Mass Relationships in Chemical Reactions

Chapter 3

Atomic Mass: Average Atomic Mass

 \circ The mass of an atom depends on the number of

electrons, protons, and neutrons it contains.

Micro World _____ Macro World atoms & molecules grams

Atomic mass is the mass of an atom in atomic mass units (amu)

By definition: 1 atom ¹²C "weighs" 12 amu

On this scale

 $^{1}H = 1.008 \text{ amu}$

 $^{16}\text{O} = 16.00 \text{ amu}$

The *average atomic mass* is the weighted average of all of the naturally occurring isotopes of the element.

average atomic mass

of natural carbon = (0.9890)(12.00000 amu) + (0.0110)(13.00335 amu)= 12.01 amu Naturally occurring lithium is: 7.42% ⁶Li (6.015 amu) 92.58% ⁷Li (7.016 amu)

Average atomic mass of lithium:

$\frac{7.42 \text{ x } 6.015 + 92.58 \text{ x } 7.016}{100} = 6.941 \text{ amu}$

Example 3.1

Copper, a metal known since ancient times, is used in electrical cables and pennies, among other things.

The atomic masses of its two stable isotopes,

 $^{63}_{29}$ Cu (69.09 percent) and $^{65}_{29}$ Cu (30.91 percent),

are 62.93 amu and 64.9278 amu, respectively.

Calculate the average atomic mass of copper. The relative abundances are given in parentheses.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

©McGraw-Hill Education/Stephen Frisch

Example 3.1

Solution

First the percent's are converted to fractions:

69.09 percent to_{69.09/100 or 0.6909}

30.91 percent to 30.91/100 or 0.3091

We find the contribution to the average atomic mass for each isotope, then add the contributions together to obtain the average atomic mass.

(0.6909) (62.93 amu) + (0.3091) (64.9278 amu) = 63.55 "amu"

E																	18
1A H Bydrogen L008	2				10		Atomic n	umber 1955				13	14	15	16	17	8A 2 He 8dim 4.003
3 Li Lifum 6.941	4 Be Beyllon 9.012	Average atomic mass (6.941)											6 C Caibon 12:01	7 N Nitrogen 14.01	8 0 0nygm 16.00	9 F Fuorine 19.00	10 Ne Nou 20.18
11 Na Solun 22.99	12 Mg Mgusim 34.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al Alminm 26.98	14 Si Silcon 28.09	15 P Plosploto 30.97	16 S Safar 32.07	17 Cl Olinie 35.45	18 Ar Argm 39.95
19 K Patasian 39,10	20 Ca Calenn 40.08	21 Sc Scanlian 44.96	22 Ti ^{Titmin} 47.88	23 V Vindum 50.94	24 Cr Onminn 52.00	25 Mn Maganese 54.94	26 Fe Inn 55.85	27 Co Cohit 58.93	28 Ni Netal 58.69	29 Cu Gipper 63.55	30 Zn ^{Znc} 65.39	31 Ga 6dinn 69.72	32 Ge Gemnium 72.59	33 As Anair 74.92	34 Se Selanim 78.96	35 Br Bmine 79.90	36 Kr Krytin 83.80
37 Rb Babdum 85.47	38 Sr Stratian 87.62	39 Y Tutim 88.91	40 Zr Zrcomm 91.22	41 Nb Notian 92,91	42 Mo Mohodenam 95.94	43 Tc Techerium (98)	44 Ru Rafesian 101.1	45 Rh Rhodum 102.9	46 Pd Palatan 106.4	47 Ag Silver 107.9	48 Cd Calnium 112.4	49 In hdun 114.8	50 Sn Tu 118.7	51 Sb Autimuty 121.8	52 Te Teltrim 127.6	53 I Iofae 126.9	54 Xe Xeco 131.3
55 Cs Gsim 132.9	56 Ba Banum 137.3	57 La Lathann 138.9	72 Hf Hafnan 178.5	73 Ta Tatalan 180.9	74 W Tangses 183.9	75 Re Reim 186.2	76 Os 0mm 190.2	77 Ir 192.2	78 Pt Patann 195.1	79 Au Gold 197.0	80 Hg Measy 200.6	81 TI Tullim 204.4	82 Pb lead 207.2	83 Bi fiismth 209.0	84 Po Polonini (210)	85 At Astaine (210)	86 Rn Rates (222)
87 Fr Fnician (223)	88 Ra ^{Rafam} (226)	89 Ac Actinini (227)	104 Rf Ratheriodian (257)	105 Db Dataina (260)	106 Sg Seatorgan (263)	107 Bh Bohnun (262)	108 Hs Hasim (265)	109 Mt Meinerum (266)	110 Ds Duristalium (269)	111 Rg Reettjeniun (272)	112	113	114	115	116	(117)	118
			$\overline{\ }$														

Metals																
	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
Metalloids	Cerium	Proceedyminn	Neodyminn	Promethium	Sanarinn	Europium	Galolinim.	Tethins	Dyspresium	Bolminn	Ethim	Thilint	Yttabiun	Lotetina		
	140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	\$73.0	175.0		
Nonmetals	90 Th Thoinn 232.0	91 Pa Protectinium (231)	92 U Unium 238.0	93 Np Netturini (237)	94 Pu Phosian (242)	95 Am Americaan (243)	96 Cm (247)	97 Bk Betkelum (247)	98 Cf Californian (249)	99 Es Ensteinion (254)	100 Fm Femium (253)	101 Md Mindelevian (256)	102 No Notelium (254)	103 Lr Lawrenciana (257)		

The Mole (mol): A unit to count numbers of particles

Dozen = 12

Pair = 2

The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ^{12}C

$$1 \text{ mol} = N_A = 6.0221367 \text{ x } 10^{23}$$

This number is expressed by Avogadro's number (N_A) 8

eggs shoes *Molar mass* is the mass of 1 mole of marbles¹ⁿ grams atoms 1 mole ¹²C atoms = 6.022×10^{23} atoms = 12.00 gatomic unit $1^{12}C$ atom = 12.00 amu $1 \text{ amu} = 1.66 \text{ x } 10^{-24} \text{g}$ 1 Oxygen atom = 16.00 amu $1 O_2$ molecule = 2(16.00 amu) = 32.00 amu 1 mole ${}^{12}C$ atoms = 12.00 g ${}^{12}C$ 1 mole lithium atoms = 6.941 g of Li For any element atomic mass (amu) = molar mass (grams)

The Mole

• Number of atoms in exactly 12 grams of ¹²C atoms

How many atoms in 1 mole of ¹²C ?

