Topic 4
(Textbook - Chapter 4)
Threads

cepts — 9th Edition Silberschatz, Galvin and Gagne ©2013

& Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries

Threading Issues

W k\\

Operating System Concepts — 9t Edition 4.2 Silberschatz, Galvin and Gagne ©2013

r & Objectives

B To introduce the notion of a thread - a fundamental unit of CPU
utilization that forms the basis of multithreaded computer
systems

B To discuss the APIs for the Pthreads, Windows, and Java
thread libraries

B To examine issues related to multithreaded programming

Operating System Concepts — 9t Edition 4.3 Silberschatz, Galvin and Gagne ©2013

Motivation

Operating System Concepts — 9t" Edition 4.4

Most modern applications are multithreaded
Threads run within application

Multiple tasks with the application can be implemented by
separate threads

e Update display

e Fetch data

e Spell checking

e Answer a network request

Process creation is heavy-weight while thread creation is
light-weight

Traditional Heavy-weight Process have a single thread of
control.

Can simplify code, increase efficiency
Kernels are generally multithreaded <
- «4»\ \
o

Silberschatz, Galvin and Gagne ©2013

=

«$%’ Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

Y

thread

Y

client server

(3) resume listening
for additional
client requests

-3

Operating System Concepts — 9t Edition 45 Silberschatz, Galvin and Gagne ©2013

Sy Benefits

B Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

B Resource Sharing — threads share resources of process, easier
than shared memory or message passing

®m Economy - cheaper than process creation, thread switching
lower overhead than context switching

m Scalability — process can take advantage of multiprocessor
architectures

I

1o «4,’.,)
V'

Operating System Concepts — 9t Edition 4.6 Silberschatz, Galvin and Gagne ©2013

Multicore Programming

m Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

ldentifying tasks
Balance

Data splitting

Data dependency
Testing and debugging

B Parallelism implies a system can perform more than one task
simultaneously

m Concurrency supports more than one task making progress

Operating System Concepts — 9t" Edition 4.7

Single processor / core, scheduler providing concurrency

/;:

Silberschatz, Galvin and Gagne ©20

:‘_f

Hl’(

~4%” Multicore Programming (Cont.)

m Types of parallelism

e Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

e Task parallelism — distributing threads across cores, each
thread performing unique operation

m As # of threads grows, so does architectural support for threading
e CPUs have cores as well as hardware threads

e Consider Oracle SPARC T4 with 8 cores, and 8 hardware
threads per core

'_‘ 2’(/

Operating System Concepts — 9t" Edition 4.8 Silberschatz, Galvin and Gagne ©20

=
—

Concurrency vs. Parallelism

m Concurrent execution on single-core system:

single core

RSN NN AR S O

time

>
>

m Parallelism on a multi-core system:

core 1

core 2

Operating System Concepts — 9t" Edition

T4 T3 T4 T3 T4
To T4 To Ty To
time .
N -”3‘%3’
VR
4.9 Silberschatz, Galvin and Gagne ©2013

gy |
"uf*/'- ' o

Single and Multithreaded Processes

Operating System Concepts — 9t" Edition

code

data

files

registers

stack

thread — ;

single-threaded process

4.10

code data files
registers ||| registers ||| registers
stack stack stack
<

— thread

multithreaded process

> . R e = :k 5
— »")f)\

3
<,

D7

Silberschatz, Galvin and Gagne ©2013

r & Programming Challenges

® |n general, five areas present challenges in programming for
multicore

m |dentifying Tasks — distributes subsets of the same data across
multiple cores, same operation on each

Balance
Data splitting
Data dependency

Testing and debugging

-3

Operating System Concepts — 9™ Edition 4.11 Silberschatz, Galvin and Gagne ©2013

e N

.,;;‘ ’/

Amdahl’s Law

|dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

Sis serial portion
N processing cores

1

speedup < ———=
s+

That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

But does the law take into account contemporary multicore systems?

