Homogeneous Linear D.Es with constant coefficients

A general n^{th} order H.L.D.E. with constant coefficients is on the form

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0, \qquad (1)$$

where a_0, a_1, \dots, a_n are constants.

It is easy to see that $y = e^{mx}$ is a solution of the D.E.

a y'+by = 0 where *m* is a number given by $m = \frac{-b}{a}$. Do higher order D. equations have solutions on this form? If yes, what are the values of *m*?.

Suppose $y = e^{mx}$ is a solution of the second order D.E.

$$ay''+by'+cy = 0.$$
 (2)
Since $y = e^{mx} \Rightarrow y' = me^{mx}$, $y'' = m^2 e^{mx}$,
using these values in Eq.(2) we get
 $e^{mx} (am^2 + bm + c) = 0$
 $\Rightarrow am^2 + bm + c = 0.$
Therefore $y = e^{mx}$ is a solution of Eq.(2) if and
only if *m* is a root of the algebraic equation
 $am^2 + bm + c = 0.$ (3)
Equation (3) is called the auxiliary (or the
characteristic) equation of the D.E. (2).

In solving the auxiliary Eq.(3) for m we have three cases:

Case 1. The two roots are real and different, say $m = m_1, m = m_2$, then the fundamental solutions are $y_1 = e^{m_1 x}$ and $y_2 = e^{m_2 x}$, hence the general solution is given by $y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$. Example. Solve the D.E. y''-7y'+12y = 0. Solution. The auxiliary equation is $m^2 - 7m + 12 = 0 \Longrightarrow (m - 3)(m - 4) = 0 \Longrightarrow m = 3, m = 4.$ Hence the general solution is $y = c_1 e^{3x} + c_2 e^{4x}$.

Case 2. The two roots are real and equal, say $m = \lambda, m = \lambda$, then the fundamental solutions are $y_1 = e^{\lambda x}$ and $y_2 = xe^{\lambda x}$, hence the general solution is given by $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$. Example. Solve the D.E. y''-10y'+25y = 0. Solution. The auxiliary equation is $m^2 - 10m + 25 = 0 \Longrightarrow (m - 5)(m - 5) = 0 \Longrightarrow m = 5, m = 5.$ Hence the general solution is $y = c_1 e^{5x} + c_2 x e^{5x}$. Case 3. The two roots are complex conjugates, say $m_1 = \alpha + \beta i, m_2 = \alpha - \beta i,$

Hence we get the two solutions $y_1 = e^{(\alpha + \beta i)x}$ and $y_2 = e^{(\alpha - \beta i)x}$, and using Euler's formula the fundamental solutions may be written as $y_1 = e^{\alpha x} \cos(\beta x)$ and $y_2 = e^{\alpha x} \sin(\beta x)$, hence the general solution is given by $y = e^{\alpha x} [c_1 \cos(\beta x) + c_2 \sin(\beta x)].$ Example. Solve the D.E. y''+2y'+5y = 0. Solution. The auxiliary equation is $m^2 + 2m + 5 = 0 \Longrightarrow m = -1 \pm 2i$,

Hence we get the general solution $y = e^{-x} [c_1 \cos(2x) + c_2 \sin(2x)].$ Example. Solve the D.E. y'''-8y = 0. Solution. The auxiliary equation is $m^{3} - 8 = 0 \Longrightarrow (m - 2)(m^{2} + 2m + 4) = 0$ $\Rightarrow m = 2 \text{ or } m^2 + 2m + 4 = 0$, $\Rightarrow m = 2 \text{ or } m = -1 \pm \sqrt{3i}.$

hence the general solution is

$$y = c_1 e^{2x} + e^{-x} [c_2 \cos(\sqrt{3}x) + c_3 \sin(\sqrt{3}x)].$$

Example. Solve the D.E. y'''-2y''-4y'+8y = 0. Solution. The auxiliary equation is $m^3 - 2m^2 - 4m + 8 = 0$. $\Rightarrow m^2(m-2) - 4(m-2) = 0,$ \Rightarrow $(m-2)(m^2-4)=0$, $\Rightarrow (m-2)(m-2)(m+2) = 0,$ \Rightarrow m = 2, 2, -2,hence the general solution is $y = c_1e^{2x} + c_2xe^{2x} + c_3e^{-2x}$. Example. Solve the D.E. y'''-3y'-2y = 0. Solution. The auxiliary equation is $m^{3} - 3m - 2 = 0 \implies (m - 2)(m^{2} - 1) = 0$, $\Rightarrow (m-2)(m-1)(m+1) = 0,$ $\Rightarrow m = 2, 1, -1,$

hence the general solution is $y = c_1 e^{2x} + c_2 e^{x} + c_3 e^{-x}$. Example. Solve the initial value problem $\begin{cases} y''-2y'-3y = 0, \\ y(0) = 3, y'(0) = 1. \end{cases}$ Solution. The auxiliary equation is $m^{3} - 2m - 3 = 0 \implies (m - 3)(m + 1) = 0$, hence the general solution is $y = c_1 e^{3x} + c_2 e^{-x}$. **But** $y(0) = 3 \Rightarrow c_1 + c_2 = 3$, and $y'(0) = 1 \Rightarrow 3c_1 - c_2 = 1$, Hence $c_1 = 1$, $c_2 = 2$ and the solution of the i.v.p. is $v = e^{3x} + 2e^{-x}.$

Example. Find a H.L.D.E. with constant coefficients if the roots of the corresponding auxiliary equation are m = 1, m = -1, m = 2 - 3i. Solution. The factors of the auxiliary equation are $(m-1), (m+1), (m-2)^2 - (3i)^2 = m^2 - 4m + 13,$ hence the auxiliary equation is (m-1) $(m+1)(m^2 - 4m + 13) = 0,$ or $m^4 - 4m^3 + 12m^2 + 4m - 13 = 0$. Therefore the D. E. is $y^{(4)} - 4y'' + 12y' + 4y' - 13y = 0.$

Example. Find a H.L.D.E. with constant coefficients which has the following set of solutions $3x_{1} - 7e^{-2x}$, e^{x} .

Solution. It follows that the roots of the auxiliary equation are m = 0, m = 0, m = -2, m = 1, hence the auxiliary equation is $m^2 (m+2)(m-1) = 0$, or $m^4 + m^3 - 2m^2 = 0$.

Therefore the D. E. is

$$y^{(4)} + y''' - 2y'' = 0.$$

Example. Find a H.L.D.E. with constant coefficients which has the following set of solutions 5, $e^{2x} \cos 3x$, $-\sin x$.

Solution. It follows that the roots of the auxiliary equation are $m = 0, m = 2 \pm 3i, m = \pm i$, hence the auxiliary equation is $m[(m-2)^2 + 9](m^2 + 1) = 0,$ $\Rightarrow m(m^2 - 4m + 13)(m^2 + 1)$ or $m^5 - 4m^4 + 14m^3 - 4m^2 + 13m = 0$, Therefore the D. E. is $y^{(5)} - 4y^{(4)} + 14y''' - 4y'' + 13y = 0.$