- Based on experimental evidence
- 1 mole of ${}^{12}C = 6.022 \times 10^{23}$ atoms = 12.011 g

Avogadro's number = N_A

- Number of atoms, molecules or particles in one mole
- 1 mole of $X = 6.022 \times 10^{23}$ units of X
 - 1 mole Xe = 6.022×10^{23} Xe atoms
 - 1 mole NO₂ = 6.022×10^{23} NO₂ molecules

One Mole of:

Moles of Compounds

Atoms

- Atomic Mass
 - Mass of atom (from periodic table)
- 1 mole of atoms = gram atomic mass = 6.022×10^{23} atoms

Molecules

- Molecular Mass
 - Sum of atomic masses of all atoms in compound's formula
- 1 mole of molecule X = gram molecular mass of X = 6.022×10^{23} molecules

1 amu = 1.66 x 10^{-24} g or 1 g = 6.022 x 10^{23} amu

M = molar mass in g/mol $N_A = Avogadro's number$

How many atoms are in 0.551 g of potassium (K)?

 $1 \mod K = 39.10 \text{ g K}$ $1 \mod K = 6.022 \text{ x } 10^{23} \text{ atoms K}$

$$0.551 \text{ gK x} \frac{1 \text{ mol K}}{39.10 \text{ gK}} \times \frac{6.022 \times 10^{23} \text{ atoms K}}{1 \text{ mol K}} =$$

8.49 x 10²¹ atoms K

Example 3.2

Helium (He) is a valuable gas used in industry, low-temperature research, deep-sea diving tanks, and balloons.

How many moles of He atoms are in 6.46 g of He?

Solution

The conversion factor needed to convert between grams and moles is the molar mass. In the periodic table (see inside front cover) we see that the molar mass of He is 4.003 g. This can be expressed as

1 mol He = 4.003 g He

A scientific research helium balloon.

From this equality, we can write two conversion © McGraw-Hill Education. factors Copyright © McGraw-Hill Education. All rights reserved. No reproductio distribution without the prior written consent of McGraw-Hill Educatio The conversion factor on the left is the correct one. Grams will cancel, leaving the unit mol for the answer, that is,

 $6.46 \text{ g-He} \times \frac{1 \text{ mol He}}{4.003 \text{ g-He}} = 1.61 \text{ mol He}$

Thus, there are 1.61 moles of He atoms in 6.46 g of He.

Example 3.3

Zinc (Zn) is a silvery metal that is used in making brass (with copper) and in plating iron to prevent corrosion.

How many grams of Zn are in 0.356 mole of Zn?

Copyright © McGraw-Hill Education. All rights reserved. No reproduction o distribution without the prior written consent of McGraw-Hill Education.

©Charles D. Winters/Science Source

Example 3.4

The C_{60} molecule is called buckminsterfullerene because its shape resembles the geodesic domes designed by the visionary architect R. Buckminster Fuller.

What is the mass (in grams) of one C_{60} molecule?

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Example 3.4

Solution

Because one C_{60} molecule contains 60 C atoms, and 1 mole of C contains $6.022 \times 10^{23} C$ atoms and has a mass of 12.011 g, we can calculate the mass of one C_{60} molecule as follows:

$$1 C_{60} \operatorname{-molecule} \times \frac{60 C \operatorname{-atoms}}{1 C_{60} \operatorname{-molecule}} \times \frac{1 \operatorname{-mol} C}{6.022 \times 10^{23} C \operatorname{-atoms}}$$
$$\times \frac{12.01 \text{ g } C}{1 \operatorname{-mol} C} = 1.197 \times 10^{-21} \text{ g}$$

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule

molecular mass (amu) = molar mass (grams)

1 molecule $SO_2 = 64.07$ amu 1 mole $SO_2 = 64.07$ g SO_2 How many H atoms are in 72.5 g of C_3H_8O ?

1 mol $C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$

 $1 \text{ mol } C_{3}H_{8}O \text{ molecules} = 8 \text{ mol } H \text{ atoms}$ $1 \text{ mol } H = 6.022 \text{ x } 10^{23} \text{ atoms } H$ $72.5 \text{ g } C_{3}H_{8}O \quad x \frac{1 \text{ mol } C_{3}H_{8}O}{60 \text{ g } C_{3}H_{8}O} \quad x \frac{8 \text{ mol } H \text{ atoms}}{1 \text{ mol } C_{3}H_{8}O} \quad x \frac{6.022 \text{ x } 10^{23} \text{ H } \text{ atoms}}{1 \text{ mol } H \text{ atoms}} = 5.82 \text{ x } 10^{24} \text{ atoms } H$

What is the formula mass of $Ca_3(PO_4)_2$?

1 formula unit of $Ca_3(PO_4)_2$ 3 Ca 3 x 40.08 2 P 2 x 30.97 8 O + 8 x 16.00 310.18 amu

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Example 3.6

Methane (CH_4) is the principal component of natural gas.

How many moles of CH_4 are present in 6.07 g of CH_4 ?

molar mass of
$$CH_4 = 12.01 \text{ g} + 4(1.008 \text{ g}) = 16.04 \text{ g}$$

$$6.07 \text{ g} \text{ } \text{CH}_4 \times \frac{1 \mod CH_4}{16.04 \text{ g} \text{ } \text{CH}_4} = 0.378 \mod CH_4$$

Thus, there is 0.378 mole of CH_4 in 6.07 g of CH_4 .