‘\\\
- Ahv. M

Operating System Concepts — 9t Edition 4.12 Silberschatz, Galvin and Gagne ©2013

>
oy

&.’f&/f ’

User Threads and Kernel Threads

m User threads - management done by user-level threads library

® Three primary thread libraries:
e POSIX Pthreads
e Windows threads

Kernel threads - Supported by the Kernel

Java threads

Examples — virtually all general purpose operating systems, including:

Windows
Solaris
Linux
Tru64 UNIX
Mac OS X

Operating System Concepts — 9t" Edition 4.13

Silberschatz, Galvin and Gagne ©2013

> Lt Multithreading Models

m Many-to-One

B One-to-One

® Many-to-Many

AL
A

-y

———

5
-“
2

Operating System Concepts — 9t Edition 414 Silberschatz, Galvin and Gagne ©2013

Sy Many-to-One

® Many user-level threads mapped to
single kernel thread

One thread blocking causes all to block

Multiple threads may not run in parallel
on muticore system because only one
may be in kernel at a time ; %huserthfead

Few systems currently use this model
Examples:

e Solaris Green Threads

e GNU Portable Threads

<«—kernel thread

o

AP

Silberschatz, Galvin and Gagne ©2013

R

Operating System Concepts — 9t" Edition 4.15

r & One-to-One

Each user-level thread maps to kernel thread
Creating a user-level thread creates a kernel thread
More concurrency than many-to-one

Number of threads per process sometimes
restricted due to overhead

®m Examples
I_D <«— user thread
e Windows

e Linux
e Solaris 9 and later
<«——Kernel thread

= S 3
&

Operating System Concepts — 9t Edition 4.16 Silberschatz, Galvin and Gagne ©2013

y

o

&z‘p/ Many-to-l\/lany Model

m Allows many user level threads to be
mapped to many kernel threads

m Allows the operating system to create
a sufficient number of kernel threads

Solaris prior to version 9 ; g

Windows with the ThreadFiber ;

§<— user thread
package

<«——kernel thread

50

AV

£3)

Operating System Concepts — 9t Edition 4.17 Silberschatz, Galvin and Gagne ©2013

Oy Two-level Model

. A

m Similar to M:M, except that it allows a user thread to be
bound to kernel thread

m Examples
e [RIX 3 ;
e HP-UX ;
e True4 UNIX
e Solaris 8 and earlier

; ; <«—user thread

,3\:‘.

)

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 4.18

ey Thread Libraries

m Thread library provides programmer with API for creating
and managing threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

LA \5

D7

Operating System Concepts — 9t Edition 4.19 Silberschatz, Galvin and Gagne ©2013

*v Pthreads

m May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

B Specification, not implementation

m API specifies behavior of the thread library, implementation is
up to development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac OS X)

H"(/

Operating System Concepts — 9t" Edition 4.20 Silberschatz, Galvin and Gagne ©20

b o Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (argc !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv[1]) < 0) {
fprintf (stderr,"/d must be >= 0\n",atoi(argv[1i]));
return -1;

}

Operating System Concepts — 9t Edition 4.21 Silberschatz, Galvin and Gagne ©2013

———

«$% Pthreads Example (Cont.)

/* get the default attributes */
pthread attr init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv(1]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += i;

pthread exit (0); .

} “*’”’{Séﬁﬁ

|
\.
W

.
A

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 4.22

=

o .
H,w Pthreads Code for Joining 10 Threads

'

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread_t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Operating System Concepts — 9t Edition 4.23 Silberschatz, Galvin and Gagne ©2013

-
&E(Qi;'f)’

=

Windows Multithreaded C Program

¢
|

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD#*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += i;
return 0;
}
int main(int argc, char *argv(])
{

DWORD Threadld;
HANDLE ThreadHandle;
int Param;

if (arge != 2) {
fprintf (stderr,"An integer parameter is required\n");
return -1;

}

Param = atoi(argv[i]);

if (Param < 0) {
fprintf(stderr,"An integer >= 0 is required\n");
return -1;

}

Operating System Concepts — 9t Edition 4.24 Silberschatz, Galvin and Gagne ©2013

-

~

"y

%7 Windows Multithreaded C Program (Cont.)

