
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition,

Topic 3

(Textbook - Chapter 3)

Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including

scheduling, creation and termination, and communication

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory
A process is more than the program

code, which is sometimes known as the

text section. It also includes the current

activity, as represented by the value of

the program counter and the contents

of the processor’s registers. A process

generally also includes the process

stack, which contains temporary data

(such as function parameters, return

addresses, and local variables), and a

data section, which contains global

variables. A process may also include a

heap, which is memory that is

dynamically allocated during process run

time. The structure of a process in

memory is shown in Figure 3.1.

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process state. The state may be new, ready, running, waiting, halted, and so on.

• Program counter. The counter indicates the address of the next instruction to be

executed for this process.

• CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-

purpose registers, plus any condition-code information. Along with the program

counter, this state information must be saved when an interrupt occurs, to allow the

process to be continued correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority, pointers

to scheduling queues, and any other scheduling parameters.

(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such items as the

value of the base and limit registers and the page tables, or the

segment tables, depending on the memory system used by the operating system

(Chapter 8).

Accounting information. This information includes the amount of CPU and real time

used, time limits, account numbers, job or process numbers,

and so on.

• I/O status information. This information includes the list of I/O devices allocated to

the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may vary

from process to process.

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 These processes are spooled to a mass-storage device (typically a disk), where

they are kept for later execution. The long-term scheduler, or job

 scheduler, selects processes from this pool and loads them into memory for

execution. The short-term scheduler, or CPU scheduler, selects from among

 the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency

 of execution. The short-term scheduler must select a new process for the CPU

frequently. A process may execute for only a few milliseconds before waiting

 for an I/O request. Often, the short-term scheduler executes at least once every

100 milliseconds. Because of the short time between executions, the short-term

 scheduler must be fast. If it takes 10 milliseconds to decide to execute a

process for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is

being used

 (wasted) simply for scheduling the work.

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Some operating systems, such as time-sharing systems, may introduce an

additional, intermediate level of scheduling. This medium-term

scheduler is

diagrammed in Figure 3.7. The key idea behind a medium-term scheduler

is that sometimes it can be advantageous to remove a process from

memory

(and from active contention for the CPU) and thus reduce the degree of

multiprogramming. Later, the process can be reintroduced into memory,

and its

execution can be continued where it left off. This scheme is called

swapping.

The process is swapped out, and is later swapped in, by the medium-term

scheduler. Swapping may be necessary to improve the process mix or

because a change in memory requirements has overcommitted available

memory, requiring memory to be freed up. Swapping is discussed in

Chapter 8.

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently (milliseconds)

(must be fast)

 Long-term scheduler is invoked very infrequently (seconds,

minutes) (may be slow)

 The long-term scheduler controls the degree of multiprogramming
(the number of processes in memory)

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;

few very long CPU bursts

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 When CPU switches to another process, the system must save the state of

the old process and load the saved state for the new process via a context

switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while

switching

 Time dependent on hardware support

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 Parent process create children processes, which, in turn create other

processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont)

 Address space either

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory

space with a new program

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A tree of processes on a typical Solaris

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and asks the operating system to

delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its

parent terminates

– All children terminated - cascading termination

 A process that has terminated, but whose parent has not yet called

wait(), is known as a zombie process.

 If a parent did not invoke wait() and instead terminated, thereby

leaving its child processes as orphans, What would happen?

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

mechanism to exchange data and information

 Two models of IPC

 Shared memory

 Message passing

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

 OS normally prevent one process to access another

process’s memory. However,

 Shared memory require that two or more processes agree to

remove this restriction.

 A common paradigm for cooperating processes, producer
process produces information that is consumed by a

consumer process

 unbounded-buffer places no practical limit on the size of

the buffer

 bounded-buffer assumes that there is a fixed buffer size

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;

while (true) {

/* Produce an item next_produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing -- no free buffers */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

Item next_consumed;

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

next_consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition,

End of Chapter 3