© McGraw-Hill Education.

Copyright C McGraw-Hill Education. Permission required for reproduction or display.

C Steve Allen/Getty Images RF

Example 3.7

How many hydrogen atoms are present in 25.6 g of urea $[(NH_2)_2CO]$, which is used as a fertilizer, in animal feed, and in the manufacture of polymers? The molar mass of urea is 60.06 g. We can combine these conversions

grams of urea \rightarrow moles of urea \rightarrow moles of H \rightarrow atoms of H

©McGraw-Hill Education/Ken Karp

$$= 25.6 \text{ g} \left(NH_{2}\right)_{2} CO \times \frac{1 \operatorname{mol} \left(NH_{2}\right)_{2} CO}{60.06 \text{ g} \left(NH_{2}\right)_{2} CO} \times \frac{4 \operatorname{mol} H}{1 \operatorname{mol} \left(NH_{2}\right)_{2} CO} \times \frac{6.022 \times 10^{23} H \operatorname{atoms}}{1 \operatorname{mol} H} \quad U'CO$$

$$= 25.6 \text{ g} \left(NH_{2}\right)_{2} CO \times \frac{1 \operatorname{mol} \left(NH_{2}\right)_{2} CO}{60.06 \text{ g} \left(NH_{2}\right)_{2} CO} \times \frac{4 \operatorname{mol} H}{1 \operatorname{mol} \left(NH_{2}\right)_{2} CO} \times \frac{6.022 \times 10^{23} H \operatorname{atoms}}{1 \operatorname{mol} H}$$

$$= 1.03 \times 10^{24} H \operatorname{atoms}$$

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

NaC

- 1Na 22.99 amu
- 1Cl+ 35.45 amuNaCl58.44 amu

For any ionic compound

formula mass (amu) = molar mass (grams)

1 formula unit NaCl = 58.44 amu 1 mole NaCl = 58.44 g NaCl

Formula Weights (FW)

- A formula weight is the sum of the atomic weights for the atoms in a chemical formula.
- So, the formula weight of calcium chloride, CaCl₂, would be

Ca: 1(40.1 amu*) + Cl: 2(35.5 amu) 111.1 amu

• Formula weights are generally reported for ionic compounds.

*atomic mass unit

Molecular Weight (MW)

• A molecular weight is the sum of the atomic weights of the atoms in a molecule.

Formula and Molecular Weights

- The formula weight of a substance is the sum of the atomic weights of the atoms in the chemical formula of the substance. Using atomic weights, we find, for example, that the formula weight of sulfuric acid (H_2SO_4) is 98.1 amu:*
- FW of $H_2SO_4 = 2(AW \text{ of } H) + (AW \text{ of } S) + 4(AW \text{ of } O)$
 - = 2(1.0 amu) + 32.1 amu + 4(16.0 amu)
 - = 98.1 amu

- **Ex.** How many moles of iron (Fe) are in 15.34 g Fe?
- What do we know? 1 mol Fe = 55.85 g Fe
- What do we want to determine?

15.34 g Fe = ? Mol Fe

• Set up ratio so that what you want is on top & what you start with is on the bottom

' End

Start

- **Ex.** If we need 0.168 mole $Ca_3(PO_4)_2$ for an experiment, how many grams do we need to weigh out?
- Calculate MM of Ca₃(PO₄)₂ 3 × mass Ca = 3 × 40.08 g = 120.24 g 2 × mass P = 2 × 30.97 g = 61.94 g 8 × mass O = 8 × 16.00 g = 128.00 g 1 mole Ca₃(PO₄)₂ = 310.18 g Ca₃(PO₄)₂
- What do we want to determine?

$$0.168 \text{ g } \text{Ca}_{3}(\text{PO}_{4})_{2} = ? \text{ Mol Fe}$$
Start End
$$0.160 \text{ mol Ca}_{3}(\text{PO}_{4})_{2} \times \left(\frac{310.18 \text{ g } \text{Ca}_{3}(\text{PO}_{4})_{2}}{1 \text{ mol Ca}_{3}(\text{PO}_{4})_{2}}\right) = 52.11 \text{ g}$$

$$Ca_{3}(\text{PO}_{4})_{2} \times \left(\frac{310.18 \text{ g } \text{Ca}_{3}(\text{PO}_{4})_{2}}{1 \text{ mol Ca}_{3}(\text{PO}_{4})_{2}}\right) = 52.11 \text{ g}$$

Examples

- 1- Calculate how many atoms there are in 0.200 moles of copper.
- The number of atoms in one mole of Cu is equal to the Avogadro number = 6.02×10^{23} .
- Number of atoms in 0.200 moles of Cu

= $(0.200 \text{ mol}) \times (6.02 \times 10^{23} \text{ mol}^{-1}) = 1.20 \times 10^{23}$.

- 2- Calculate how molecules of H_2O there are in 12.10 moles of water.
- Number of water molecules = $(12.10 \text{ mol})x(6.02 \text{ x } 10^{23})$ = 7.287 x 10²⁴
- 3- Calculate the mass, in grams, of 0.433 mol of $Ca(NO_3)_{2}$.
- Mass = 0.433 mol x 164.1 g/mol = 71.1 g.

4- Calculate the number of moles of glucose $(C_6H_{12}O_6)$ in 5.380 g of $C_6H_{12}O_6$.

Moles of
$$C_6 H_{12} O_6 = \frac{5.380 \text{ g}}{180.0 \text{ gmol}^{-1}} = 0.02989 \text{ mol}.$$

5- How many glucose molecules are in 5.23 g of $C_6H_{12}O_6$? How many oxygen atoms are in this sample?

$$5.23 \text{ g}$$
Molecules of C₆H₁₂O₆ = $-$ x (6.02x10²³)
180.0 gmol⁻¹
= 1.75 x 10²² molecules

Atoms of O = $1.75 \times 10^{22} \times 6 = 1.05 \times 10^{23}$

What is the mass, in grams, of one molecule of octane, C_8H_{18} ?

