Constructing a second solution from a known one. (Reduction of order)

Consider a second order L.D.E. on the standard form

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \tag{1}
\end{equation*}
$$

where P and Q are continuous on some interval I.
Let $y_{1}(x)$ be a given solution of Eq.(1) defined on I and $y_{1}(x) \neq 0$ for all x in I.
Suppose $y=u y_{1}$ is a solution of Eq.(1). Then,

$$
\begin{aligned}
& y^{\prime}=u^{\prime} y_{1}+u y^{\prime}{ }_{1} \\
& y^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y^{\prime}{ }_{1}+u y^{\prime \prime}{ }_{1} .
\end{aligned}
$$

Substituting these values in Eq.(1) we get
$y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0$.
Let $W=u^{\prime} \Rightarrow W^{\prime}=u^{\prime}$, using these values in Eq.(2) we get

$$
\frac{d W}{W}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P\right) d x=0
$$

which is separable first order D.E., hence we have $\ln |W|+2 \ln \left|y_{1}\right|+\int P(x) d x+c=0$
or $W y^{2}{ }_{1}=c_{1} e^{-\int P(x) d x} \Rightarrow W=c_{1} \frac{e^{-\int P(x) d x}}{y^{2}}$
Hence $u=c_{1} \int \frac{e^{-\int P(x) d x}}{y^{2}} d x+c_{2}$,

$$
\Rightarrow y=c_{1} y_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x+c_{2} y_{1} .
$$

Therefore the second solution is given by

$$
y_{2}=y_{1} \int \frac{e^{-\int P(x) d x}}{y^{2}{ }_{1}} d x
$$

It is easy to see that y_{1} and y_{2} are linearly independent on the interval I.
Example 1. Use reduction of order to solve the D.E.

$$
\begin{equation*}
x y^{\prime \prime}-(x+1) y^{\prime}+y=0, x>0 \tag{1}
\end{equation*}
$$

if $y_{1}=e^{x}$ is a given solution.
Solution. Let $y=u y_{1}=u e^{x}$

$$
\Rightarrow y^{\prime}=u^{\prime} e^{x}+u e^{x}, y^{\prime \prime}=u^{\prime \prime} e^{x}+2 u^{\prime} e^{x}+u e^{x} .
$$

Using these values in Eq.(1) we obtain
$x e^{x} u^{\prime \prime}+(x-1) e^{x} u^{\prime}=0, \quad \div x e^{x} \Rightarrow u^{\prime \prime}+\left(1-\frac{1}{x}\right) u^{\prime}=0$.
Let $W=u^{\prime} \Rightarrow \frac{d W}{d x}=u^{\prime \prime}$,
hence we have $\frac{d W}{d x}+\left(1-\frac{1}{x}\right) W=0$, which is a first order L.D.E as well as separable D.E.
Separating variables we get

$$
\begin{aligned}
& \frac{d W}{W}=\left(\frac{1}{x}-1\right) d x \\
& \Rightarrow \ln |W|=\ln (x)-x+c
\end{aligned}
$$

or $W=c_{1} x e^{-x}, c_{1}=e^{c}$.
Hence $u=\int c_{1} x e^{-x} d x$

$$
=c_{1}\left(-x e^{-x}-e^{-x}\right)+c_{2} .
$$

Therefore the solution of the D.E. is

$$
y=y_{1} u=e^{x}\left\{c_{1}\left(-x e^{-x}-e^{-x}\right)+c_{2}\right\}=c_{1}(-x-1)+c_{2} e^{x}
$$

Example 2. Solve the D.E.
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0, x \in(0, \pi)$
given that $y_{1}=\frac{\cos x}{\sqrt{x}}$ is a solution.
Solution. Put the D.E on the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0,
$$

then apply the formula $y_{2}=y_{1} \int \frac{e^{-\int P(x) d x}}{y^{2}} d x$. Thus we have $y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1}{4 x^{2}}\right) y=0$, hence $y_{2}=y_{1} \int \frac{\frac{-1}{1} \frac{1}{x} x}{\frac{\cos ^{2} x}{x}} d x=y_{1} \int \frac{e^{-\sin x}}{\frac{\cos ^{2} x}{x}} d x=y_{1} \int \frac{1}{\cos ^{2} x} d x$
$=y_{1} \int \sec ^{2} x d x=\frac{\sin ^{x} x}{\sqrt{x}}$,
and the general solution is

$$
y=c_{1} \frac{\cos x}{\sqrt{x}}+c_{2} \frac{\sin x}{\sqrt{x}} .
$$

Example 3. Use reduction of order to solve the D.E.

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-2 y=x \tag{1}
\end{equation*}
$$

Given that $y_{1}=e^{-x}$ is a solution for $y^{\prime \prime}-y^{\prime}-2 y=0$.
Solution. Let $y=u y_{1}=u e^{-x}$

$$
\Rightarrow y^{\prime}=u^{\prime} e^{-x}-u e^{-x}, y^{\prime \prime}=u^{\prime \prime} e^{-x}-2 u^{\prime} e^{-x}-u e^{-x}
$$

Using these values in Eq.(1) we have

$$
u^{\prime \prime}-3 u^{\prime}=x e^{x}
$$

Let $W=u^{\prime} \Rightarrow \frac{d W}{d x}=u^{\prime}$, which implies

$$
\frac{d W}{d x}-3 W=x e^{x}
$$

which is a first order L.D.E. with an integrating factor

$$
\mu(x)=e^{-3 x} .
$$

Hence we have

$$
\begin{aligned}
e^{-3 x} W & =c_{1}+\int x e^{-2 x} d x \\
& =c_{1}+-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x} \\
\Rightarrow W & =c_{1} e^{3 x}-\left(\frac{1}{2} x+\frac{1}{4}\right) e^{x} \\
\Rightarrow u & =\int c_{1} e^{3 x}-\left(\frac{1}{2} x+\frac{1}{4}\right) e^{x} d x \\
& =\frac{1}{3} c_{1} e^{3 x}-\left(\frac{1}{2} x-\frac{1}{4}\right) e^{x}+c_{2}
\end{aligned}
$$

Hence the general solution is

$$
\begin{aligned}
y & =y_{1} u=e^{-x}\left\{\frac{1}{3} c_{1} e^{3 x}-\left(\frac{1}{2} x-\frac{1}{4}\right) e^{x}+c_{2}\right\} \\
& =\frac{1}{3} c_{1} e^{2 x}-\left(\frac{1}{2} x-\frac{1}{4}\right)+c_{2} e^{-x}
\end{aligned}
$$

Notice that the expression- $\left(\frac{1}{2} x-\frac{1}{4}\right)$ represents the particular solution since the D.E. is nonhomogeneous.

Homework

Find the general solution of the D.E.

$$
x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0, x \in(0, \infty),
$$

if $y=x \cos (\ln x)$ is a given solution.

