Linear D.Es of Higher Orders

In general, an $n^{\text {th }}$ order L.D.E. is on the form
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$.
If $g(x)=0$, then Equation (1) is called homogeneous
L.D.E, otherwise it is nonhomogeneous.

For example: $x^{3} y^{\prime \prime}-8 x y^{\prime}+5 y=0$ is a homogeneous L. D.
E., while $x^{3} y^{\prime \prime}-8 x y^{\prime}+5 y=e^{2 x}-3$ is a nonhomogeneous L. D. E.
Solving equation (1) subject to the constraints:

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}=y_{0}^{(n-1)} \tag{2}
\end{equation*}
$$

is an $n^{\text {th }}$ order initial value problem.

The specified values given in (2) are called initial conditions.

By solving the I.V.P.

$$
\left\{\begin{array}{l}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{1}\\
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}=y_{0}^{(n-1)}
\end{array}\right.
$$

we mean to determine a function $y(x)$ defined on some interval I containing x_{0} and satisfies equation (1) and all the conditions given in (2).

Theorem (Existence and uniqueness)

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$ and $g(x)$ be continuous on an interval I and $a_{n}(x) \neq 0$ for all x in this interval.
If $x=x_{0}$ is any point in this interval, then there exists a unique solution $y(x)$ defined on the interval I satisfies the initial value problem given in (1)-(2). Example
It is easy to see that the function $y=3 e^{2 x}+e^{-2 x}-3 x$ is a solution of the I.V.P.

$$
y^{\prime \prime}-4 y=12 x, \quad y(0)=4, y^{\prime}(0)=1
$$

Since the coefficients $a_{2}(x), a_{1}(x), a_{0}(x)$ as well as $g(x)$ are continuous and $a_{2}(x) \neq 0$ on any interval containing $x_{0}=0$. Therefore, in view of the above theorem, this function is the unique solution of this problem on the interval $I=(-\infty, \infty)$.
Example
Find the largest interval on which the I.V.P.

$$
\left\{\begin{array}{l}
x\left(x^{2}-4\right) y^{\prime \prime}-\sqrt{5-x} y^{\prime}+x^{3} y=\ln (x+3) \\
y(-1)=1, y^{\prime}(-1)=0
\end{array}\right.
$$

has a unique solution.

Solution.

Here we have
$a_{2}(x)=x\left(x^{2}-4\right)$ which is continuous on $(-\infty, \infty)$, $a_{1}(x)=-\sqrt{5-x}$ is continuous on $(-\infty, 5]$, $a_{0}(x)=x^{3} \quad$ is continuous on $(-\infty, \infty)$, $g(x)=\ln (x+3)$ is continuous on $(-3, \infty)$, and $a_{2}(x)=0$, at $x=0, \pm 2$.
Thus, the functions $a_{2}(x), a_{1}(x), a_{0}(x)$ and $g(x)$ are all continuous on the interval $I=(-2,0)$ which contains $x_{0}=-1$ and $a_{2}(x) \neq 0$, on I. Hence, the IVP admits a unique solution on the interval I.

Homework

Determine the largest symmetric interval on which the following I.V.P has a unique solution

$$
\left\{\begin{array}{l}
\ln (x+2) y^{\prime \prime}-\sqrt{9-x^{2}} \quad y^{\prime}+3 y=\tan x, \\
y(0)=1, y^{\prime}(0)=2,
\end{array}\right.
$$

Linear dependence

A set of functions $f_{1}, f_{2}, \ldots, f_{n}$ is said to be linearly dependent on an interval I, if there are constants $c_{1}, c_{2}, \ldots, c_{n}$ (at least some of them are not zero) such that $c_{1} f(x)_{1}+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0, \forall x \in I$. Example 1. The functions:
$f_{1}(x)=x^{2}, f_{2}(x)=e^{-x}, f_{3}(x)=x e^{-x}$, and $f_{4}(x)=(3-5 x) e^{-x}$ Are linearly dependent on $I=(-\infty, \infty)$.
Because $f_{4}(x)=(3-5 x) e^{-x}=3 e^{-x}-5 x e^{-x}$

$$
=0 f_{1}(x)+3 f_{2}(x)-5 f_{3}(x)
$$

$$
\Rightarrow 0 * f_{1}(x)+3 * f_{2}(x)-5 * f_{3}(x)-1 * f_{4}(x)=0
$$ for all x in I. Hence there are constants

$$
c_{1}=0, c_{2}=3, c_{3}=-5, \text { and } c_{4}=-1
$$

not all zero such that

$$
c_{1} f(x)_{1}+c_{2} f_{2}(x)+c_{3} f_{3}(x)+c_{4} f_{4}(x)=0 \text { for all } x \text { in } I .
$$