Molecules octane \longrightarrow mol octane \longrightarrow g octane

1. Calculate molar mass of octane

Mass C = $8 \times 12.01 \text{ g} = 96.08 \text{ g}$

Mass H = 18×1.008 g = 18.14 g

1 mol octane = 114.22 g octane

2. Convert 1 molecule of octane to grams

$$\left(\frac{114.22 \text{ g octane}}{1 \text{ mol octane}}\right) \times \left(\frac{1 \text{ mol octane}}{6.022 \times 10^{23} \text{ molecules octane}}\right)$$

= 1.897 × 10⁻²² g octane

 Calculate the number of formula units of Na₂CO₃ in 1.29 moles of Na₂CO₃.

$$1.29 \text{ molNa}_2\text{CO}_3 \left(\frac{6.0223 \times 10^{23} \text{ formula units Na}_2\text{CO}_3}{1 \text{ mol Na}_2\text{CO}_3} \right)$$

= 7.77×10²³ particles Na₂CO₃

• How many moles of Na_2CO_3 are there in 1.15 x 10⁵ formula units of Na_2CO_3 ?

 $1.15 \times 10^{5} \text{ formula units Na}_{2}\text{CO}_{3} \left(\frac{1 \text{ mol Na}_{2}\text{CO}_{3}}{6.0223 \times 10^{23} \text{ formula units Na}_{2}\text{CO}_{3}}\right)$

 $= 1.91 \times 10^{-19} \text{ mol Na}_2 \text{CO}_3$

Percent composition of an element in a compound =

 $\frac{n \text{ x molar mass of element}}{\text{molar mass of compound}} \ge 100\%$

n is the number of moles of the element in 1 mole of the compound

$$%C = \frac{2 \times (12.01 \text{ g})}{46.07 \text{ g}} \times 100\% = 52.14\%$$

$$%H = \frac{6 \times (1.008 \text{ g})}{46.07 \text{ g}} \times 100\% = 13.13\%$$

$$%O = \frac{1 \times (16.00 \text{ g})}{46.07 \text{ g}} \times 100\% = 34.73\%$$

52.14% + 13.13% + 34.73% = 100.0%

• In phosphoric acid (H₃PO₄), calculate the percent composition in each elements

Molar mass of $H_3PO_4 = 97.99 g$

%H =
$$\frac{3 \text{ x} (1.008 \text{ g})}{97.99 \text{ g} \text{ H}_3 \text{PO}_4} \text{ x} 100\% = 3.086\%$$

%P =
$$\frac{1 \text{ x} (30.97 \text{ g})}{97.99 \text{ g} \text{ H}_3 \text{PO}_4} \text{ x} 100\% = 31.61\%$$

 $\% O = \frac{4 \text{ x (16.00 g)}}{97.99 \text{ g H}_3 PO_4} \text{ x 100\%} = 65.31\%$

3.086% + 31.61% + 65.31% = 100.0%

Percent Composition and Empirical Formulas

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Percent Composition and Empirical Formulas

formula

36
Percent Composition and Empirical Formulas

Ascorbic acid (vitamin C) cures scurvy.

It is composed of 40.92 percent carbon (C), 4.58 percent hydrogen (H), and 54.50 percent oxygen (O) by mass.

Determine its empirical formula.

Solution

If we have 100 g of ascorbic acid, then each percentage can be converted directly to grams. In this sample, there will be 40.92 g of C, 4.58 g of H, and 54.50 g of O.

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$n_{C} = 40.92 \text{ g} + C \times \frac{1 \text{ mol } C}{12.01 \text{ g} + C} = 3.407 \text{ mol } C$$

$$n_{H} = 40.92 \text{ g} + H \times \frac{1 \text{ mol } H}{1.008 \text{ g} + H} = 4.54 \text{ mol } H$$

$$n_{O} = 54.50 \text{ g} + O \times \frac{1 \text{ mol } \Theta}{16.00 \text{ g} + \Theta} = 3.406 \text{ mol } O$$
Thus, we arrive at the formula $C_{3.407} H_{4.54} O_{3.406}$,
$$C: \frac{3.407}{3.406} \approx 1 \text{ H}: \frac{4.54}{3.406} = 1.33 \text{ O}: \frac{3.406}{3.406} = 1$$

This can be done by a trial-and-error procedure:

$$1.33 \times 1 = 1.33$$

 $1.33 \times 2 = 2.66$
 $1.33 \times 3 = 3.99 < 4$

Because 1.33×3 gives us an integer (4), we multiply all the subscripts by 3 and obtain $C_3H_4O_3$ as the empirical formula for ascorbic acid.

Experimental Determination of Empirical Formulas

$$\begin{array}{l} \text{mass of C} = 22.0 \text{ g} \cdot \text{CO}_2 \times \frac{1 \text{ mol} \cdot \text{CO}_2}{44.01 \text{ g} \cdot \text{CO}_2} \times \frac{1 \text{ mol} \cdot \text{C}}{1 \text{ mol} \cdot \text{CO}_2} \times \frac{12.01 \text{ g} \text{ C}}{1 \text{ mol} \cdot \text{C}} \\ = 6.00 \text{ g} \text{ C} \\ \text{mass of H} = 13.5 \text{ g} \cdot \text{H}_2 \text{O} \times \frac{1 \text{ mol} \cdot \text{H}_2 \text{O}}{18.02 \text{ g} \cdot \text{H}_2 \text{O}} \times \frac{2 \text{ mol} \cdot \text{H}}{1 \text{ mol} \cdot \text{H}_2 \text{O}} \times \frac{1.008 \text{ g} \text{ H}}{1 \text{ mol} \cdot \text{H}_2 \text{O}} \\ = 1.51 \text{ g} \text{ H} \end{array}$$

