
Linear D.Es of Higher Orders 

In general, an        order L.D.E. is on the form 

 

 

If              , then Equation (1) is called homogeneous 

L.D.E, otherwise it is nonhomogeneous.   

For example:                                is a homogeneous L. D.  

E., while                                                        is a non-     

homogeneous L. D. E.  

Solving equation (1) subject to the constraints: 

 

is  an         order initial value problem.  
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The specified values given in (2) are called  

initial conditions.  

By solving the I.V.P.  

 

 

 

we mean to determine a function          defined on 

some interval      containing         and satisfies  

equation (1)  and all the conditions given in (2). 
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Theorem (Existence and uniqueness) 

Let                                and         be continuous on an 

interval     and               for all    in this interval. 

If         is any point in this interval, then there exists 

a unique solution        defined on the interval    

satisfies the initial value problem given in (1)-(2).  

Example 

It is easy to see that the function                            is  

a solution of the I.V.P.  
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Since the coefficients 

as well as         are continuous and             on any 

interval containing          . Therefore, in view of 

the above theorem, this function is the unique 

solution of this problem on the interval 

Example  

 Find the largest interval on which the I.V.P. 

 

 

has a unique solution. 
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Solution. 

Here we have 

                         which is continuous on           ,   

                        is continuous on                        

                         is continuous on            , 

                         is continuous on           , 

and  

Thus, the functions                                 

 are all continuous on the interval              which 

contains           and                           Hence, the IVP 

admits a unique solution on  the interval  .   
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Homework 

Determine the largest symmetric interval on which 

the  following I.V.P has a unique solution 
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Linear dependence 

A set of functions               is said to be linearly 

dependent on an interval  , if there are constants 

                     (at least some of them are not zero) 

such that   

Example 1. The functions: 

 

Are linearly dependent on 

Because     
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for all     in    . Hence there are constants 

 

not all zero such that   

                                                          for all    in   . 

Example 2. The functions: 

 

are linearly dependent on 

Since,     
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which implies  

 

that is, there are constants  

not all zero such that   

for all    in   . 

Hence                            are linearly dependent on the 

interval    

Remark. If                         are linearly dependent 

functions on some interval I, then one of them can 

be written as a linear combination of the other ones.        
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Linear independence 

A set of functions                        is said to be 

linearly independent on an interval   , if they are 

not linearly dependent on I. That is if  

 

 then all the constants                      must be zero. 

 Example.  

The functions: 

are linearly independent on 
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Because, if   

then,                       for all      in                                 

In particular for                                we get 

 

 

 hence                      

Example 2. The functions:  

are linearly independent on             , but they are 

linearly dependent on            .  
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Example 2. Show that the functions:  

 

are linearly independent on the interval                

Solution. Assume that  

 

In particular for                                               we have 

 

 

  

 

Hence the functions are linearly independent on I. 
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 Definition 

Assume that the functions                   possess at 

least          derivatives on an interval  . Then the 

determinant  

 

               

 

  

is called the Wronskian of                     .  
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Theorem. (Criterion for linear independence) 

Assume that the functions                   possess at 
least          derivatives on an interval   . 

If                              for at least one value     in   ,   

then                        are linearly independent on   .                                                       

Example 3. Verify that the functions    

 

are linearly independent  on 

Solution. Since, 

                                                        

 

hence the function are linearly independent on    .   

 

nfff ,...,, 21

I1n

0),...,,( 1 nffxW 0x I

nfff ,...,, 21 I

xx exfandexfxxf  )(,)(,)( 321

).,( I

,002

0

1),...,,( 1 Iinxallforx

ee

ee

eex

ffxW
xx

xx

xx

n 






I



Corollary. 

If the functions                   are linearly dependent  

on an interval  ,  then                              for all        

in   .   

Remark. if                           for all    in the interval  , 

then it does not imply that                             are 

linearly dependent  on    . 

Example. The functions 

are linearly independent on                    (check), but 
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Theorem. Let                         be solutions of the Hom. 

L.D.E.             

 

on an interval I, then for any constants                      the 

function                                               is also a solution 

on the interval I. 

Definition. Any set                        of n  linearly 

independent solutions of the        order Hom. L.D.E.  

 

 

on an interval I , is called a Fundamental Set of 

Solutions on this interval.  
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Theorem. Let                         be n  solutions of the Hom. 

L.D.E.              

 

on an interval I . Then, these solutions are linearly 

independent on I  if and only if 

 

for every     in I. 

Definition. Let                        be  a fundamental set of 

solutions of the Hom. L.D.E.  

 

on an interval I. Then, the general solution on I is defined by 

 

where                       are arbitrary constants.          
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 Example. Verify that    

form a fundamental set of solutions of the H.D.E.  

 

on the interval                  , then write down the 

general solution. 

Solution. It is easy to check that                        are 

solutions of Eq.(1). On the other hand we have   

                                                  

 

hence they are linearly independent on    . 

Therefore the general solution is    
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Definition. 

   Let         be any particular solution of the 

nonhomogeneous L.D.E.     

 

on an interval I and let  

 

be the general solution of the associated Hom. D.E. 

 

 

on this interval, then the general solution of Eq.(1) is  
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 Example. Verify that    

is the general solution of the Nonhom. D.E.  

 

on the interval                   . 

Solution. It is easy to see that 

are solutions of the Hom. D.E.                                                  

and 

 

 

hence they are linearly independent on    .   

Hence  
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On the other hand the function     

satisfies the Nonhom. D.E.  

i.e.                         is a particular solution. 

Hence  

is the general solution of the above Nonhom. D.E.                                                  
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