **optical signals**

% Mostly modulate at 850nm, 1300nm and 1550 nm

Lasers give high intensity, high frequency light **LEDs** are economical

Optical Fiber - Transmission Modes

Optical Fiber - Transmission Modes

a. Multimode, step index

b. Multimode, graded index

c. Single mode

Optical Fiber - Transmission Modes

(b) Graded-index multimode

(c) Single mode

% Step-index multimode % Graded-index multimode % Single mode

Comparison of core/cladding sizes

Relative sizes of all fibers

Туре	Core (µm)	Cladding (µm)	Mode
50/125	50.0	125	Multimode, graded index
62.5/125	62.5	125	Multimode, graded index
100/125	100.0	125	Multimode, graded index
7/125	7.0	125	Single mode

(a) Step-index multimode

(b) Graded-index multimode

Multimode Step-Index Fiber

Dr. Mohammed Arafah

Multimode Graded-Index Fiber

Multimode Graded-Index Fiber

Single-Mode Fiber

Step-Index Multimode

Multiple reflection angles (modes)

Multiple propagation paths: **modal dispersion**

- △ A pulse of light transmitted through a fiber optic cable is composed of several modes, or rays, of light instead of only one single beam, therefore, it is called modal dispersion
- Each mode of light travels a different path, some short and some long. As a result, the modes will not be received at the same time, and the signal will be distorted.
- Signal elements (light pulses) spread out in time
 The need to leave spacing between the light pulses
 i.e. Limit data rate
- **#** Core diameter 50 μm, cladding 125 μm
- **#** Suitable for **short distances**

Step-Index Multimode

Graded-Index Multimode

- Refractive index of core center is higher than near cladding
- Light at center travel slower than those near to cladding.
- Rather than zig-zagging of the cladding, light in the core curves because of the graded index, reducing the travel distance.
- **#** The shortened path and higher speed allows light at the edge to arrive at the receiver at about the same time as the straight rays in the core axis.
- **#** Modal dispersion is reduced
Graded-Index Multimode

Dr. Mohammed Arafah

Model Dispersion

Modal Dispersion

#Core radius in the order of a wavelength #Diameter 8-10 µm, cladding 125 µm #Only single angle can pass (axial path) #Used for long distance transmission

Single Mode

Optical Fiber

Fiber Standards

SC Duplex Patch Cord ST Duplex Patch Cord

Fiber Standards

IEEE Designation	Description	Cabling	Maximum Distance
1000BASE-T (IEEE 802.3ab)	Long Distance Copper Physical Layer	UTP CAT5 and CAT5e	100m
1000BASE-CX (IEEE 802.3z)	Short Distance Copper Physical Layer	Shielded Copper	25m
1000BASE-LX (IEEE 802.3z)	Long Distance Fiber Physical Layer	9 micron Single-mode Fiber	up to 5km
1000BASE-SX (IEEE 802.3z)	Short Distance Fiber Physical Layer	62.5 micron Multi-mode Fiber or 50 micron Multi-mode Fiber	Up to 275m or 550m respectively.

IEEE 802.3z Summary

The IEEE 802.3z standard addresses the overall requirements for 1000 Mbps operation, plus three of the four physical layer interfaces using existing Fibre Channel technology.

- 1000BASE-CX: (Copper-based media, short haul) supporting distances up to 25 meters.
- 1000BASE-LX: (1300nm LWL long wavelength) single-mode fiber (SMF) supporting distances up to 5km.
- 1000BASE-SX: (850nm SWL short wavelength) 62.5 micron or 50 micron multimode fibre (MMF) supporting distances up to 275 meters or 550 meters respectively.

Fiber-Optic Cable Connectors

Transmission Characteristics

Transmission Characteristics Example:

- Consider Optical fiber operating at wavelength 1300 nm
- \rightarrow Attenuation = 0.4 dB/km
- \rightarrow Cable length = 20 dB / 0.4 dB/km
- \rightarrow Cable length = 50 km

Wave length (in vacuum) range (nm)	Frequency Range (THz)	Band Label	Fiber Type	Application
820 to 900	366 to 333		Multim ode	LAN
1280 to 1350	234 to 222	S	Single mode	Various
1528 to 1561	196 to 192	С	Single mode	WDM
1561 to 1620	192 to 185	L	Single mode	WDM

- **#** Four transmission windows are in the infrared portion of the frequency spectrum, below the visible-light portion
- **#** The visible-light portion (400-700 nm)
- Loss is lower at higher wavelengths, allowing greater date rate over longer distances.
- **# Many applications use 850 nm light source. To** achieve higher data rates and longer distances, a 1300 nm LED or laser source is needed.
- **#** The highest data rates and longest distances require **1550 nm laser sources**.

The unusual shape of the curve is due to absorption and scattering.

Absorption:

☑ The absorption is caused by the absorption of the light and conversion to heat by molecules in the glass. This absorption occurs at discrete wavelengths, determined by the elements absorbing the light. It occurs most strongly around 1000 nm, 1400 nm and above 1600 nm. http://www.thefoa.org/tech/ref/basic/fiber.html

△scattering:

☑ The change in direction of light rays after they strike small particles in medium

86

Dr. Mohammed Arafah

Advantages of Optical Fiber

(b) Coaxial cable (based on [BELL90])

Dr. Mohammed Arafah

Standards

Topology	Transmission Medium	Maximum PCs per Switch	Maximum Segment Length (m)	Signal	Data Rate (Mbps)	Standard
BUS	Thick coaxial Cable	100	500	Digital	10	10Base5
BUS	Thin coaxial Cable	30	185	Digital	10	10Base2
STAR	UTP	1024 (Switch)	100	Digital	10	10BaseT
STAR	UTP	1024 (Switch)	100	Digital	100	100BaseT
STAR	UTP	1024 (Switch)	100	Digital	100	100BaseTX
STAR	UTP	1024 (Switch)	100	Digital	1000	1000BaseT
STAR	Shielded Copper	1024 (Switch)	25	Digital	1000	1000BaseCX
STAR	9 micron SMF	1024 (Switch)	Up to 5 km	Optical Analog	1000	1000BaseLX
STAR	62.5 micron MMF 50 micron MMF	1024 (Switch)	Up to 275 m Up to 550 m	Optical Analog	1000	1000BaseSX
						10 Gigabit

Required Reading

Stallings Chapter 4