Thus, 11.5 g of ethanol contains 6.00 g of carbon and 1.51 g of hydrogen. The remainder must be oxygen, whose mass is

mass of O = mass of sample - (mass of C + mass of H)
=
$$11.5 \text{ g} - (6.00 \text{ g} + 1.51 \text{ g})$$

= 4.0 g

The number of moles of each element present in 11.5 g of ethanol is

moles of C = 6.00 g C ×
$$\frac{1 \text{ mol C}}{12.01 \text{ gC}}$$
 = 0.500 mol C
moles of H = 1.51 g H × $\frac{1 \text{ mol H}}{1.008 \text{ gH}}$ = 1.50 mol H
moles of O = 4.0 g O × $\frac{1 \text{ mol O}}{16.00 \text{ gO}}$ = 0.25 mol O

Divide by smallest subscript (0.25) Empirical formula C_2H_6O

Molecular Formulas

Molecular weight of the compound should be known

 $X = \frac{\mathcal{M}_{actual}}{\mathcal{M}_{empirical}}$ Multiply the empirical formula by the integer x

A compound has empirical formula $C_6H_{10}S_2O$ but its molecular weight is 324 g/mol ! $C_{12}H_{20}S_4O_2$

Calculate the number of grams of Al in 371 g of Al_2O_3 ? 196.5 g

Chalcopyrite (CuFeS $_2$) is a principal mineral of copper.

Calculate the number of kilograms of Cu in 3.71×10^3 kg of chalcopyrite.

Solution

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

©The Natural History Museum/Alamy Stock Photo

Chalcopyrite

The molar masses of Cu and CuFeS₂ are 63.55 g and 183.5 g, respectively. The mass percent of Cu is therefore

$$%Cu = \frac{\text{molar mass of Cu}}{\text{molar mass of CuFeS}_{2}} \times 100\% = \frac{63.55 \text{ g}}{183.5 \text{ g}} \times 100\% = 34.63$$

mass of Cu in CuFeS₂ = 0.3463×(3.71×10³kg) = 1.28×10³kg

Determining Empirical Formula by Combustion Analysis

*Combustion of 0.255 g of isopropyl alcohol produces 0.561 g of CO_2 and 0.306 g of H_2O . Determine the empirical formula of isopropyl alcohol.

Grams of C =
$$\frac{0.561 \text{ g CO}_2}{44 \text{ gmol}^{-1}}$$
 x 1 x 12 g mol-1 = 0.153 g
Grams of H = $\frac{0.306 \text{ g H}_2\text{O}}{18 \text{ gmol}^{-1}}$ x 2 x 1 g mol-1 = 0.0343 g

Grams of O = mass of sample – (mass of C + mass of H) = 0.255 g - (0.153 g + 0.0343 g) = 0.068 g

Moles of C =
$$\frac{0.153 \text{ g C}}{12 \text{ gmol}^{-1}}$$
 = 0.0128 mol
Moles of H = $\frac{0.0343 \text{ g H}}{1 \text{ gmol}^{-1}}$ = 0.0343 mol
Moles of O = $\frac{0.068 \text{ g O}}{16 \text{ gmol}^{-1}}$ = 0.0043 mol

Calculate the mole ratio by dividing by the smallest number of moles:

C: H : O 2.98: 7.91: 1.00 C_3H_8O

A sample of a compound contains 30.46 percent nitrogen and 69.54 percent oxygen by mass.

In a separate experiment, the molar mass of the compound is found to be between 90 g and 95 g.

Determine the molecular formula and the accurate molar mass of the compound.

Let *n* represent the number of moles of each element so that $n_N = 30.46 \text{ g} \text{ N} \times \frac{1 \mod \text{N}}{14.01 \text{ g} \text{ N}} = 2.174 \mod \text{N}$ $n_o = 69.54 \text{ g} \Theta \times \frac{1 \mod \text{O}}{16.00 \text{ g} \Theta} = 4.346 \mod \text{O}$ The molar mass of the empirical formula NO_2 is empirical molar mass = 14.01 g + 2(16.00 g) = 46.01 g $\frac{\text{molar mass}}{\text{empirical molar mass}} = \frac{90 \text{ g}}{46.01 \text{ g}} \approx 2$ molecular formula is $(\text{NO}_2)_2$ or N_2O_4 $\frac{3.46}{3.46} = \frac{3.46}{3.46} = \frac{$ **Experimental Determination of Empirical Formulas**

"empirical" means "based only on observation and measurement."

Ex: The empirical formula of ethanol is determined from analysis of the compound in terms of its component elements.

No knowledge of how the atoms are linked together in the compound is required.

Question 1

Determine the number of moles of aluminum in 0.2154 kg of Al.

A) 1.297 x 10²³ mol B) 5.811 x 10³ mol C) 7.984 mol D) 0.1253 mol E) 7.984 x 10⁻³ mol **Question 2** How many phosphorus atoms are there in 2.57 g of P? A) 4.79 x 10²⁵ B) 1.55 x 10²⁴

- C) 5.00×10^{22}
- D) 8.30 x 10⁻²
- E) 2.57

Question 3

Determine the mass percent of iron in $Fe_4[Fe(CN)_6]_3$.

A) 44% Fe
B) 26% Fe
C) 33% Fe
D) 58% Fe
E) None of the above.