Example 2. The functions:
$f_{1}(x)=1, f_{2}(x)=\cos (2 x)$ and $f_{3}(x)=\sin ^{2}(x)$
are linearly dependent on $I=(-\infty, \infty)$.
Since, $2 \sin ^{2}(x)=[1-\cos (2 x)]$
hence, $1-\cos (2 x)-2 \sin ^{2}(x)=0$ for all x in I,

which implies

$$
1 * f_{1}(x)-1 * f_{2}(x)-2 * f_{3}(x)=0 \text { for all } x \text { in } I,
$$

that is, there are constants $c_{1}=1, c_{2}=-1$, and $c_{3}=-2$ not all zero such that $c_{1} f(x)_{1}+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0$ for all x in I.
Hence f_{1}, f_{2} and f_{3} are linearly dependent on the interval $I=(-\infty, \infty)$.
Remark. If $f_{1}, f_{2}, \ldots, f_{n}$ are linearly dependent functions on some interval I, then one of them can be written as a linear combination of the other ones.

Linear independence

A set of functions $f_{1}, f_{2}, \ldots, f_{n}$ is said to be linearly independent on an interval I, if they are not linearly dependent on I. That is if

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0 \text { for all } x \text { in } I
$$

then all the constants $c_{1}, c_{2}, \ldots, c_{n}$ must be zero.
Example.
The functions: $f_{1}(x)=x^{2}$ and $f_{2}(x)=x$ are linearly independent on $I=(-\infty, \infty)$.

Because, if $c_{1} f(x)_{1}+c_{2} f_{2}(x)=0$ for all x in I, then, $c_{1} x^{2}+c_{2} x=0$ for all x in $(-\infty, \infty)$. In particular for $x=1$ and $x=-1$ we get

$$
\begin{aligned}
& c_{1}+c_{2}=0, \text { and } \\
& c_{1}-c_{2}=0
\end{aligned}
$$

hence $c_{1}=c_{2}=0$.
Example 2. The functions: $f_{1}(x)=x$ and $f_{2}(x)=|x|$ are linearly independent on $[-1,1]$, but they are linearly dependent on $[0,1]$.

Example 2. Show that the functions:

$$
f_{1}(x)=x, f_{2}(x)=\sin x \text { and } f_{3}(x)=\cos x
$$

are linearly independent on the interval $I=(-\infty, \infty)$. Solution. Assume that

$$
c_{1} f(x)_{1}+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \text { for all } x \text { in } I
$$

In particular for $x=0, x=\pi$ and $x=\frac{\pi}{2}$ we have

$$
\begin{aligned}
& x=0 \Rightarrow c_{1}(0)+c_{2}(0) x+c_{3}(1)=0 \Rightarrow c_{3}=0, \\
& x=\pi \Rightarrow c_{1}(\pi)+c_{2}(0) x+c_{3}(-1)=0 \Rightarrow c_{1}=0, \\
& x=\frac{\pi}{2} \Rightarrow c_{1}\left(\frac{\pi}{2}\right)+c_{2}(1) x+c_{3}(0)=0 \Rightarrow c_{2}=0 .
\end{aligned}
$$

Hence the functions are linearly independent on I.

Definition

Assume that the functions $f_{1}, f_{2}, \ldots, f_{n}$ possess at least $n-1$ derivatives on an interval I. Then the determinant

$$
W\left(x, f_{1}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \ldots & f_{n}^{(n-1)}(x)
\end{array}\right|,
$$

is called the Wronskian of $f_{1}, f_{2}, \ldots, f_{n}$.

Theorem. (Criterion for linear independence) Assume that the functions $f_{1}, f_{2}, \ldots, f_{n}$ possess at least $n-1$ derivatives on an interval I.
If $W\left(x, f_{1}, \ldots, f_{n}\right) \neq 0$ for at least one value x_{0} in I, then $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent on I.
Example 3. Verify that the functions
$f_{1}(x)=x, f_{2}(x)=e^{x}$, and $f_{3}(x)=e^{-x}$
are linearly independent on $I=(-\infty, \infty)$.
Solution. Since,

$$
W\left(x, f_{1}, \ldots, f_{n}\right)=\left|\begin{array}{ccc}
x & e^{x} & e^{-x} \\
1 & e^{x} & -e^{-x} \\
0 & e^{x} & e^{-x}
\end{array}\right|=2 x \neq 0 \text { for all } x \neq 0 \text { in } I,
$$

hence the function are linearly independent on I.

