
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Topic 3

(Textbook - Chapter 3)

Processes

Ahmad AlRjoub

http://fac.ksu.edu.sa/ahmadrj

http://fac.ksu.edu.sa/ahmadrj

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including

scheduling, creation and termination, and communication

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addition of Medium Term Scheduling

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently (milliseconds) 

(must be fast)

 Long-term scheduler is invoked very infrequently (seconds,

minutes)  (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;

few very long CPU bursts

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process, the system must save the state of

the old process and load the saved state for the new process via a context

switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while

switching

 Time dependent on hardware support

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn create other

processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory

space with a new program

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A tree of processes on a typical Solaris

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement and asks the operating system to

delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its

parent terminates

– All children terminated - cascading termination

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need inter-process communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution of

another process

 Cooperating process can affect or be affected by the execution of another

process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer
process

 unbounded-buffer places no practical limit on the size of

the buffer

 bounded-buffer assumes that there is a fixed buffer size

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer

while (true) {

/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)

; /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

}

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 3