Question 4

Howmanyoxygenatomsarepresent in 5.2g of O_2 ?A) $5.4 \ge 10^{-25}$ atomsB) $9.8 \ge 10^{22}$ atomsC) $2.0 \ge 10^{23}$ atomsD) $3.1 \ge 10^{24}$ atomsE) $6.3 \ge 10^{24}$ atoms

Chemical Reactions and Chemical Equations

A process in which one or more substances is changed into one or more new substances is a *chemical reaction*

A *chemical equation* uses chemical symbols to show what happens during a chemical reaction

How to "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO 2 moles Mg + 1 mole O₂ makes 2 moles MgO 48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO **NOT**

2 grams Mg + 1 gram O₂ makes 2 g MgO

 Write the correct formula(s) for the reactants on the left side and the correct formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

 $C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$

Change the numbers in front of the formulas

 (*coefficients*) to make the number of atoms of each
 element the same on both sides of the equation. Do not
 change the subscripts.

$$2C_2H_6$$
 NOT C_4H_{12}

3. Start by balancing those elements that appear in only one reactant and one product.

4. Balance those elements that appear in two or more reactants or products.

$$C_{2}H_{6} + O_{2} \longrightarrow 2CO_{2} + 3H_{2}O \qquad \text{multiply } O_{2} \text{ by } \frac{7}{2}$$

$$2 \text{ oxygen on left} \qquad 4 \text{ oxygen + 3 oxygen = 7 oxygen on left} \qquad (2x2) \qquad (3x1) \qquad \text{on right}$$

$$C_{2}H_{6} + \frac{7}{2}O_{2} \longrightarrow 2CO_{2} + 3H_{2}O \qquad \text{remove fraction multiply both sides by 2}$$

$$2C_{2}H_{6} + 7O_{2} \longrightarrow 4CO_{2} + 6H_{2}O$$

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$2C_2H_6 + 7O_2$	\rightarrow 4CO ₂ + 6H ₂ O		
4 C (2 x 2)	4 C		
12 H (<mark>2</mark> x 6)	12 H (<mark>6</mark> x 2)		
14 O (7 x 2)	14 O (4 x 2 + 6)		
		Reactants	Products
		4 C	4 C
		12 H	12 H
		14 O	14 O
			54

Examples of balancing chemical equation

 $\begin{array}{rcl} Na(s) + & H_2O(l) & \longrightarrow & NaOH(aq) + & H_2(g) \mbox{ (unbalanced)} \\ O_2 & + & NO & \longrightarrow & NO_2 \mbox{ (unbalanced)} \end{array}$

$\begin{array}{rcl} 2HCl + Zn & \longrightarrow & ZnCl_2 + H_2 \\ C_3H_8 + & 5O_2 & \longrightarrow & 3CO_2 + 4H_2O \\ Zn + & 2HNO_3 & \longrightarrow & Zn(NO_3)_2 + H_2 \end{array}$

PRACTICE EXERCISE

Balance these equations by providing the missing coefficients:

$$\begin{array}{rcl} --\mathrm{Al}(\mathrm{s}) + & -\mathrm{HCl}(\mathrm{aq}) & \longrightarrow & -\mathrm{AlCl}_3(\mathrm{aq}) + & -\mathrm{H}_2(\mathrm{g}) \\ --\mathrm{C}_2\mathrm{H}_4(\mathrm{g}) + & -\mathrm{O}_2(\mathrm{g}) & \longrightarrow & -\mathrm{CO}_2(\mathrm{g}) + & -\mathrm{H}_2\mathrm{O}(\mathrm{g}) \\ --\mathrm{Fe}(\mathrm{s}) + & -\mathrm{O}_2(\mathrm{g}) & \longrightarrow & -\mathrm{Fe}_2\mathrm{O}_3(\mathrm{s}) \end{array}$$

Amounts of Reactants and Products

- 1. Write balanced chemical equation
- 2. Convert quantities of known substances into moles
- 3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity
- 4. Convert moles of sought quantity into desired units ⁵⁶

Methanol burns in air according to the equation $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$ If 209 g of methanol are used up in the combustion,

what mass of water is produced?

grams $CH_3OH \longrightarrow moles CH_3OH \longrightarrow moles H_2O \longrightarrow grams H_2O$

molar masscoefficientsmolar mass CH_3OH chemical equation H_2O

$$209 \text{ g CH}_{3}\text{OH} \times \frac{1 \text{ mol CH}_{3}\text{OH}}{32.0 \text{ g CH}_{3}\text{OH}} \times \frac{4 \text{ mol H}_{2}\text{O}}{2 \text{ mol CH}_{3}\text{OH}} \times \frac{18.0 \text{ g H}_{2}\text{O}}{1 \text{ mol H}_{2}\text{O}} =$$

 $235 \text{ g H}_2\text{O}$

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

The food we eat is degraded, or broken down, in our bodies to provide energy for growth and function. A general overall equation for this very complex process represents the degradation of glucose $(C_6H_{12}O_6)$ to carbon dioxide (CO_2) and water (H_2O) :

 $C_6H_{12}O_6+6O_2 \rightarrow 6CO_2+6H_2O_2$

 $C_6H_{12}O_6$

If 856 g of $C_6H_{12}O_6$ is consumed by a person over a certain period, what is the mass of CO_2 produced?

Solution

We follow the preceding steps and Figure 3.8.

Step 1: The balanced equation is given in the problem.

Step 2: To convert grams of $C_6H_{12}O_6$ to moles of $C_6H_{12}O_6$, we write

$$856 \text{ g } \text{C}_{6} \text{H}_{12} \text{O}_{6} \times \frac{1 \text{ mol } \text{C}_{6} \text{H}_{12} \text{O}_{6}}{180.2 \text{ g } \text{C}_{6} \text{H}_{12} \text{O}_{6}} = 4.750 \text{ mol } \text{C}_{6} \text{H}_{12} \text{O}_{6}$$

Step 3: From the mole ratio, we see that

 $1 \mod C_6 H_{12} O_6 \cong 6 \mod CO_2$

Therefore, the number of moles of CO_2 formed is

$$4.750 \text{ mol} C_{6} H_{12} \Theta_{6} \times \frac{6 \text{ mol} CO_{2}}{1 \text{ mol} C_{6} H_{12} \Theta_{6}} = 28.50 \text{ mol} CO_{2}$$

Step 4: Finally, the number of grams of CO₂ formed is given by 28.50 mol CO₂ × $\frac{44.01 \text{ g CO}_2}{1 \text{ mol CO}_2} = 1.25 \times 10^3 \text{ g CO}_2$

After some practice, we can combine the conversion steps grams of $C_6H_{12}O_6 \rightarrow \text{moles of } C_6H_{12}O_6 \rightarrow \text{moles of } CO_2 \rightarrow \text{grams of } CO_2$ into one equation:

mass of CO₂ = 856 g C₆ H₁₂
$$\Theta_6 \times \frac{1 \mod C_6 H_{12} \Theta_6}{180.2 g C_6 H_{12} \Theta_6} \times \frac{6 \mod C \Theta_2}{1 \mod C_6 H_{12} \Theta_6} \times \frac{44.01 g C O_2}{1 \mod C \Theta_2}$$

=1.25×10³ g CO₂

All alkali metals react with water to produce hydrogen gas and the corresponding alkali metal hydroxide.