/* create the thread */
ThreadHandle = CreateThread(
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadId); /* returns the thread identifier */

if (ThreadHandle != NULL) {
/* now wait for the thread to finish */
WaitForSingleObject (ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf("sum = %d\n",Sum);

_‘;K ‘
%

' 4
4d X

P_—

Operating System Concepts — 9t Edition 4.25 Silberschatz, Galvin and Gagne ©2013

SR Java Threads

®m Java threads are managed by the JVM

m Typically implemented using the threads model provided by
underlying OS

m Java threads may be created by:

e Extending Thread class and override its run() method.
or

e Implementing the Runnable interface

public interface Runnable

{

public abstract void run();

}

AR50

AV

£3)

Operating System Concepts — 9t Edition 4.26 Silberschatz, Galvin and Gagne ©2013

w,@‘« Java Multithreaded Program

|

NS

class Sum

{

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int 1 = 0; 1 <= upper; i++)
sum += i;
sumValue.setSum(sum) ;
}
}

Operating System Concepts — 9t Edition 4.27 Silberschatz, Galvin and Gagne ©2013

«% Java Multithreaded Program (Cont.)

public class Driver
{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt (args([0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
Sum sumObject = new Sum() ;
int upper = Integer.parselnt (args([0]);
Thread thrd = new Thread (new Summation (upper, sumObject)) ;
thrd.start () ;
try {
thrd.join() ;
System.out.println
("The sum of "+upper+" is "+sumObject.getSum()) ;
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>"); }

._w/u’ﬂgggﬁ

AN

-~

Operating System Concepts — 9t Edition 4.28 Silberschatz, Galvin and Gagne ©2013

- Threads

S5 2. Creating threads

(1) Inheriting from the Thread class

B The general approach is

(1) Define a class by extending the Thread class and overriding the
run method.

» In the run method, you should write the code that you wish to run when this
particular thread has started.

(2) Create an instance of the above class

(3) Start running the instance using the start method that iﬁ defined in
The output

public class WherefmI extends Thread { public class ThreadTester { I'm in thread 2
int n; public static void main(String[] args) { I'm in thread 1

1/ nunstz.:untur _ J// create the threads I'min thread 3
Pu}]lrlllml:;i::f{lnt numbez) { YhereZmI placel = new YWhere&mI(l); I'min thread 1

) WherefmI place? = new Where@mI(2); I'm in thread 3

// override the run method Where&mI place3d = new WheredmI(3); I'min thread 1
public void run{) { /{ start the threads I'min thread 3
for (int i = 0; i < 100; i++) placel.start(}; I'm in thread 2
System.out.printIln{"I'm in thread " + n); place2.start(); I'min thread 3
placeld.start(); I'min thread 2

} } I'min thread 3

} } I'm in thread 2

Operating System Concepts — 9t" Edition 4.29 Silbég'natz, Galvin and Gagne ©2013

Threads

r & 2. Creating threads

®m The general approach is

(2) Implementing the Runnable interface

(2) Create an instance of the above class.

(3) Create a thread that runs this instance.

(4) Start running the instance using the start method.

public class WhereimI2? implements Runnahle
int n;
// constructor
public WheredmI2(int number) {
n = number;
}
// override the run method
public void run{) {
for (int i = 0; 1 < 100; i++)
System.cut.printIn{"I'm in thread " + n);

}
}

public class ThreadTester? {

(1) Define a class that implements Runnable and overriding the run method.

