
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Topic 3

(Textbook - Chapter 3)

Processes

Ahmad AlRjoub

http://fac.ksu.edu.sa/ahmadrj

http://fac.ksu.edu.sa/ahmadrj

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including

scheduling, creation and termination, and communication

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addition of Medium Term Scheduling

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently (milliseconds)

(must be fast)

 Long-term scheduler is invoked very infrequently (seconds,

minutes) (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;

few very long CPU bursts

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process, the system must save the state of

the old process and load the saved state for the new process via a context

switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while

switching

 Time dependent on hardware support

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn create other

processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory

space with a new program

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A tree of processes on a typical Solaris

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement and asks the operating system to

delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its

parent terminates

– All children terminated - cascading termination

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,

including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need inter-process communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution of

another process

 Cooperating process can affect or be affected by the execution of another

process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer
process

 unbounded-buffer places no practical limit on the size of

the buffer

 bounded-buffer assumes that there is a fixed buffer size

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer

while (true) {

/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)

; /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

}

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 3