A typical reaction is that between lithium and water:

2Li (s)+2H₂O (l)
$$\rightarrow$$
2LiOH (aq)+H₂ (g)

Copyright
McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

©McGraw-Hill Education/Ken Karp

Lithium reacting with water to produce hydrogen gas.

How many grams of Li are needed to produce 9.89 g of H_2 ? Solution The conversion steps are

grams of $H_2 \rightarrow$ moles of $H_2 \rightarrow$ moles of Li \rightarrow grams of Li Combining these steps into one equation, we write

9.89 g H₂ ×
$$\frac{1 \mod H_2}{2.016 \text{ g } H_2}$$
 × $\frac{2 \mod \text{Li}}{1 \mod H_2}$ × $\frac{6.941 \text{ g Li}}{1 \mod \text{Li}}$ = 68.1 g Li
© McGraw-Hill Education.

Limiting Reagent:

Reactant used up first in the reaction.

$$2NO + O_2 \longrightarrow 2NO_2$$

NO is the limiting reagent

 O_2 is the excess reagent

Before reaction has started

After reaction is complete

Limiting Reagent: Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Before reaction has started

Reactant used up first in the reaction.

 $CO + 2H_2 \rightarrow CH_3OH$

H₂ is the limiting reagent

CO is the excess reagent

Limiting Reactants

- The reactant that is completely consumed in a reaction is called the **limiting reactant** (limiting reagent).
 - In other words, it's the reactant that run out first (in this case, the H_2).
 - In example below, O_2 would be the **excess reactant** (excess reagent).

Because 2 mol H_2 $\simeq 1$ mol O_2, the number of moles of O_2 needed to react with all the H_2 is

Moles
$$O_2 = (10 \text{ mol } H_2) \left(\frac{1 \text{ mol } O_2}{2 \text{ mol } H_2} \right) = 5 \text{ mol } O_2$$

Before reaction

After reaction

Copyright C McGraw-Hill Education. Permission required for reproduction or display.

Urea $\left[\left(NH_2\right)_2 CO\right]$ is prepared by reacting ammonia with carbon dioxide:

```
2NH_{3}(g)+CO_{2}(g)\rightarrow (NH_{2})_{2}CO(aq)+H_{2}O(l)
```

In one process, 637.2 g of NH_3 are treated with 1142 g of CO_2 .

- a) Which of the two reactants is the limiting reagent? $(NH_2)_2 CO$
- b) Calculate the mass of $(NH_2)_2CO$ formed.
- c) How much excess reagent (in grams) is left at the end of the reaction? © McGraw-Hill Education.

Solution

We carry out two separate calculations. First, starting with 637.2 g of NH_3 , we calculate the number of moles of $(NH_2)_2CO$ that could be produced if all the NH_3 reacted according to the following conversions:

grams of $NH_3 \rightarrow moles$ of $NH_3 \rightarrow moles$ of $(NH_2)_2 CO$

Combining these conversions in one step, we write

moles of
$$(NH_2)_2 CO = 637.g \cdot NH_3 \times \frac{1 \cdot mol \cdot NH_3}{17.03 \cdot g \cdot NH_3} \times \frac{1 \cdot mol \cdot (NH_2)_2 CO}{2 \cdot mol \cdot NH_3}$$

=18.71 mol $(NH_2)_2 CO$

Second, for 1142 g of CO_2 , the conversions are

grams of $CO_2 \rightarrow moles$ of $CO_2 \rightarrow moles$ of $(NH_2)_2 CO$

The number of moles of $(NH_2)_2CO$ that could be produced if all the CO_2 reacted is

moles of
$$(NH_2)_2 CO = 1142 \text{ g} CO_2 \times \frac{1 \text{ mol } CO_2}{44.01 \text{ g} CO_2} \times \frac{1 \text{ mol } (NH_2)_2 CO}{1 \text{ mol } CO_2}$$

= 25.95 mol $(NH_2)_2 CO$

It follows, therefore, that NH_3 must be the limiting reagent because it produces a smaller amount of $(NH_2)_2CO$.

b-Solution

The molar mass of $(NH_2)_2CO$ is 60.06 g. We use this as a conversion factor to convert from moles of $(NH_2)_2CO$ to grams of $(NH_2)_2CO$:

b-Solution

mass of
$$(NH_2)_2 CO = 18.71 \text{ mol} (NH_2)_2 CO \times \frac{60.06 \text{ g} (NH_2)_2 CO}{1 \text{ mol} (NH_2)_2 CO}$$

=1124 g $(NH_2)_2 CO$

Starting with 18.71 moles of $(NH_2)_2CO$, we can determine the mass of CO_2 that reacted using the mole ratio from the balanced equation and the molar mass of CO_2 . The conversion steps are

moles of
$$(NH_2)_2$$
 CO \rightarrow moles of CO₂ \rightarrow grams of CO₂

Combining these conversions in one step, we write

mass of CO₂ reacted = 18.71 mol $(\text{NH}_2)_2 \text{CO} \times \frac{1 \text{ mol } \text{CO}_2}{1 \text{ mol } (\text{NH}_2)_2 \text{ CO}} \times \frac{44.01 \text{ g CO}_2}{1 \text{ mol } \text{CO}_2}$ =823.4 g CO₂

The amount of CO₂ remaining (in excess) is the difference between the initial amount (1142 g) and the amount reacted (823.4 g): mass of CO₂ remaining = 1142 g - 823.4 g = 319 g In one process, 124 g of Al are reacted with 601 g of Fe_2O_3 2Al + $Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$

Calculate the mass of Al_2O_3 formed.