The output

public static void main(String[] args) {
/{ create a runnahle ohjects,
ff and the thread to run them.
WheredmI2 placel = new WhereAmI2 (1) ;
Thread threadl = new Thread(placel):
WherefmI2? place? = new WherefmI2(2) ;
Thread thread? = new Thread(placel):
WheredmI2 place? = new WheredmI2 (3} ;
Thread thread3 = new Thread{place3) ;
ff start the threads
threadl.start();
thread?.start () ;
thread3.start () ;

Lad

I'min thread

'm in thread 1

Lad

'm in thread
'm in thread 1

Lad

'm in thread
'min thread 1
'm in thread 3
'm in thread 2
'm in thread 3
'm in thread 2
'm in thread 3

I e T B e T e T e T e T e T o B o

I'min thread 2

Operating System Concepts — 9™ Edition

4.30 ONMMUELBWUTAlZ, G

dIvVIIT dlnTa Gdyine WZUIS

P Threading Issues

m Semantics of fork() and exec() system calls change in a
multithreaded program.

® Signal handling
e Synchronous and asynchronous
B Thread cancellation of target thread
e Asynchronous or deferred
Thread-local storage
Scheduler Activations

Operating System Concepts — 9t Edition 4.31 Silberschatz, Galvin and Gagne ©2013

y
'l

~g¥ Semantics of fork() and exec()

m Does fork () duplicate only the calling thread or all
threads?

e Some UNIXes have two versions of fork

B exec () usually works as normal — replace the running
process including all threads

_"’x
~
L 4 v N

———

.l

Operating System Concepts — 9t Edition 4.32 Silberschatz, Galvin and Gagne ©2013

- Signal Handling

n Signals are used in UNIX systems to notify a process that a
particular event has occurred.

n A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

n Every signal has default handler that kernel runs when
handling signal

| User-defined signal handler can override default
| For single-threaded, signal delivered to process

/;:

Operating System Concepts — 9t" Edition 4.33 Silberschatz, Galvin and Gagne ©20

'_‘ 2’(/

=

oo}

> Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

| Deliver the signal to the thread to which the signal
applies

| Deliver the signal to every thread in the process
| Deliver the signal to certain threads in the process

| Assign a specific thread to receive all signals for the
process

Operating System Concepts — 9t Edition 4.34 Silberschatz, Galvin and Gagne ©2013

T Thread Cancellation

Terminating a thread before it has finished
Thread to be canceled is target thread
®m Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

e Deferred cancellation allows the target thread to periodically
check if it should be cancelled

B Pthread code to create and cancel a thread:

pthread.t tid;

/+ create the thread x/
pthread. create(&tid, 0, worker, NULL) ;

/+* cancel the thread x/
pthread.cancel (tid) ;

ﬂ/,,)‘»‘.& \ﬁ
a

Operating System Concepts — 9t Edition 4.35 Silberschatz, Galvin and Gagne ©2013

=

P

i Thread Cancellation (Cont.)

®m Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

Mode State Type
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

m If thread has cancellation disabled, cancellation remains pending
until thread enables it

m Default type is deferred

e Cancellation only occurs when thread reaches cancellation
point

» i.e. pthread testcancel ()
» Then cleanup handler is invoked
® On Linux systems, thread cancellation is handled through signals

y

-

8

k

[

Operating System Concepts — 9t" Edition 4.36 Silberschatz, Galvin and Gagne ©2013

S Thread-Local Storage

m Thread-local storage (TLS) allows each thread to have its
own copy of data

m Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

m Different from local variables

e Local variables visible only during single function
invocation

e TLS visible across function invocations
®m Similar to static data

e TLS is unique to each thread

'_‘ 2’(/

Operating System Concepts — 9t" Edition 4.37 Silberschatz, Galvin and Gagne ©20

|

and

S Scheduler Activations

® Both M:M and Two-level models require
communication to maintain the appropriate .
number of kernel threads allocated to the § =——user trread
application |

m Typically use an intermediate data structure
between user and kernel threads — lightweight
process (LWP)

e Appears to be a virtual processor on which
| k |=——kemel thread

process can schedule user thread to run L
e Each LWP attached to kernel thread
e How many LWPs to create?

LWP | =—— lightweight process

m Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

® This communication allows an application to
maintain the correct number of kernel threads P
4 W

\

I

Operating System Concepts — 9t Edition 4.38 Silberschatz, Galvin and Gagne ©2013

End of Chapter 4

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