Corollary.

If the functions $f_{1}, f_{2}, \ldots, f_{n}$ are linearly dependent on an interval I, then $W\left(x, f_{1}, \ldots, f_{n}\right)=0$ for all x in I.
Remark. if $W\left(x, f_{1}, \ldots, f_{n}\right)=0$ for all x in the interval I, then it does not imply that $f_{1}, f_{2}, \ldots, f_{n}$ are linearly dependent on I.
Example. The functions $f(x)=x^{2}$, and $g(x)=x|x|$ are linearly independent on $I=[-1,1]$, (check), but

$$
W(x, f, g)=\left|\begin{array}{ll}
x^{2} & x|x| \\
2 x & 2|x|
\end{array}\right|=0, \text { for all } x \text { in } I .
$$

Theorem. Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions of the Hom. L.D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

on an interval I, then for any constants $c_{1}, c_{2}, \ldots, c_{k}$ the function $y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{k} y_{k}$ is also a solution on the interval I.

Definition. Any set $y_{1}, y_{2}, \ldots, y_{n}$ of n linearly independent solutions of the $n^{t h}$ order Hom. L.D.E.

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{1}
\end{equation*}
$$

on an interval I, is called a Fundamental Set of Solutions on this interval.

Theorem. Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions of the Hom. L.D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0,
$$

on an interval I. Then, these solutions are linearly independent on I if and only if

$$
W\left(x, y_{1}, \ldots, y_{n}\right) \neq 0
$$

for every x in I.
Definition. Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the Hom. L.D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

on an interval I. Then, the general solution on I is defined by

$$
y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n},
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example. Verify that $y_{1}=1, y_{2}=e^{x}$, and $y_{3}=e^{-x}$ form a fundamental set of solutions of the H.D.E. $y^{\prime \prime \prime}-y^{\prime}=0$,
on the interval $I=(-\infty, \infty)$, then write down the general solution.
Solution. It is easy to check that y_{1}, y_{2} and y_{3} are solutions of Eq.(1). On the other hand we have

$$
W\left(x, y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
1 & e^{x} & e^{-x} \\
0 & e^{x} & -e^{-x} \\
0 & e^{x} & e^{-x}
\end{array}\right|=2 \neq 0 \text { for all } x \text { in } I \text {, }
$$

hence they are linearly independent on I.
Therefore the general solution is $y=c_{1}+c_{2} e^{x}+c_{3} e^{-x}$.

Definition.

Let y_{p} be any particular solution of the nonhomogeneous L.D.E.

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{1}
\end{equation*}
$$

on an interval I and let

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n},
$$

be the general solution of the associated Hom. D.E.

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

on this interval, then the general solution of Eq.(1) is

$$
y=y_{c}+y_{p}=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}+y_{p}
$$

Example. Verify that $y=c_{1}+c_{2} e^{x}+c_{3} e^{-x}+x^{3}-x$ is the general solution of the Nonhom. D.E.

$$
y^{\prime \prime \prime}-y^{\prime}=7-3 x^{2}
$$

on the interval $I=(-\infty, \infty)$.
Solution. It is easy to see that $y_{1}=1, y_{2}=e^{x}$ and $y_{3}=e^{-x}$ are solutions of the Hom. D.E. $y^{\prime \prime \prime}-y^{\prime}=0$,
and
$W\left(x, y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}1 & e^{x} & e^{-x} \\ 0 & e^{x} & -e^{-x} \\ 0 & e^{x} & e^{-x}\end{array}\right|=2 \neq 0$ for all x in I,
hence they are linearly independent on I.
Hence $y_{c}=c_{1}+c_{2} e^{x}+c_{3} e^{-x}$.

On the other hand the function $y=x^{3}-x$ satisfies the Nonhom. D.E. $y^{\prime \prime \prime}-y^{\prime}=7-3 x^{2}$, i.e. $y_{p}=x^{3}-x$ is a particular solution.

Hence $y=y_{c}+y_{p}=c_{1}+c_{2} e^{x}+c_{3} e^{-x}+x^{3}-x$,
is the general solution of the above Nonhom. D.E.