 $g AI \longrightarrow mol AI \longrightarrow mol Fe_2O_3$ needed $\longrightarrow g Fe_2O_3$ needed OR $g Fe_2O_3 \longrightarrow mol Fe_2O_3 \longrightarrow mol Al needed \longrightarrow g Al needed$ 124 g Al x $\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$ x $\frac{1 \text{ mol Fe}_2 \text{O}_3}{2 \text{ mol Al}}$ x $\frac{160. \text{ g Fe}_2 \text{O}_3}{1 \text{ mol Fe}_2 \text{O}_3}$ = 367 g Fe $_2 \text{O}_3$ Start with 124 g Al \longrightarrow need 367 g Fe₂O₃ Have more Fe_2O_3 (601 g) so AI is limiting reagent 69

Use limiting reagent (AI) to calculate amount of product that can be formed.

$$g AI \longrightarrow mol AI \longrightarrow mol Al_2O_3 \longrightarrow g Al_2O_3$$

 $2AI + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$
 $124 g AI \times \frac{1 mol AI}{27.0 g AI} \times \frac{1 mol Al_2O_3}{2 mol AI} \times \frac{102. g Al_2O_3}{1 mol Al_2O_3} = 234 g Al_2O_3$
At this point, all the AI is consumed and Fe_2O_3 remains in excess.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

% Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%$

Theoretical Yield

- The *theoretical yield* is the maximum amount of product that can be made.
- The amount of product actually obtained in a reaction is called the *actual yield*. The actual yield is almost always less than the theoretical yield.

Why?

- Part of the reactants may not react.
- Side reaction.
- Difficult recovery.
Percent Yield

• The percent yield of a reaction relates to the actual yield to the theoretical (calculated) yield.

Percent Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}}$ x 100 Examples Fe₂O₃(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO₂(g) If we start with 150 g of Fe₂O₃ as the limiting reactant, and found actual yield of Fe was 87.9 g, what is the percent yield?

The percent yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}}$ x 100

Calculate % yield if 803 g of CaO is produced?

Titanium is a strong, lightweight, corrosionresistant metal that is used in rockets, aircraft, jet engines, and bicycle frames. It is prepared by the reaction of titanium(IV) chloride with molten magnesium between 950° C and 1150° C:

 $\operatorname{TiCl}_{4}(g) + 2\operatorname{Mg}(1) \rightarrow \operatorname{Ti}(s) + 2\operatorname{MgCl}_{2}(1)$

In a certain industrial operation 3.54×10^7 g of TiCl₄ are reacted with 1.13×10^7 g of Mg.

- a) Calculate the theoretical yield of Ti in grams.
- b) Calculate the percent yield if 7.91×10^6 g of Ti are actually obtained.

Ø Super Stock/age fotostock

Solution

Carry out two separate calculations to see which of the two reactants is the limiting reagent. First, starting with 3.54×10^7 g of TiCl₄, calculate the number of moles of Ti that could be produced if all the TiCl₄ reacted. The conversions are

grams of $\text{TiCl}_4 \rightarrow \text{moles of TiCl}_4 \rightarrow \text{moles of Ti}$ so that

moles of Ti=3.54×10₇ g TiCl₄×
$$\frac{1 \text{ mol TiCl}_4}{189.7 \text{ g TiCl}_4}$$
× $\frac{1 \text{ mol TiCl}_4}{1 \text{ mol TiCl}_4}$

Next, we calculate the number of moles of Ti formed from 1.13 \times 10⁷ g of Mg. The conversion steps are

grams of Mg \rightarrow moles of Mg \rightarrow moles of Ti And we write

moles of Ti=1.13×10⁷ g Mg ×
$$\frac{1 \text{ mol}}{24.31 \text{ g Mg}}$$
 × $\frac{1 \text{ mol Ti}}{2 \text{ mol Ti}}$
=2.32×10⁵ mol Ti

Therefore, $TiCl_4$ is the limiting reagent because it produces a smaller amount of Ti.

The mass of Ti formed is

$$1.87 \times 10^5 \text{ mol } \text{Ti} \times \frac{47.88 \text{ g Ti}}{1 \text{ mol } \text{Ti}} = 8.95 \times 10^6 \text{ g Ti}$$

Solution

The percent yield is given by % yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$ = $\frac{7.91 \times 10^6 \text{ g}}{8.95 \times 10^6 \text{ g}} \times 100\%$ = 88.4%

Chemistry In Action: Chemical Fertilizers

Plants need: N, P, K, Ca, S, & Mg

 $3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$

 $NH_3(aq) + HNO_3(aq) \longrightarrow NH_4NO_3(aq)$

fluorapatite $2Ca_5(PO_4)_3F(s) + 7H_2SO_4(aq) \longrightarrow$ $3Ca(H_2PO_4)_2(aq) + 7CaSO_4(aq) + 2HF(g)$

The Oxidation Numbers of Elements in their Compounds

1 1A																	18 8A
1 H +1 -1																	2 He
	2 2A	8										13 3A	14 4A	15 5A	16 6A	17 7A	
3 Li +1	4 Be +2											5 B +3	6 C 7 27	7 Z 54321-3	8 O ² + ¹ + ²	9 F -1	10 Ne
11 Na +1	12 Mg +2	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al +3	14 S	15 P +5 +3 -3	16 S +4422 +4422	17 C77607407	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 > +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn ++6 +44 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge ++	33 As +5 +3 -3	34 Se +44 -2	35 Br +5 +3 +1 -1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 1 +7 +5 +1 -1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 W +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +1 +1	81 TI +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn