
Constructing a second solution from a 

known one. (Reduction of order)

Consider a second order L.D.E. on the standard form

where P and Q are continuous on some interval I.

Let        be a given solution of Eq.(1) defined on I
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Let                                       , using these values in 

Eq.(2) we get

which is separable first order D.E., hence we have
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which is separable first order D.E., hence we have

Hence 
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Therefore the second solution is given by

It is easy to see that                  are linearly 

independent on the interval I.

Example 1. Use reduction of order to solve the D.E.
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Example 1. Use reduction of order to solve the D.E.

if             is a given solution.

Solution. Let

Using these values in Eq.(1) we obtain 
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Let

hence we have

which is a first order L.D.E as well as separable D.E.

Separating variables we get
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Therefore the solution of the D.E. is
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Example 2. Solve the D.E.

given that             is a solution.

Solution. Put the D.E on the standard form

then apply the formula
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then apply the formula

Thus we have

hence

and the general solution is
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Example 3. Use reduction of order to solve the D.E.

Given that             is a solution for                         

Solution. Let 

Using these values in Eq.(1) we have
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Using these values in Eq.(1) we have

Let                              which implies

which is a first order L.D.E. with an integrating factor 
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Hence we have

Hence the general solution is
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Hence the general solution is

Notice that the expression                represents the 
particular solution since the D.E. is 
nonhomogeneous.  
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Homework

Find the general solution of the D.E.

if                        is a given solution.
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